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The interaction of a fast charged particle with individual atoms in a crystal is used as the starting 
point in a study of statistical properties of a fluctuation force acting on such a particle as it travels 
at a small angle with respect to a crystallographic plane. This analysis makes it possible to derive 
an equation for the distribution function in the two-dimensional phase space of the variables that 
describe the motion transverse to the plane. The feasibility of simplification in the limiting cases of 
high and low energies is considered and the results are compared with those given in the literature. 

1. INTRODUCTION known as the multiple scattering effects due to the difference 

we consider the process of motion of a fast particle in between the true potential and its average value. This ap- 

the field of slowly fluctuating force centers when the follow- proach is largely related to the concept of the continuous 

ing condition is obeyed: potential introduced by Lindhard,' i.e., to the concept of 
self-averaging of the potential because of the fast longitudi- 

t a c t ,  ( 1.1 ) nal motion. For example, when the motion takes place at a 

(t, is the characteristic time over which the field created by a 
given center changes and t, is the time taken by the fast 
particle to travel across the region of interaction with the 
field of the center). This is exactly the situation when relativ- 
istic charged particles traverse a crystal: the period of the 
thermal vibrations of atoms governed by the Debye tempera- 
ture T, is 

whereas the region of the interaction with an atom is of the 
order of the screening radius a z 0 . 2  A, which such a particle 
crosses in a time t, -a/c- 10- I9s. We shall consider this 
particular process, but the whole of the analysis and the re- 
sults obtained are of much more general validity. 

When the condition ( 1.1 ) is satisfied, we can regard the 
thermal displacements of atoms as random quantities and 
not as a random process, and it is usual to assume that such 
displacements have a Gaussian distribution: 

W (u,). = (2naZ) -" exp ( - U , ~ / ~ O ~ ) .  (1.3) 

The variance is found from the Debye model which 
shows that u is much less than the screening radius. For 
example, in the case of silicon at normal temperature we 
have uz0.08 A. 

The problem of the passage of fast particles through a 
crystal is of greatest interest in the case when the direction of 
such motion makes a small angle $relative to some crystal- 
lographic axis or plane, i.e., under the channeling conditions 
investigated extensively in recent years (see, for example, 
the review in Ref. 1 and various monographs2-'). Fast longi- 
tudinal motion of a particle with an energy Ell z E  can then 
be regarded as free. On the other hand, slow transverse mo- 
tion is characterized by an energy EL = E7,h2/2, which is 
comparable with the potential Vo of the field in a crystallo- 
graphic plane or along an axis (it amounts to several tens of 
electron volts) and, therefore, such motion is governed by 
the interaction with this field. 

The channeling theory is usually developed so that the 
motion in the average potential is considered first. Then, an 
allowance is made (by a variety of methods) for what are 

small angle with respect to the (y, z )  plane, the potential 
V(x) describing the transverse motion is 

[So is the area of the (y, z) plane per one atom]. The Lind- 
hard approach is exceptionally fruitful in the description of 
the dynamics of motion, but the averaging in Eq. ( 1.4) sup- 
presses information on fluctuations. Therefore, such infor- 
mation has to be obtained anew by one method or another. 

We shall approach in a somewhat different way the 
same problem of the influence of fluctuations of the potential 
and the motion under the channeling conditions but without 
adopting the approximations mentioned above. First of all, 
we separate the irregular part of the interaction of the fast 
particle with the crystal because of the thermal displace- 
ments of its atoms. We determine the statistical properties of 
the random force by constructing the characteristic func- 
tional and we study the motion both far and close to a crys- 
tallographic plane. The random force due to the thermal 
displacements of atoms in a crystal is found to be delta-cor- 
related (Sec. 2)  in a wide range of values of the impact pa- 
rameters. 

In Sec. 3 we discuss a different mechanism for the ap- 
pearance of an irregular force: it is due to the difference be- 
tween the interaction of the fast particle with individual elec- 
trons of an atom and the interaction with the average 
electron distribution, included in the potential of an atom. 
This mechanism is important in the case of motion at large 
distances from crystallographic planes, since the interaction 
with individual electrons decreases much more slowly with 
the distance than the interaction with an electrically neutral 
atom. 

Since the random force in stochastic differential equa- 
tions of motion can be regarded, as shown in Secs. 2 and 3, as 
Gaussian and delta-correlated, in Sec. 4 we derive an equa- 
tion for the distribution function in terms of the transverse 
coordinates and velocities. The feasibility of deriving an 
equation of the parabolic type, namely the Fokker-Planck 
equation, is related (see, for example, Ref. 8 )  precisely to 
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these properties of the random forces and is in no way related 
to the weakness of these forces. In general, the phase space of 
planar channeling is two-dimensional. In the limiting cases 
of or% 1 and WT< 1 (W is the characteristic frequency of the 
vibrational motion in a channel and T is the evolution time of 
a beam of particles) the situation simplifies greatly and we 
can derive simpler equations describing the evolution in one- 
dimensional phase space. In particular, in the hf limit, which 
is reached at sufficiently high energies, the Fokker-Planck 
equation reduces the equation of Ref. 3, which describes the 
evolution of the distribution function in the transverse ener- 
gies and which is obtained by the authors of Ref. 3 by a 
completely different approach utilizing the semiclassical 
limit of a quantum-mechanical equation. 

Finally, in Sec. 5 we analyze in detail the scenarios of 
the development of the processes of dechanneling of elec- 
trons and positrons at high energies in the limit 07% 1. A 
comparison with the experimental data shows that the de- 
scription obtained by the approach adopted here is satisfac- 
tory. 

2. STOCHASTICITY DUE TO THERMAL DISPLACEMENTS OF 
ATOMS 

For a given motion in the (y, z)  plane the potential 
governing the transverse motion depends on time as a pa- 
rameter: 

where v is the velocity of a particle in the (y,z) plane; V,, is 
the potential of one atom; r, and u,  are, respectively, the 
equilibrium position and the thermal displacement of the 
nth atom. 

We can distinguish the irregular part') in Eq. (2.1) 
which is due to thermal displacements {u,,) of the atoms: 

where for brevity we shall use 

The part S Vis the generator of the random force F(t,x) 
and the time dependence of the latter is linked, not to 
changes in the random quantities {u,,), but to the circum- 
stance that in the course of motion in the (y, z) plane a fast 
particle interacts at different moments with atoms displaced 
by different amounts from the equilibrium position. In other 
words, the random field of each atom is individual and, 
therefore, it is localized. On the other hand, the regular fields 
of atoms in a crystal are coherently additive and, therefore, 
they are periodic and of the long-range type. 

The statistical properties of the random force F( t,x) are 
governed by the following characteristic functional: 

where the averaging is carried out over all the quantities 
Cu, ). 

In the above formulation of the problem we are interest- 
ed in arbitrary functions c( t)  which change over a time char- 

acteristic of the transverse motion t, 2 d /cY, ( d  is the width 
of the investigated channel, i.e., the distance between the 
adjacent crystallographic planes, and $, is the Lindhard an- 
gle). Such times are long compared with the interaction time 

consequently, the integral in the argument of the exponen- 
tial function can be represented in the form 

where t, is the time at which the fast particle passes the nth 
atom and F,, (t,x) is the contribution of this atom to the total 
random force F( t,x) . 

If we assume that the displacement of the atoms are 
small2' compared with the screening radius governing the 
scale of variation of the atomic field, u <a,  we find that 

Using Eqs. (2.6) and (2.7), and averaging over all the 
quantities u, with the aid of Eq. ( 1.3), we obtain 

where 

I(% r,,)= 1 dt v.([ ( ~ - ~ ~ ) ' + b ~ ~ + v ' ( t - t n ) ' I  3 1 (2.9) 

b,, is the transverse (relative to the velocity v )  component of 
the radius vector p,, of the nth atom in the (y, z)  plane and 
t ,  = vp/u2 is the time of closest approach to the nth atom 
(Fig. 1) .  

FIG. 1 .  Schematic representation of a channeling plane. 
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The functional (2.4) may be given the standard formX 
53 ( x , = Z r ,  j d b ~ ( x - x , , ,  b ) .  

2'0 ,z,J - m  

It is understood that the contribution from distant 
atoms to the noise level 23 (x)  is small: the function I (7) 
and its derivatives decrease rapidly. If the atomic potential is 
of the screened Coulomb type, 

if we define the correlation function as follows: 

t i  8  ( t )  8 ( t  ( n  n (2.1 1 
n 

Zae 
cpa (r) = - e-r/a 

r 

the function I (7) represents a modified Bessel function where 

and y,, = [ (x - x,, )l+ b f, ] I/*, the minimum distance 
from the nth atom to the "observation point" x of interest to 
us in the argument of the function I and the differentiation in 
Eq. (2.12) is carried out with respect to this argument. 

It therefore follows that atoms distributed at random 
because of thermal displacements have an effect on a fast 
particle moving at a small angle to a crystallographic plane, 
and this effect is equivalent to Gaussian delta-correlated 
noise. 

Bearing in mind that the intervals At,, between the in- 
teractions with different atoms are considerably shorter 
than the time t, of interest to us, 

and for large values of the argument 7 % a,  we have 

The Molikre potential, quite satisfactory for real crys- 
tals, represents a sum'" of three terms of the form (2.22): 

3 

The quantity 9 (x )  governing the noise level corre- 
sponds to this potential and can be represented in the form 

we average Eq. (2.1 1 ) over some intermediate time interval 
At, < T-4 t ,  . We then obtain 

9 ( x )  =Qog ( x )  , (2.24) 

where the dimensional factor 

B ( x )  = ( 0 ' 1 2 ~ )  G (x-xm,  6.). (2.15) 
n 

The summation in the above equation is carried out over all 
the atoms with which the interactions occur during the time 
interval Tof interest to us. In each of the parallel planes (i.e., 
at fixed values of x, ) these atoms form a strip of width vT 
and the boundaries of this strip are perpendicular to the ve- 
locity vector v of the fast particle (Fig. 1 ). Introducing the 
distribution function of atoms in this strip 

determines the scale, and g (x )  is a dimensionless structure 
function 

a2 d b  ( X - X , , ) ~  x;o) + ~ ( X - X ~ ) ~  
A X ) = - J 7 [  a2 Z , ~ , Z , , , + Z : : , J ] .  

a 0 'la 

Here, Z,,, and 2 , ,  , are combinations of modified Bessel 
functions 

we convert Eq. (2.15) to 

In determining the characteristic potential @ [ l ( t )  ] we 
used the above approximation given by Eq. (2.7). We now 
discuss in greater detail a situation when the path of a fast 
particle passes so close to an atom 

(the summation is carried out over planes with different co- 
ordinates x, ). In the case of the motion in the field in a plane 
far from crystallographic axes, which is considered here, the 
distribution function averaged along a strip of width I (in the 
direction of motion V) ceases to depend on the impact pa- 
rameter b: 

that the approximation (2.7) loses its meaning. Then, the 
averaging over the thermal displacements of atoms {u,) 
should be carried out avoiding linearization in the displace- 
ment amplitudes. This is a soluble problem, although the 
solution is very time-consuming. We therefore consider one This allows us to obtain the following final expression: 
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case, most unfavorable from the point of view of the validity 
of the approximation (2.7), of the central interaction 
x = n,, b,, = 0. Noting that when the condition (2.28) is 
obeyed, the integral in the argument of the exponential func- 
tion can be simplified by using the asymptotic form of the 
function KO for small arguments 

we can readily find the contribution of this interaction to the 
characteristic functional: 

Adopting polar coordinates in the space of the thermal dis- 
placements (u ,  ,u, ), we can reduce the above expression to 
the following integral: 

e4 

[< = (2ZpZ,e2/va){(t,, ), and J, is the Bessel function of 
order zero], which can be calculated numerically. Figure 2 
shows the characteristic function a, (depending on { 2,  to- 
gether with the Gaussian functions 

which correspond to passage at distances 

in the approximation of Eq. (2.7). It is clear from Fig. 2 that 
even in the most unfavorable case of the central interaction 
the function a, is smooth and quite close to the Gaussian 
function corresponding to the passage through the outer 

FIG. 2. Characteristic function for zero impact parameter. 

155 Sov. Phys. JETP 73 (I), July 1991 

edge of the thermal layer of the atom. Therefore, allowing 
also for the fact that the situation of the type described by 
Eq. (2.29) has in general only a small statistical weight 
- d / d  2, we can use Eq. (2.19) where the contribution ofthe 
terms with 7,1<u/x"* is truncated at their values correspond- 
ing to 7,1 = ~ / x " ~ .  

The structure function g(x)  which is then obtained de- 
termines the coordinate dependence of the quantity (x)  
plotted in Fig. 3. This function decreases rapidly for values 
of the coordinate x (which is the distance to the nearest 
plane) exceeding the amplitude of the thermal vibrations of 
an atom. In the asymptotic case x % a ,  we readily obtain 

(the term with j = 3 in the Molikre potential has the longest 
range). Therefore, in the case of motion near one of the 
planes the contribution to the value of 9 (x)  of the other 
planes is unimportant. However, where the motion occurs in 
the center of the channel, we must include the contribution 
to .9 ( x )  made by two adjacent planes forming a given chan- 
nel. 

We now find the structure function near a crystallo- 
graphic plane. Since the main contribution comes from the 
"close" collisions characterized by 7,1 <a,  for which we have 

we obtain 

and 

We must draw attention to the nontrivial dependence 
on the amplitude of the thermal vibrations, which are the 
source of noise. This is because at short distances, in contrast 
to the case of large distances, the fluctuation force is not a 
linear function of the thermal displacements. 

FIG. 3. Structure function g(x) near a crystallographic plane. 
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3. STOCHASTlClTY DUE TO ATOMIC ELECTRONS 

In the random process associated with the thermal vi- 
brations of atoms in the crystal which is discussed above, the 
elementary potential is that of the atom as a whole. There- 
fore, the noise level is proportional to the square of the 
charge and, because of the electrical neutrality and the high 
symmetry of an atom, it decreases quite rapidly (exponen- 
tially) with the distance. Another source of stochasticity is 
fluctuations of the electron distribution in an atom, i.e., the 
difference between the real interaction with atomic electrons 
and the average contribution to the atomic total potential: 

Here, the double angular brackets denote quantum-mechan- 
ical averaging of the square of the electron wave functions in 
an atom: 

The fluctuation potential SVF'(r) ,  created by elec- 
trons of the nth atom, depends on the coordinates of these 
electrons Cr,) as parameters. The statistical properties of the 
random force generated by this atom 

(el a F ,  (x, t)=- - G V ~ '  [r(t)-r,, {r,)]  
ax 

are governed by the characteristic functional 

@ , [ l ( t ) l = ( e x p [ i j d t ~ ~ '  (x,t)t,(t)])). (3.4) 

As in the preceding case, the total functional of the in- 
teraction with the whole crystal is factored for the individual 
atoms, which is due to the limited dimensions of the region of 
interaction with a single atom (it is of the order of the Bohr 
radius a, z0.5A),  compared with the distance between dif- 
ferent atoms (which is of the order of the lattice constant 
amounting to several angstroms). 

The feasibility of further simplification of the charac- 
teristic functional depends on the use of the multiplicative 
properties of many-electron wave functions. For example, in 
the Hartree-Fock approximation, when the many-electron 
wave function is a Slater determinant, the characteristic 
functional Q, describing the interaction with the nth atom 
represents the following product: 

If, for the sake of simplicity, we use an exponential dis- 
tribution (quite close to reality) 

then even if we ignore the "close" interactions and linearize 
the fluctuation force F,, with respect to the electron coordi- 
nates in an atom r,, we obtain a very complex expression: 

It therefore follows that the process generated by elec- 
tron fluctuations is not Gaussian and, therefore, it cannot in 
general be described by a Fokker-Planck equation of para- 
bolic type. 

On the other hand, at large distances from a plane, 
where the process in question is most important because of 
the slower (obeying a power law and not an exponential 
function) decrease with the distance, the situation simpli- 
fies. In fact, in this case the function Q,, can be described by 
an expansion 

which is close to an expansion of a Gaussian function: 

Consequently, at long distances x s 1//2 we can regard the 
interaction with electron fluctuations as a Gaussian process 
which is delta-correlated in the sense of different atoms, with 
a correlation function is3' 

or if we use the mean-square radius r2 s in the distribution 
parameter of Eq. (3.6), we find that 

The electron distribution giving rise to the Molitre potential, 
corresponds to the mean-square radius 

It should be noted that Eq. (3.11 ), which is valid when 
the displacement x of the fast particle is large, can be derived 
also without postulating factorization of the atomic electron 
functions and without knowing the explicit form of the elec- 
tron distribution. 

Far from a plane the interaction with electron fluctu- 
ations dominates the formation of noise: 

exp (2@,x/a). 

The role of interaction with electron fluctuations at 
short distances is similar to that described above for the pas- 
sage of a fast particle through the thermal layer of an atom. 
The only difference is that the role of the truncation param- 
eter is now played not by the amplitude a of the thermal 
vibrations, but by the mean-square radius of the electron 
distribution. Therefore, the following ratio applies near a 
plane: 
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so that the main role is played by the interaction with atoms 
as a whole. The correlation function 9 ( " I  is linear (and not 
quadratic like 9 ) in the charge Z,  because the fluctuation 
force is incoherent in the case of individual electrons of an 
atom. 

It therefore follows that at not too large distances from 
a crystallographic plane we can ignore the weak electron 
noise 9'') compared with the much stronger, in this region, 
thermal noise 9. However, at larger distances where elec- 
tron fluctuations become dominant, this process becomes 
Gaussian. Consequently, we can regard random forces as 
Gaussian in a wide range of the values of the variable x, 
which is of interest in connection with the problem of de- 
channeling of fast particles moving under planar channeling 
conditions, the case considered here. 

4. FOKKER-PLANCK EQUATION 

It follows that when we consider the motion of a fast 
charged particle in the transverse direction, we have to allow 
not only for the determinate force F, due to the regular part 
of the crystal potential V(x), but also for the random force 
F(t,  x )  : 

where E is the energy of the particle, playing the role of a 
mass coefficient in the slow transverse m ~ t i o n . ~ '  This equa- 
tion can be written in the standard form for stochastic differ- 
ential equations: 

where y is the velocity of the motion parallel to the x axis 
(which should not be confused with the coordinate in the 
plane) and 

the normalized (to the mass coefficient) determinate and 
random forces. It follows from the above that the random 
force can be reasonably regarded as Gaussian and delta-cor- 
related: 

< f  ( t ,  x )  f (t', x )  ) - 2 0  ( x )  6 ( t - t ' )  , D ( 2 )  =B ( x )  /Ea. 

The evolution in the phase space (x, y )  is then described 
(see, for example, Refs. 8 and 11 ) by the distribution func- 
tion P, (x, y )  satisfying the Einstein-Fokker-Planck equa- 
tion 

subject to the initial conditions 

Having found f, (x)  and D(x)  from Eq. (4.5), we can 
(in principle) find all the information on the investigated 
transverse motion. It should be pointed out that smallness of 
D(x)  is in no way essential for the validity of the Fokker- 
Planck equation. 

We are interested in that part of the phase space which 
corresponds to the subbarrier motion, i.e., to channeling 
proper. Then, as in the investigation of an oscillator with a 
noisy frequency,' it is convenient to replace the variables (x, 

y )  representing the coordinate and velocity, with the vari- 
ables (A, p), representing (in the absence of noise) two inte- 
grals of motion, the amplitude and initial phase of vibration- 
al motion in a channel 

x=xt ( t ;  A ,  cp), y=yt ( t ;  A ,  cp). (4.7) 

The physical meaning of going over to the phase space 
of the integrals of determinate motion is this: since the whole 
evolution in this space is due to the noise, the Fokker-Planck 
equation simplifies to 

where A is the Jacobian of the transformation (4.7) and the 
"determinate" coordinates x, and the velocity y, are given 
by the following equations of motion: 

x t  ( t ;  A ,  cp)=yt(t; A ,  ( P ) ,  y t  ( t ;  A, (P)=fd(xt( t ;  A ,  9 )  1. 
(4.9) 

It should be noted that the idea of going over to the integrals 
of motion in the Fokker-Planck equation was put forward 
already in Ref. 12. 

Since in the case of vibrational motion at a frequency o 
(which generally depends on the amplitudeA ) the time t and 
the initial phase occur in the form of a single combinatior) 
@ = a t  + q, and, therefore, 

a ~ ~ l a ( ~ = ~ ~ l o ,  
we can readily use Eq. (4.9) to find 

Like the energy of transverse motion, the Jacobian A is thus 
independent of the time t and of the initial phase p, and is 
only a function of the amplitude: A = A (A). 

Equation (4.8) can be rewritten also in the form 

It is convenient to replace the amplitude A directly with E,, 
the energy of transverse motion, as is usual in studies of 
channeling. Then the Fokker-Planck equation becomes 

ax,  
a p , ( E , ,  p ) = B ( x t )  [ s t a * ,  -a a*]  Pt(E,, t )  

We can see that the dechanneling in the planar case 
must be considered allowing for the evolution in the two- 
dimensional phase space of transverse motion: in either the 
space (x,y) or (A,q,) or (E,,p). The situation simplifies 
greatly and an equation in a one-dimensional phase space 
can be obtained (it is usual to employ the transverse energy 
space) if the characteristic evolution time T and the trans- 
verse motion period in the channel differ in scale, i.e., if 
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w r ,  1 and w r ( 1  hold. We consider these limiting cases in 
greater detail, but at this stage we simply note that they are 
encountered at, respectively, high and low energies of the 
particles passing through the crystal. In fact, the frequency 
of vibrational motion in a channel is inversely proportional 
to the total energy of the particle, which acts as the mass 
coefficient. However, the evolution time is roughly propor- 
tional to this energy, so that the parameter w r  is the propor- 
tional to the square root of the energy: 

oz a (EIE,) IA. (4.14) 

The quantity E, which occurs here depends on the actual 
conditions and amounts to several tens of megaelectron 
volts. 

In the hf limit o r %  1 the distribution function behaves 
like a wave packet whose center of gravity travels "rapidly" 
along a determinate path in the (x,y) phase space or is stand- 
ing in the phase plane ( A ,  p ) ,  while the packet itself then 
"slowly" spreads. Since the distribution function P, (A,p), 
like the distribution function PI (El ,p),  changes little in one 
vibration period in a channel, it is reasonable to average the 
Fokker-Planck equation over this period of time. As a re- 
sult, the distribution function P, (E,,p) obeys 

where the coefficients ai depend on the transverse energy: 
9, = 9 (El ). In particular, we have 

and we can easily show that 

Consequently, we can also obtain an equation for the distri- 
bution function of the transverse energies: 

P,(E,)=J pi (E,,  cp) 

by integrating Eq. (4.17) 

This equation is similar to Eq. (6.34) of Ref. 3, where 
the authors used a completely different approach and, conse- 
quently, made different assumptions. 

The opposite limiting case of wr( 1 corresponds to 
strong diffusion. The system then acquires an energy or ve- 
locity much faster than it travels along the coordinatex. This 
coordinate can also be regarded as a parameter and in Eq. 
(4.5) we can ignore what is known as the sideways motion 
(or drift) term describing the "determinate" evolution com- 
pared with that occurring by diffusion 

The solution of this equation subject to the initial conditions 
of (4.6) is 

Pt(x,y)= 
exp[-(~-~lo)~/40(x)tI 6 (x-so). (4.21) 

[4nD (x) t ]  'I2 

position for a given initial velocity yo, we have 

e x ~ [ - ( ~ - ~ O ) 2 / @ ( ~ ) t ]  (4.22) 
~ t ( ! , )=  j dxPo(x)- [4nD (x) t] " 

The variance of the velocity distribution is, as we can see, a 
linear function of the diffusion coefficient D ( x )  : 

so that the rise of the average transverse energy (or, which is 
equivalent, of the average square of the angle of multiple 
scattering) is governed by the value of the diffusion coeffi- 
cient averaged over position: 

On the other hand, not all the characteristics are governed 
by this average: in accordance with Eq. (4.22), the diffusion 
coefficient is generally included in a very complicated man- 
ner. 

We conclude this section by pointing out two circum- 
stances: firstly, the If limit is realized at relatively low ener- 
gies [it is understood that all these energies are much greater 
in the crystal potential V(x) 1. Since in the case of light parti- 
cles (electrons and positrons) we should use a quantum- 
mechanical description of these energies, the results ob- 
tained in this limit represent the passage of protons and ions 
with energies up to several MeV. The theory of Ref. 5 is 
developed specifically for such particles and averaging over 
the coordinates (integration over the relevant volume) is 
then one of the starting points. 

Secondly, in both limiting cases the transition to a one- 
dimensional phase space is performed by averaging. How- 
ever, in the low-energy limit the averaging procedure is car- 
ried out over the coordinates, whereas in the high-energy 
limit it is carried out over time. 

5. DECHANNELING AT HIGH ENERGIES 

We now investigate dechanneling in the limit w.r ) 1 
when the evolution is described by Eq. (4.19) for the distri- 
bution function over the transverse energies P, (E, ) and we 
note that the diffusion coefficient 9 (El ) which occurs in 
this equation is usually calculated using the relationship 

We consider the initial stage of the dechanneling pro- 
cess on the assumption that at t = 0 the particles are at the 
bottom of the channel (negative for x = 0 or positive for 
x = d /2):  

PO (EL) =6 (EL). (5.2) 

Assuming that in the initial stage the distribution function 
differs from zero only at energies small compared with the 
depth of the potential well, to first order in the ratio V,, we 
have 

In the case of an arbitrary initial distribution P,(x) in 
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and assuming that the potential at the center of the channel 
is parabolic and inverted parabolic for, respectively, positive 
and negative particles, we find that 

When the diffusion coefficient depends linearly on the 
energy EL, the distribution function becomes exponential 

1 
P, (E,) = - exp (-EJpt) 

Pt 
(5.5) 

with an increasing widthpt, and the characteristic spreading 
time is 7 = V,/p. the proportion of the particles transferred 
to the above-barrier fraction by the time t is then - 

n, (t)= j dE, P,(E,)=e-'It. (5.6) 
Yo 

If we determine the moments of the distribution func- 
tion 

we find that the higher moments of this function rise more 
rapidly than the lower moments and for n 1 we have 

z(")=z/ (n! )'In. (5.8) 

However, then the ratio of the moments 

Mn+k (t) (n+ k) ! = --- 
Mn (t) M, (t) n! k! 

is independent of time. 
The more rapid growth of the higher moments implies 

that with time the role of corrections to the linear approxi- 
mation of Eq. (5.3) should become stronger. We now con- 
sider this problem in greater detail. To next order (relating 
to the depth of the potential V,) in the transverse motion 
energy, we find from Eq. (5.1 ) that 

where 

[here, as in Eq. (5.4), the diffusion coefficient for x = d /2 
must include, as pointed out above, the contribution of two 
adjacent planes, i.e., Eq. (3.10) should be doubled]. 

It is quite obvious that as the transverse motion energy 
increases the diffusion coefficient behaves differently for 
positive and negative particles (y, + , > 0, whereas 
y,  - , < 0), giving rise to quite different scenarios of the sub- 
sequent evolution. An analysis can be made conveniently in 
terms of the moments of the distribution function, the equa- 
tions for which can easily be derived from Eq. (4.19): 

&(t) =pn2Mn-i (t) +yn(n+l)Mn (t) . (5.12) 

Using in our estimates the "linear" approximation of Eq. 
(5.7), we find that the ratio of the second to the first term 

increases in proportion to time and by t = 7'") should reach 
the following value in the case of positive particles: 

which is much greater than unity. In the case of negative 
particles, this ratio is not so large: it should reach only - 1/3. 

Therefore, the second term in Eq. (5.12) begins to in- 
fluence the evolution long before t = 7'"). We can easily ob- 
tain the solution of the system of Eq. (5.12) by employing 
the recurrence relation 

f 

For example, we have 

Hence, it is clear that the process develops differently 
for positive and negative particles. In the case of positive 
particles the algebraic increase of the moments changes 
gradually to exponential and after a sufficiently long time 
the increments are quadratic functions of the order of the 
moment : 

Such a fast rise of the moments, when 

means that the structure of the distribution function be- 
comes quite complex. In a qualitative treatment of the pro- 
cess we can use a simplified model. We assume that the pro- 
cess consists of two stages. In the first (linear) stage the 
particles are accelerated up to a certain small energy E,. 
During the second stage, which begins from this energy, we 
have 

Po" (EL) =6 (EL-Eo) (5.19) 

so that the linear term can be ignored compared with the 
quadratic one. The distribution function then becomes 

and the proportion of particles in the subbarrier fraction is 

(@ is the error integral). After a sufficiently long time such 
that 

this expression simplifies to 
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Hence, we can see that during this stage of the process 
the dechanneling time is governed by a quantity 7, = 4/y, 
which is considerably less than the characteristic linear stage 
of the evolution T, = V,/,u: 

In this situation the rise time of the nth moment de- 
pends even more strongly on the order of the moment than in 
the linear approximation: 

In the case of negative particles we have y, _ , <O, so 
that the second term in Eq. (5.12) prevents the growth of the 
moments. In the asymptotic case the solution would become 
steady-state. 

which however corresponds to moments which are too high 
and, therefore, is unsatisfactory; the motion becomes sub- 
barrier much earlier. 

In the case of negative particles it is reasonable to as- 
sume, as shown above, that rP represents the lower limit in 
estimates of the dechanneling time. In terms of the dechan- 
neling lengths, this corresponds to the expression 

On the other hand, in the case of positive particles it is 
more realistic to obtain estimates using ry ,  which is consid- 
erably shorter than the corresponding value T,, [see Eq. 
(5.23) 1. Consequently, in the case of positive particles, we 
find that 

Ev'd" 
1 ( + ,  lo-" 

Z,e2fl" ' 

In particular, for electrons and positrons of energy E 
= 1.2 GeV, which move in a silicon crystal along the (1, 1, 

0) plane, we obtain 

4-,-20 pm,. 1,+,-300 prn. (5.28) 

These estimates are in reasonable agreement with those 
found experimentally:" 

Note that, in accordance with the description of the 
properties of the diffusion coefficient given above (Sec. 3 ) ,  
the dechanneling length for positive particles is independent 
of the charge Z ,  of atoms in a crystal. 

The author is grateful to Yu. P. Virchenko, S. S. Mon- 
seev, N. N, Nasonov, and N. F. Chul'ga for valuable discus- 
sions, and to N. A. Shlyakhov for his help in the calculations. 

The same approach was used to study the problem of emission of radi- 
ation. 

"The passage of a particle through the thermal layer of an atom, when 
this approximation is hardly applicable, will be discussed in greater 
detail later. 

"We used here the method of summation over atoms in a crystal de- 
scribed earlier (Sec. 2) .  

4' Here and later we shall assume that c = 1. 

'J. Lindhard, Kgl. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34, No. 14, 64 
pp. (1965). 

'Y. H. Ohtsuki, Charged Beam Interaction with Solids, Taylor and Fran- 
cis, London (1983). 

3V. A. Bazylev and N. K. Zhevago, Radiation Emitted by Fast Particles in 
Matter and in External Fields [in Russian], Nauka, Moscow ( 1987). 

4V. G. Baryshevskii, Channeling, Radiation, and Reaction in Crystals at 
High Energies [in Russian], Belorussian State University, Minsk 
(1982). 

'V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Electromagnetic 
Processes at High Energies in Oriented Single Crystals [in Russian], 
Nauka, Novosibirsk (1989). 

6M. A. Kumakhov and T. Shirmer, Atomic Collisions in Crystals, Gordan 
and Breach, New York ( 1981 ). 

'A. I. Akhiezer and N. F. Shul'ga, Electrodynamics of High Energies in 
Matter [in Russian], Nauka, Moscow ( 199 1 ). 

'V. I. Klyatskin, Stochastic Equations and Waves in Randomly Inhomo- 
geneous Media [in Russian], Nauka, Moscow ( 1980). 

9N. F. Shul'ga, V. I. Truten', and S. P. Fomin, Preprint No. 80-32 [in 
Russian], Physicotechnical Institute, Academy of Sciences of the Ukrai- 
nian SSR, Kharkov ( 1980). 

'OD. S. Gemmell, Rev. Mod. Phys. 46, 129 (1974). 
1 I C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemis- 

try, and the Natural Sciences, Springer-Verlag, Berlin ( 1983). 
lZS. Chandrasekhar, "Stochastic problems in physics and astronomy," 

Rev. Mod. Phys. 15, 1-89 (1943). 
13V. I. Vit'ko and G. D. Kovalenko, Zh. Eksp. Teor. Fiz. 94, ( l o ) ,  321 

(1988) [Sov. Phys. JETP 67,2141 (1988)l. 

Translated by A. Tybulewicz 

160 Sov. Phys. JETP 73 (1). July 1991 


