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We consider the electric field generation and charged particle acceleration mechanism due to the 
transverse oscillations of a current-carrying plasma. The proposed mechanism is responsible for 
the origin of accelerated particles under laboratory and space conditions. 

Acceleration of charged pafiicles to energies many particle acceleration for the case of radial oscillations of the 
times larger than the applied potential difference has been z-pinch does not occur in the framework of ideal MHD since 
observed in powerful discharges in z-pinch type devices. The by definition the accelerating longitudinal field, 
mechanism for the corresponding accelerating electromag- 
netic fields is apparently connected with the development of E,* = E, + v,B,/c 

two-dimensional plasma instabilities. We show in the pres- vanishes. 
ent paper that a dynamic acceleration effect exists also for 
one-dimensional transverse waves of plasma configurations 
with a longitudinal current. 1. EQUATIONS OF DISSIPATIONLESS TWO-FLUID REMGD 

We use the formalism of two-fluid relativistic electro- 
magnetic gas dynamics. (REMGD) to study one-dimen- If there are no dissipative processes the set of REMGD 

sional motions of plane and cylindrical currents. In the case equations has the form4 

of equal masses (m + = m - ) and equal temperatures 1 dB 
( T+ = T -  ), the problem can be simplified considerably div B=O, div E=$ne , -- = - rot E, 

c at 
and becomes a quasi-one-fluid one. In the linear approxima- 
tion it reduces to the solution of two ordinary second-order 1 dE --- - r o t B  
differential equations for the transverse velocity and the lon- c at 

gitudinal electric field. 
In the nonrelativistic approximation one reaches a simi- 

lar simplification also for m + # m - for a constant tem- 
perature ratio, T +  /T-  = const. Exact self-similar solu- 
tions can then be found, describing the collapse of a planar 
current layer and the radial oscillations of a cylindrical cur- 
rent. Of most interest for the problem of the dynamic parti- 
cle acceleration are the transverse motions of self-contained 
configurations with a conserved longitudinal current. The 
self-similar solution for a layer does not satisfy this condi- 
tion, and it is of interest for the problem of charged particle 
acceleration in the case of an outside build-up of the current. 
In the self-similar homogeneous waves of a cylinder the cur- 
rent is conserved but there is no acceleration. In the general 
case the transverse motions of self-contained configurations 
have a wave nature where for the basic transverse wave 
modes the particle acceleration in the inner region is accom- 
panied by a deceleration in the outer region in compression 
and vice versa in expansion. The acceleration occurring in 
that case is connected with redistribution of the current den- 
sity over its cross-section, and the effective accelerating elec- 
tric field is proportional to the square of the current. 

The basic problem of the acceleration of charged parti- 
cles up to the superhigh energies characteristic for cosmic 
rays is the generation of accelerating electric fields arising a 
result of plasma As z-pinch experiments show, 
the amplitude of the electric field and the energy of the accel- 
erated particles increase proportionally to the square of the 
current in the discharge. Extrapolating the experimental 
scaling to the high-current region one easily obtains the su- 
perhigh energies for the accelerated particles observed in 
cosmic rays. In conclusion one should note that the dynamic 

p d Wv  en  d  n nv 
---= -Vp*-E', -- 

I' 
+ div- = 0, r c ~ t  r at  r I' 

Here Eqs. ( 1 ) are a complete set of Maxwell equations 
and the relativistically invariant gas dynamic equations (2) 
are a double set of equations for the ion and electron gases 
with masses m, and charges e, = + e. The quantities 
p = mn,p = nT, and Tare, respectively, the invariant densi- 
ties, pressures, and temperatures, 

and Wand S are the enthalpy and the entropy, given by the 
relations 

where y is the adiabatic index. 
A consequence of Eqs. ( 1 ) and (2)  is the energy conser- 

vation law, 

The total energy density is the sum of the rest-mass, 
kinetic, thermal, and electromagnetic energy densities, 
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p Wc" E2+B2 & = z ( ~  - p )  + Sn = x ( & a + ~ x + ~ T )  +EL=,  

where 

We can write the gas dynamic'equations (2) for the 
variables N = n/r, M = m  W/T, c i  = yp/p W, where the N 
are the densities, the M are the effective particle masses, and 
c, is the sound speed, in evolutionary form: 

e  v '" v p  + - E' + -- ( l p  div ~ + I ' ~ ~ p v ) .  -=-- 
dt  MN M hMNc2 

Here we have 

2. ONE-DIMENSIONAL REMGD EQUATIONS 

For the one-dimensional problem in the coordinates 
xi = xl, x2, x3, d/dx2 = d/dx3 = 0  the components of the 
electromagnetic field are given by the formulae 

a m  I a~~ E L = -  E Z = - - -  1 d A 3  E 3 = - - -  
dx' ' c  d t  ' c  d t  ' 

whereg is the determinant of the metric tensor, and the set of 
the two-fluid REMGD equations can be written in the form 

where 

I a2  I a2 1 8  a ' J = A - -  OO=A' - - -  A=- -g"- - .  
c2 a t2  ' c2 atz  ' g'Ia ax1  8x1  ' 

This set describes one-dimensional motions of a plane 
layer with x i =  (x,y,z), g =  1, or of a cylinder with 
xi = (r,p,z), g = r '. 

One sees easily that in the case of equal masses, 
m  + = m  - , the set (3)  has solutions in the case of equal 
temperatures and oppositely directed longitudinal veloc- 
ities, v& = - UQ, in which coupled transverse motion 
(v: = 0'- ) occurs. In the case considered we put 
m +  = m ,  v'+ =v, vQ = f V2,,, N ,  =N, p ,  =0, 
E, = 0, and the set (3 )  reduces to a set of seven quasi-one- 
fluid equations for the functions N, p, v, V2,, , and A,,, : 

In the nonrelativistic approximation, fl < 1,fl < 1, the 
difference in the densities is relativistically small and one 
needs to take it into account only when determining the 
charge density. The set of Eqs. (3)  for the one-dimensional 
motion then takes the form 

4 n e  div E=4ne (N+-N- )  , AWA2 = - - N u 2 ,  
C 

dN 
-= 

d  
d t  -N div V, - dt  pN-T=O, 

where u = v + - v - is the current velocity. 
The set obtained here has a solution with coupled trans- 

verse motion, v'+ = v'- , for the ions and electrons with 
T+  /T_ = const when the center of mass is conserved, 
(m + v + + m  - v - ) ,, = 0. The corresponding generaliza- 
tion of the quasi-one-fluid equations (3a) to the case of un- 
equal masses, m  + # m  - , leads to the system 

4ne  4 n e  
A'AZ = - -NU, ,  A A ,  = - - N U , ,  

C C 

1 d p ,  e  $ A i  -.($) = - F G + T ~ i F ,  (4a) 

d  e dN ~a 
- ( . ,+ -A)  dt  = o ,  - =--- g'" U ,  

C 2,s  d t  g'" ax1  

Here we have 

250 Sov. Phys. JETP 73 (2), August 1991 L. S. Solov'ev 250 



In the case considered there is for m + #m - a transverse 
electric field. The charge density determined by the equation 
div E = 4?re(N+ - N- ) is relativistically small and van- 
ishes in the case of equal masses and equal temperatures. 

In what follows we restrict ourselves to transverse mo- 
tions of a purely longitudinal current, V = e ,  V3, in the case 
where there is no longitudinal magnetic field, B3 = 0, when 
we have A, = 0, B = e,  B 2,  A = e ,A ,. Linearization of the 
quasi-one-fluid REMGD set (3a) in the vicinity of the equi- 
librium state B ' = 8n-eNV/c,pl = - eNVB /c for perturba- 
tions proportional to e - '"' then yields a set of two second- 
order ordinary differential equations for the transverse 
velocity u = v' and the longitudinal electric field E = E 3: 

Here the prime indicates differentiation with respect to x', 
and we have 

H=B/(4n) '", F=cE/ (4n) ", f=g'"u, g5j= (g"H) ', 
p'=-jHj2, x2=4ne2N/Mc2, Q=xZrZH/h- (jr2pS2/2h) '. 

The perturbations of the other variables N,p,  %, and t c a n  be 
expressed in terms of v and E through the relations 

where E * = E + vB /cis the accelerating longitudinal field. 

3. SELF-SIMILAR SOLUTIONS 

1. In the case of a uniform longitudinal current, 
N = N(t),  u = u ( t )  , the set of quasi-one-fluid nonrelativis- 
tic equations (4a) has an exact symmetric solution satisfying 
the conditionp(x) = 0 at the free boundaries x = + a: 

where we have x: = 8?re2N0/m,c2, x i  = x: + x2- . Cal- 
culating the electric and magnetic fields leads to 

In the present nonrelativistic approximation, when the cur- 
rent layer is compressed we find an unlimited uniform parti- 
cle acceleration, m , V, = + E * ( t ) .  The total current in- 
creases in that case, J = J,ao/a, and to obtain collapse one 
therefore needs an external action leading to an increase of 
the current according to the relation Ja = const. 

The integral of the last equation (6)  describes the mo- 
tion of the boundaries x = 17: a ( t )  of the layer in the poten- 
tial field, 

Ci2 Lio2 
a=-U' (a) -+ U(a)=-, 

' 2 2 

The impossibility of exceeding the speed of light in the rela- 
tivistic formulation of the problem restricts the collapse to 
the magnitude a/ao --Po. 

2. If the condition pl(r) / rN(r)  = const is satisfied in 
the equilibrium state for a cylinder with a longitudinal cur- 
rent the set (4a) has an exact solution describing uniform 
pulsations of the cylinder: 

Here we have { = r/a, the longitudinal field 
Ez = - vB,/c can be expressed by the same formula as in 
MHD, the total current does not change, dJ/dt  = 0, and 
there is no acceleration, dV, /dt = 0. 

In the special case of a uniform current we have, accord- 
ing to (8),  

The square of the frequency of the small oscillations is 
u2 = ( y - 1 ) x i  u2/2 > 0. The integral of the last equation 
(8a) gives an expression for the potential which determines 
the nonlinear oscillations of the boundary of the cylinder, 
r = a( t ) :  

Liz 
a= - U' (a) 

1 
, -+U(a)=O, 2 ( i ( a )= - -~~2~2a~2{~ ,a , '  4 a 

where a ,  and a, are, respectively, the maximum and mini- 
mum radii of the cylinder, which are connected through the 
relation 
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In contrast to a layer, the self-similar solutions for a 
cylindrical current thus describe oscillations satisfying the 
conditions of current conservation and the absence of parti- 
cle acceleration. 

4. NONRELATlVlSTlC LINEAR THEORY 

In the nonrelativistic approximation the set of linear 
equations following from (4a) is analogous to ( 5 )  for the 
transverse motions of a longitudinal current and it has the 
form 

(g"F')'-x,"'"F=x,ZHf - (jf) ', (10) 

In the equilibrium state we have here 

The boundary condition at the free boundary x1 = a for 
F, corresponding to a self-contained current, follows from 
the first equation ( lo) ,  if we require that the derivative of the 
external longitudinal electric field vanishes, F: = 0. This 
implies the condition F' = -fl/g'/2 for x1 = a which, ac- 
cording to (Sa), is equivalent to the conservation of the total 
current, Ja  = const. 

The introduction of a new variable E which is propor- 
tional to the acting field E * and the acceleration, 

changes ( 10) to the set 

The boundary condition for E corresponding to current 
conservation will clearly be E' = g1/2H( f /g)' for x1 = a. 

To transform (10a) to standard form we introduce a 
"potential function" defined by the equation 

cp = 1  RE^'/^ dxJ, 
0 

where 8 = N/N, is the normalized density. 
As a result we get a set of equations for p andf: 

where the boundary condition corresponding to the condi- 
tion that the solution is self-contained is p ( a )  = 0. The 
boundary condition for p, in conjunction with the condition 
p ( a ) = 0 for the equilibrium pressure on the boundary with 
the vacuum, is sufficient to find a unique solution of the set 
(lob). The eigenvalue problem obtained in this way has a 
solution in the form of a discrete set of eigenfunctions for the 
different wave modes. 

The solution of the set of Eqs. ( 10) can be simplified in 
the limiting cases of low and high running densities when we 
have x: a2 < 1 and x i  a2) 1. The equation for f then becomes 
independent of Fand the equation for Freduces to a quadra- 
ture. Indeed, using ( 10a and ( lob) we get 

In the limit as &a2-+ co we have p-0 so that E *+O 
and Eq. ( 1 lb)  for f is the same as the corresponding equa- 
tion in classical one-fluid MHD. 

ONE-DIMENSIONAL SYMMETRIC MOTIONS OF A PLANE 
LAYER 

In the case of a uniform longitudinal current when we 
have N = const, V = const, H = hx, j = h, p, = h 2(1 
- x2)/2 the first two modes of the solutions of the set ( 10) 

can be expressed by the formulae 

where we have 

When the first mode is realized the particles are accelerated 
uniformly, while in the higher modes the acceleration is an 
increasing function of x. The solutions are unstable and do 
not satisfy the constant current condition. The growth rates 
for the development of the instability increase with the mode 
number. 

a )  For %:a2< 1 the solutions of Eq. ( 1 la)  for f(x)  are 
the Legendre polynomials P, (x).  Hence, the eigenfunctions 
of the system ( 1 la)  which satisfy the condition for self-con- 
tainment can be written in the form 

hv 
~ I = V X ,  E ~ = - - - - - ( I - ~ X ~ ) ,  

6 

Here we have 
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The solutions describe stable oscillations with frequencies 
which increase with the number 1 of the mode. The accelera- 
tion is an alternating function E,  (x)  with a vanishing aver- 
age value: 

The functionf, (x) satisfies for 1 > 1 the relation 

b) To obtain analytical solutions of the set ( 1 lb)  for 
x$ a2% 1 we restrict ourselves to the y = 2 case. In that case 

hvS1 
f=v sin Qx, E = - - (cos Qx-S2x sin a x ) ,  

xr2 
(14) 

where we have IR2 = mpNw2/h 2. The expression for the 
square of the frequency, obtained from the requirement that 
the self-containment condition f '  = ( a )  = 0 be satisfied, has 
the form 

The solution thus has an oscillatory nature and the acceler- 
ating field E * decreases when the parameter &a2 increases. 

In dimensional variables the accelerating field and the 
frequency of the oscillations for the first mode ( 13) are given 
by the formulae 

riB ( a )  y'"B ( a )  
E' ( x )  = - - ( I - )  a =  

6c (4fip,)'" a 

During the compression, when we have a < 0, the particles 
are accelerated in the central x < a/3'12 region while they are 
slowed down for ~ / 3 " ~  < x  <a.  Putting a z w a  we get the 
following expression: 

y"eB2 ( a )  E .  G - 
6 ~ ~ m ~ ~ ~  

where we have x i  = 457e2N /m,c2. From this it is clear that 
the accelerating field is proportional to the square of the 
total current, E * a J 2 / N  'I2. 

ONE-DIMENSIONAL RADIAL PULSATIONS OF A CYLINDER 

Again restricting ourselves to the case of a uniform lon- 
gitudinal current, 

we get an analytical solution of the set ( 10) for the I = 1,2 
modes in the form 

The current conservation condition is satisfied for the first 
mode and the particles are not accelerated. In the second 
mode we have acceleration but the current is not conserved. 
The solutions ( 15 ) have an oscillatory nature. 

a )  The eigenfunctionsf, ( r )  and E,  ( r )  of the set ( 1 la)  
which satisfy the self-containment condition p ( a )  = 0 for 
the current are for x i  a2< 1 given by the formulae 

Here we have 

The ground-state mode corresponds to uniform waves with- 
out acceleration. In the higher modes there is acceleration 
and they are described by alternating functions E,  ( r )  and 
f, ( r )  satisfying the relations 

b) We can obtain analytical solutions of the set (1 l a )  
for x:a2) 1 only for y = 1. In that case we have 

hv 
f=vrJ, (Qr) , E = - QrJ, (Qr) , 

X r 
(17) 

where f12 = m, Nw2/h 2. In order that the self-containment 
condition ( f / r  2)' = 0 be satisfied for r = 1 it is necessary 
that f l  is a root of the equation M, (f l )  - W, ( IR ) = 0. The 
solution has an oscillatory nature and the accelerating field 
decreases when the parameter x,a increases. 

In dimensional variables the accelerating field and the 
frequency of the oscillations for the second mode can be 
written in the form 

riB ( a )  
E ' (r )= -- (47-1)'" B ( a )  

( 1  w=- 
2c (npr) '"  a ' 

When the cylinder is compressed, a < 0, the particles are ac- 
celerated in the central r < ~ / 3 ' / ~  region and slowed down 
for a/3'I2 < r < a. Putting a -- wa we find the expression 

(4y-1)'" eBZ(a )  
E' ( r )  s - 

x0mrc2 ( I  -$). 
As for the oscillations of a layer we have E * cc J 2 / N  'I2. 

Problems of the two-dimensional dynamics of the plas- 
ma and of z-pinch type configurations, in the framework of 
two-fluid REMGD, were considered, in particular, in Refs. 
5 and 6. 

CONCLUSION 

Up to now the cause of the occurrence of anomalously 
accelerated charged particles in z-pinch type devices had not Here we have 
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been given an unambiguous theoretical explanation. The 
mechanism for the generation of accelerating electromag- 
netic fields is usually connected with the development of 
two-dimensional plasma instabilities and the effect of the 
anomalous resistivity. However, in view of the complex ge- 
ometry there are considerable mathematical difficulties for 
an analytical study of the corresponding dynamical prob- 
lems. In the present paper we considered the very simple 
problems of one-dimensional transverse motions of a layer 
and of a cylinder with a longitudinal current, assuming the 
plasma to be ideally conducting. We showed that in the case 
of equal particle masses, m + = m - , the equations of two- 
fluid relativistic EMGD have a class of solutions satisfying a 
system of quasi-one-fluid equations. In the nonrelativistic 
approximation a similar result obtains for arbitrary mass 
ratios m + /m - . 

We obtained self-similar solutions of the corresponding 
nonrelativistic set of equations which describe the collapse 
of the layer and nonlinear oscillations of the cylinder. The 
use of a developed mathematical formalism enabled us to 
explain the presence of the dynamical charged particle accel- 
eration effect which has no analog in the framework of clas- 
sical one-fluid MHD. A study of the quasi-one-fluid system 

of EMGD equations shows that there are solutions satisfy- 
ing the self-containment condition ( J  = const) in which the 
electrons and the ions are accelerated in opposite directions 
while the acceleration is proportional to the square of the 
total current and inversely proportional to the plasma den- 
sity, in agreement with the experimental results. The accel- 
erating electromagnetic field is in this case an alternating 
function of the radius with a number of nodes which is deter- 
mined by the number of the mode of the radial oscillations. 

The author is very grateful to A. A. Vedenov, V. A. 
KutvitzkiY, and A. L. Chernyakov for fruitful discussions. 

' W. M. Johnson and R. C. Hames, Astrophys. J. 183, 103 (1983). 
H. Alfvkn, Laser and Particle Beams, 6,  389 ( 1988). 

-'F. Winterberg, Phys. Rev. A19, 1356 (1988). 
4V.  Ts. Gurevichand L. S. Solov'ev, Zh. Eksp. Teor. Fiz. 91, 1144 ( 1986) 

[Sov. Phys. JETP 64,677 (1986) 1. 
5L. S. Solov'ev, Fiz. Plazmy 8, 947 (1982) [Sov. J. Plasma Phys. 8, 532 

(1982)l. 
S. V. Nikonov, L. S. Solov'ev, and Yu. V. Yurgelena, The Stability Theo- 
ry of Charged Particle Counter Flows, Preprint IAE-4935/6, Moscow 
(1989). 

Translated by D. ter Haar 

254 Sov. Phys. JETP 73 (2), August 1991 L. S. Solov'ev 254 


