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We carry out a finite-temperature investigation of the heterophase state of a uniform magnetic 
conductor in which the conduction electrons interact strongly with the magnetic subsystem. Our 
calculations apply to a strongly degenerate antiferromagnetic semiconductor which 
spontaneously decays into alternating ferro- and antiferromagnetic regions at T = 0, with the 
conduction electrons concentrated in the former regions. At finite temperatures, a possible state 
of this system is one with alternating high-conductivity ferromagnetic and low-conductivity 
paramagnetic regions. As Tincreases this heterophase structure melts, so that a bulk sample will 
pass discontinuously to the uniform state. In a number ofcases this melting is preceded by a 
change in the topology of the ferromagnetic high-conductivity portion ofthe crystal: as the 
temperature increases, the crystal topology changes from multiply connected to simply 
connected, which corresponds to percolation of the conduction electrons and to ferromagnetic 
order. In other words, an insulator-metal transition occurs. In thin films the heterophase state, 
which is initially layered, passes continuously into the uniform state with increasing temperature. 
In these systems, re-entrant transitions are also possible when the heterophase state is unstable at 
T = 0: first from the uniform to the heterophase state, and then conversely. 

A conducting crystal in which the conduction electrons 
interact strongly with some other subsystem (i.e., with 
phonons or magnons) can have states in which the current- 
carrier distribution is spatially inhomogeneous. In nonmag- 
netic metals these states are associated with charge-density 
waves, while in magnetic conductors the states with spatially 
inhomogeneous charge distributions can have a much more 
complex structure. 

It was shown in Refs. 1-3 that a strongly degenerate 
antiferromagnetic semiconductor can break up into alter- 
nating antiferro- and ferromagnetic regions, with all the con- 
duction electrons concentrated in the latter regions at T = 0. 
This heterophase state of the uniform crystal can be viewed 
as a superposition of nonlinear spin- and charge-density 
waves coupled to each other. However, it is more natural to 
regard these inhomogeneous electronic-magnetic states as 
arising from "ferron" effects in a system of ferromagnetic 
regions. Ferrons are the quasiparticles of a nonferromagne- 
tic or not-entirely-ferromagnetic crystal; their properties de- 
rive from the fact that a conduction electron in such a crystal 
can create a microregion of increased magnetization around 
it and thereby "self-localize" within this mi~roregion.~ 

At the present time the concept of ferrons is an attrac- 
tive one for explaining high-temperature superconductivity 
in magnets whose magnetic atoms have low spin (see, e.g., 
Ref. 5) .  However, for magnetic ions with higher spin the 
mobility of ferrons is extremely low, and is even lower for 
ferron complexes which occur in degenerate semiconduc- 
tors. In this latter case it should also be kept in mind that the 
electrostatic potential of the ionized donors, which fluc- 
tuates in space, causes pinning of the ferron complexes; be- 
cause they are in weak electric fields, these complexes are 
actually immovable. In these systems only insulating or nor- 
mally conducting states are possible; as the magnetic field or 
temperature changes, phase transitions occlir between these 
states.'' The heterophase state under discussion here is ob- 
served experimentally in strongly doped antiferromagnetic 
semiconductors such as EuSe and EuTe with large values of 

the spin S = 7/2 (an analysis of an experiment which demin- 
strates this is given in Ref. 3). 

Heterophase states of a strongly degenerate magnetic 
semiconductor were investigated for T = 0 in Refs. 1-3. In 
this paper we will discuss these states at finite temperatures, 
along with a number of qualitatively new results that we 
have succeeded in obtaining for this case. First of all, we will 
show that the ferro-antiferromagnetic heterophase state is 
not the only state possible: a ferro-paramagnetic hetero- 
phase state can also occur in degenerate semiconductors, for 
which the number of conduction electrons in the paramag- 
netic regions is exponentially small. 

Secondly, we will investigate phase transitions which 
take bulk samples from the heterophase to the uniform state; 
in essence, this amounts to melting of the nonunifchm elec- 
tronic-magnetic state. In the self-consistent field approxima- 
tion we find that this is a first-order transition. This result is 
by no means as self-evident as might be supposed: arguments 
based on a simple phenomenological model might lead us to 
conclude that within the self-consistent field approximation 
this melting ought to be a continuous phase transition, and 
that it becomes discontinuous because of critical fluctu- 
a t i o n ~ . ~  The fact that the model discussed here admits a 
first-order phase transition even in the absence of critical 
fluctuations suggests that large jumps in the system param- 
eters are possible at the transition point. 

Thirdly, we establish the possibility that the topology of 
the heterophase state may change as the temperature in- 
creases: specifically, the ferromagnetic portion of the bulk 
crystal can change from multiply connected to simply con- 
nected. This is equivalent to simultaneous percolation of the 
electron liquid and the ferromagnetic order. 

Fourthly, within the approximations used here, we find 
that the disappearance of the heterophase state in a thin film 
takes place by way of a second-order phase transition; how- 
ever, the geometry of the heterophase state is such that this 
transition does not have the characteristics of a melting tran- 
sition. Re-entrant phase transitions from the uniform to the 
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heterophase state are possible, in which the crystal is uni- 
form in its ground state, but becomes a two-phase material as 
the temperature increases, followed by the disappearance of 
the inhomogeneous electronic-magnetic structure at some 
higher T. 

1. MICROSCOPIC MODEL 

The systems under discussion in this paper are degener- 
ate antiferromagnetic semiconductors in the heterophase 
state. The existence of this state is a consequence of the fol- 
lowing physics: when the energy of the conduction electrons 
is smaller in ferromagnetic order than in antiferromagnetic 
order, these electrons tend to drive the crystal in the direc- 
tion of ferromagnetic order. If their concentration n is not 
high enough, they cannot make the entire crystal ferromag- 
netic; however, if these electrons can "self-localize" in cer- 
tain regions of the crystal, they will make these regions ferro- 
magnetic. 

Let us first discuss the case of a bulk sample. By calcu- 
lating the energy of the ground state in the approximation in 
which fluctuations in the potential of the ionized donors are 
neglected, Kashin and Nagaev2 showed that for sufficiently 
small n the ferromagnetic regions are spheres that are isolat- 
ed from each other within an antiferromagnetic matrix (Fig. 
la).  As n increases the volume of the ferromagnetic region of 
the crystal increases. At a certain concentration n, the topol- 
ogy changes: the ferromagnetic region converts from multi- 
ply connected to simply connected. This implies that for 
n > n, the antiferromagnetic regions form spheres that are 
isolated from one another within a ferromagnetic matrix 
(Fig. lb) .  

Since at T = 0 only the ferromagnetic regions contain 
electrons, for n < n, the crystal behaves as an insulator, 
while for n > n, it behaves as a good conductor. From this we 
see that for T = 0 the concentration n, at which the percola- 
tion of electrons and ferromagnetic order begins corre- 
sponds to a transition of the crystal from a two-phase insu- 
lating to a two-phase conducting state. For n = n, the 
volumes of the ferromagnetic and antiferromagnetic regions 
of the crystal in the model we will discuss below are equal to 
one another. It is obvious that at this concentration the mod- 
els based on spheres (Figs. la, lb) must be inadequate, and 
that the structure of the heterophase state must be consider- 
ably more complicated. 

In the system we will discuss here, the symmetry of the 
system is purely translational. For n < n, the period of its 
structure is determined by the position of the ferromagnetic 
spheres in the antiferromagnetic matrix; as n approaches n, 

this period decreases. For n > n, the period of the structure 
is determined by the position of the antiferromagnetic 
spheres within the ferromagnetic matrix, and increases as n 
departs from n,. From this we see that at the percolation 
concentration n, the period of the structure is a minimum. It 
is quite evident that the symmetry group of the system in the 
insulating heterophase state is not a subgroup of the symme- 
try group in the conducting heterophase state. 

At finite temperatures, the ratio x of the volumes of the 
antiferromagnetic and ferromagnetic regions of the crystal 
must vary with T, in view of the different temperature de- 
pendence of the free energies of the ferro- and antiferromag- 
netic portions of the crystal (here we will assume that the 
concentration n is fixed). Therefore, if the concentration n 
differs from n, at T = 0, while x differs from unity, as the 
temperature rises the parameter x can reach its critical value 
x = 1. When this happens a phase transition occurs, accom- 
panied by a change in the type of conductivity. As we will 
show below, this phenomenon, i.e., in which the crystal 
passes from an insulating to a highly-conducting state as the 
temperature rises, is possible only for n < n,. It is this transi- 
tion which corresponds to thermally-induced percolation of 
the electron liquid mentioned above, accompanied simulta- 
neously by the percolation of ferromagnetic order (i.e., the 
unification of ferromagnetic microregions into a simply- 
connected region). 

Independent of whether or not a percolation phase tran- 
sition occurs in the crystal, at high temperatures a first-order 
phase transition should occur from the nonuniform to the 
uniform state. If this transition occurs from the insulating 
heterophase state, then the crystal is converted discontinu- 
ously to a highly conducting state. 

In this paper we will discuss thin films as well as bulk 
samples. In such films the condition that the surface energy 
be a minimum gives rise to a tendency towards a heterophase 
state with layered structure (Fig. Ic). In this case the phase 
transition from the inho~.hogeneous to the uniform state is 
second order. Our calculation shows that it is possible to 
have a re-entrant transition in this case, for which, as the 
temperature increases, the system passes from a uniform 
conducting state to a nonuniform insulating state and then 
back again to the uniform state. 

This transition is to some extent similar to self-localiza- 
tion of individual current carriers in a bulk sample of ferro- 
magnetic semiconductor, whose possibility in principle was 
proven in Ref. 7: like the transition discussed in this paper, 
self-localization can occur only at a rather high temperature, 
and above a certain still higher temperature it becomes im- 
possible once more. However, in contrast to the results pre- 

FIG. 1. Two-phase states of a degenerate antiferro- 
magnetic semiconductor: insulating ( a )  and conduct- 
ing (b )  states in a bulk sample; insulating state in a 
thin film (c). The ferromagnetic regions of the crystal 
are crosshatched; the antiferromagnetic regions are 
not crosshatched. 
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sented here, both the transition to self-localization and to its 
disruption take place discontinuously. 

The authors of Ref. 3 concluded that for realistic system 
parameters such processes are impossible. Clearly this also 
explains the following feature of our model as well: for the 
case of bulk samples, where the phase transition from uni- 
form to nonuniform state is first order, we also do not ob- 
serve re-entrant transitions for realistic values of the param- 
eters. However, the situation for thin films turns out to be 
considerably different, since the conditions for existence of 
heterophase states in these films are strongly relaxed com- 
pared to those of bulk samples. In the final analysis, this 
reflects the overall energetic advantage of self-localization in 
two-dimensional as compared to three-dimensional sys- 
t e m ~ . ~  

In addition to characterizing the phase transitions that 
are possible in these systems, our calculations reveal the 
strong temperature and external magnetic field dependence 
of the parameters of a degenerate antiferromagnetic semi- 
conductor in the uniform state. This implies that it is possi- 
ble to create inhomogeneous systems with parameters whose 
variation is directional by means of gradients in the tempera- 
ture or field. For example, in an inhomogeneous magnetic 
field, if the configuration shown in Fig. l a  is created, then in 
high-field regions the size of the ferromagnetic spheres and 
the number of electrons in each of them will be larger than in 
the low-field regions. Systems of this kind should exhibit 
nonlinear properties similar to the diode effects observed in 
island films with directed variation of the island param- 
e t e r ~ . ~  

2. CALCULATIONS FOR A BULK SAMPLE 

Let us describe the antiferromagnetic semiconductor 
using the s-f model. Our calculations are based on a vari- 
ational principle for the free energy of the system, which 
generalizes the approach used in Refs. 1-3 to finite tempera- 
tures. In this generalized variational principle we can build 
in the fact that the magnetization of a region where electrons 
are concentrated is different from its maximum value. Ac- 
cordingly, in regions where there are no electrons, the anti- 
ferromagnetic order at finite temperatures is either complete 
or partially destroyed (strictly speaking, at finite tempera- 
tures conduction electrons should also be present in these 
regions; however, their number is exponentially small). 
These regions can be magnetized by an external magnetic 
field, whose presence is also included in the calculation. The 
ratio x of the volumes of these regions to the volume of the 
ferromagnetic regions is a variational parameter. The geom- 
etry of the inhomogeneous state is given by Figs. la and lb, 
as before. The radius R of a spherical inclusion of a different 
phase is a second variational parameter. 

In view of the degeneracy of the electrons, the contribu- 
tion of thermal excitations to their free energy can be ne- 
glected. In complete correspondence with Refs. 1-3, the vol- 
ume portion E ,  and the surface portion E, of the electron 
energy, and also the Coulomb energy EQ (all these quanti- 
ties are per unit volume in the calculation) are written in the 
form 

3 (6nXn) 
Ev= j ~ p ( n ) n ( l + x ) * ,  1 1 . ~ ( n ) = ~ ,  

(1)  

2n 
Eo = - n2e2R2f ( x )  , 

5e0 

where 

f (x)  
[ 2x+3-3 (1  + x ) ~ "  for a sphere occupied 

by electrons, 
= 1 ~ [ 3 ~ + 2 - 3 ~ ' / ' ( 1 + ~ ) ' / ~ ]  foremptyspheres. 

Here n is the average concentration of conduction electrons 
in the crystal, which we assume is given; m* is the effective 
mass of the electrons; eo is the dielectric permittivity of the 
crystal; and we have p = 3 for the case of spheres occupied 
by electrons ando  = 3x for the case of empty spheres. Equa- 
tion (3)  allows us to establish that for x < 1 a minimum in 
the energy is ensured by a geometry in which the phase occu- 
pied by electrons is the dominant one (i.e., empty spheres), 
while for x > 1 spheres occupied by electrons are found with- 
in an insulating matrix. 

The free energy of the magnetic subsystem F, (taken 
per unit volume in this calculation) is calculated at a given 
temperature T and external magnetic field H within the self- 
consistent field approximation, which takes into account the 
fact that in the phase occupied by electrons an additional 
"electronic" magnetic field He = Ana3( 1 + x)/2 acts on the 
f spins, whose origin is the s-f exchange interaction. In this 
case it is assumed that electrons in the strongly magnetized 
phase are completely polarized with respect to spin. Then 
FM is given by a sum of contributions from the weakly- and 
strongly-magnetized phases2' : 

x  1  F ,  = - F ,  (H, T )  + - F, (H+H*, TI, 
l + x  1+x (4)  

= I for HG2(lolSt ,  
1  

- - ~ l o l ~ ~ - ~ l n {  2 e x p [ ~ ( ~ - l l ~ l ~ ~ ) ] }  
m--S 

I for H a 2 ( l 0 J S , ,  

where A is the s-fexchange integral, a is the lattice constant, 
S i s  the value of the spin of the magnetic atoms, Jo is the first 
exchange integral, and S, and S2 satisfy the following self- 
consistent equations (B, is the Brillouin function): 

The expression for F, (H, T) in (4)  is obtained by the 
standard self-consistency procedure applied to a two-sublat- 
tice antiferromagnet with exchange between nearest neigh- 
bors. The case of small fields H<2(J0  IS, corresponds to the 
noncollinear-antiferromagnet situation, where S, is the val- 
ue of the sublattice atomic moment, while the angle between 
the sublattice moments 28 is such that cos 8 = H/21 Jo IS,. 
In the high field case H>21 Jo IS, (which is realized for any 
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field at temperatures larger than the NCel temperature 
T, = I Jo IS(S + 1 )/3, since in this case S,  = 0) the crystal 
is an unsaturated ferromagnet with S, being the value of the 
atomic moments. 

The stationary state of the system is determined from 
the condition that the total free energy of the system be a 
minimum 

It is clear from Eqs. ( 1 )-(4) that only the quantities Es and 
EQ depend on the parameter R. Minimizing the sum 
Q = Es + EQ with respect to R for fixed x leads to the fol- 
lowing expressions: 

After substituting (6)  into ( 5 ) ,  we carry out the mini- 
mization with respect tox  numerically for the same values of 
the system parameters as were chosen in Refs. 1-3 (they 
correspond to rare-earth compounds of EuTe type"' ): 
S = 7/2: I Jo IS = 10 - eV ( TN = 5 K, while the field at 
which the sublattices collapse is 98.7 kOe); AS = 1 eV; 
E~ = 20; a - = 4. loZ2 cm 3; and the effective mass equals 
the free electron mass. The electron concentration that cor- 
responds to these values of the parameters is n, = 1.05. lo2' 
cm -3; at T = 0, a transition occurs in the crystal from the 
two-phase insulating state to a two-phase conducting state 
when n equals this value. The corresponding values of the 
ferromagnetic droplet radius R and the number of electrons 
Nina droplet, which are computed more precisely here than 
in Refs. 1-3, turn out to be the following: R = 31.4 A, 
N = 28. In this work we will consider three cases corre- 
sponding to the following values of the electron concentra- 
tion, all of which are smaller than n,: 1019, 5 .  loL9, and loZ0 
~ m - ~ .  

The results of our numerical calculation for these three 
values of electron concentration are shown in Figs. 2a, 2b, 
and 2c in the form of phase diagrams in the T-H plane. Here 
Figs. 1, 2, 3 denote regions of absolute stability for the uni- 
form state, the two-phase conducting state, and the two- 
phase insulating states, respectively. 

It is clear from Fig. 2a that for sufficiently small elec- 
tron concentrations only a transition from the two-phase 
insulating state to the uniform conducting state is possible. 
In contrast to the crystal-to-liquid transition, this transition, 
even in the self-consistent field approximation, is found to be 
discontinuous with regard to the magnetic structure of the 
crystal and the spatial distribution of electrons (i.e., the 
quantity x is discontinuous). 

In the region where the two-phase insulating state is 
stable, the parameters of this state change in the following 
way as Tand H increase (these trends are also preserved for 
the two other electron concentrations treated here): the ra- 
dius of the electron spheres and the number of electrons 
within a sphere increase, while the concentration of these 
spheres and the value of x decrease. 

At sufficiently high electron concentration, three states 
can be stable within the framework of the approximations 
used here: the uniform phase, the conducting heterophase, 
and the insulating heterophase (see Figs. 2b, 2c). Accord- 
ingly, as the temperature changes the class of phase transi- 
tions that are possible in such a system is enlarged: along 
with transitions from the heterophase to the uniform state, it 
now becomes possible to have phase transitions between the 
heterophase conducting and heterophase insulating states. 
At an electron concentration of 5 .  lOI9 c m % u c h  transi- 
tions occur only in a magnetic field, while for concentration 
lo2' cm-3 they can occur in its absence. 

Physically, these transitions occur because the magnet- 
ic portion of the free energy F, in the antiferromagnetic (or 
paramagnetic) regions of the crystal decreases more slowly 
with temperature than in the ferromagnetic regions. There- 
fore, as the temperature increases the volume of the ferro- 
magnetic portion grows. This implies that if the crystal is 
found in the heterophase insulating state at T = 0, then as 
the temperature increases it enters the heterophase conduct- 
ing state, i.e., an insulator-metal transition occurs. 

Note also that the transition of the system to the uni- 
form state both from the insulating and from the conducting 
heterophase states is a first-order transition for all the elec- 
tron concentrations investigated above. In this case, as is 
usual for first-order transitions, within a certain neighbor- 
hood of the transition point the corresponding states (uni- 
form from the side of low temperatures and low fields, non- 
uniform from the side of high temperatures and high fields) 
continue to exist as metastable states. 

As for transitions between insulating and conducting 
heterophase states (the dashed curves in Fig. 2 correspond 
to these transitions), it is unfortunate that the geometries 
adopted here (spheres of one phase within a matrix of the 
other phase), although completely satisfactory far from the 
transition point, do not allow us to describe the heterophase 
state exactly near the transition point: there its geometry is 
much more complicated. Meanwhile, the geometries of Fig. 
1 a and Fig. lb  correspond formally to two different branches 
of the free energy F, and F,, since for these branches the 
expressions for Es (2)  and EQ (3)  are different. As a conse- 
quence of this, the transition from insulating to conducting 
heterophase states, while formally of first order, is in fact 
close to second order. Actually, the jumps in the parameters 
are not large: for n = loZ0 cm - the parameter x = 1.1 in the 
insulating phase and x = 0.9 in the conducting phase. 

H, kOe 
5 0 b ,  -. .. FIG. 2. Phase diagrams of a bulk sample for different values 

of the electron concentration; a )  n = 10"; b) 5.10'"; c )  lo2" - -- cm-'. 
D 

5 T;K 0 5 7;K 0 5 7;K 

11 11 Sov. Phys. JETP 71 (6), December 1990 E. L. Nagaev and A. I. Podel'shchikov 11 11 



It is natural to assume that the geometry of Fig. l a  in 
fact evolves continuously into the geometry of Fig. lb. Then 
the heterophase state would correspond to a single branch of 
the free energy, and Fa would continuously evolve into F, 
near the transition point. Because the structure of the inho- 
mogeneous state can vary continuously with T or n, the 
problem of ordering in the heterophase state differs from the 
analogous problem for a system of spheres of fixed radius, 
where it is well known that minima in the energy correspond 
directly to certain types of packing (we should also add that 
in this problem the heterophase state with the closest pack- 
ing is much more energetically disadvantageous because of 
the Coulomb repulsion). 

A further indication that the phase transition is contin- 
uous is the fact that on both sides of the transition tempera- 
ture To the derivative - 8 'F/aT increases as the tempera- 
ture approaches To, although not by much (on the order of - 1% of its value far from To ). Possibly this implies the 
existence of a peak in the heat capacity at the point To. If the 
phase transition is in fact a second-order transition, then it 
differs from the usual type of transition in the absence of an 
increase in the symmetry of the system at the transition 
point. A phenomenological theory of such phase transitions 
was given in Ref. 10. 

Although the calculations presented above do not allow 
us to rigorously confirm these considerations regarding con- 
tinuity of the phase transition, we may consider the fact of 
thermally induced percolation to be firmly established. 
Usually percolation is associated with an increase in the con- 
centration of percolating "substations" and the temperature 
plays no role. In our case, however, percolation comes about 
by thermal expansion of the electron-ferromagnetic droplets 
(naturally this has nothing in common with the expansion of 
the crystal lattice). 

If the concentration of conduction electrons is larger 
than n, but smaller than no = 1.9- loZ0 cm - ', then at zero 
temperature and external magnetic field the system is in a 
conducting heterophase state. As the temperature or field 
increases this state passes into the uniform state by way of a 
first-order phase transition. If n > no, then the system is 
found in the uniform state for any temperature and field. 

3. CALCULATIONS FOR ATHlN FILM 

Let us now consider a situation where the degenerate 
antiferromagnetic semiconductor is a thin film whose thick- 
ness is comparable to the size of inhomogeneities in a bulk 
sample made of the same material. In this case the geometry 
of a state that is inhomogeneous with respect to magnetiza- 
tion and electron density changes radically and will appar- 
ently be layerlike. As was shown in Ref. 2, the difference in 
energy between inhomogeneous states with geometries like 
those shown in Figs. l a  and lb, and states shown in Fig. lc, 
are not large even for bulk samples. Therefore rather small 
surface interactions are sufficient to fix the layered structure 
in the film. In what follows we will show that in fact the 
region of concentrations in which it is possible to have a 
layered heterophase state is wider for the film than for a bulk 
sample with the structures shown in Figs. l a  and lb. 

Let us consider an inhomogeneous state of a film of 
thickness L for which all the conduction electrons are con- 
centrated in a layer of increased magnetization at the center 
of the film (Fig. lc) .  An alternating layered structure whose 

center is in the antiferromagnetic phase is less advantageous 
energetically, since for an equal volume of the ferromagnetic 
phase spatial quantization raises the energy of the electrons 
of a simply connected ferromagnetic region less than for a 
multiply connected region. Fixing of the electron layer in the 
center of the film can be facilitated by the small repulsive 
potential of the film surfaces which causes a kink at the top 
of the conduction band; however, this will not be taken into 
account explicitly here. Because the electron layer is isolated 
from the surface of the film by layers of the insulating phase, 
this inhomogeneous state will be insulating fpr currents 
flowing in the direction perpendicular to the surface of the 
film. 

The ratio x of the volume of the insulating phase to the 
volume of the conducting phase (implying that the thickness 
of the electron layer equals L /( 1 + x)  ) is a variational pa- 
rameter as before. Because the bulk part of the electronic 
energy Ev and the free energy of the magnetic subsystem FM 
do not depend on the geometry of the inhomogeneous state, 
Eqs. (1)  and (4)  are also valid for the case of a layered 
structure. However, the expressions for the surface part of 
the electronic energy E, and the Coulomb energy EQ in this 
case have the form 

In the general case, it is necessary to consider yet an- 
other variational parameter, the number of electronic layers. 
As this number increases the Coulomb energy decreases 
while the surface energy increases. In particular, in order 
that the conducting phase be a single electronic layer, it is 
necessary that the inequality 

be fulfilled, where Es and EQ are determined by Eqs. (7)  
and (8).  For the system parameters used here for our nu- 
merical calculations, this inequality is fulfilled for any values 
of x .  

A stationary state of the system is found from the condi- 
tion that the total free energy ( 5 )  be a minimum, where the 
terms of this free energy are defined by Eqs. ( 1 ), ( 7 ) ,  (8)  
and (4). Numerical minimization with respect to the single 
variational parameter x was carried out for L = 50 A and the 
same remaining parameters as for the previous case of a bulk 
sample. The results of the calculation are shown in Fig. 3; the 
region of stability of the heterophase insulating state lies be- 
low the corresponding curve, while that of the uniform con- 
ducting phase lies above it. In contrast to a bulk sample, in 

FIG. 3. Phase diagram for thin film for different values of electron con- 
centration: a )  n = 1019; b) 5 .  10Iq cm '. 
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the self-consistent field approximation the transition be- 
tween these two states is always second-order: the thickness 
of the near-surface antiferromagnetic regions drops to zero 
gradually. In principle the possibility exists that this transi- 
tion will become first-order due to critical fluctuations; how- 
ever, here again the transition will remain close to second- 
order. 

Note that, in contrast to the bulk case, the heterophase 
state is always insulating in the situation discussed here, 
leading to a smaller variety of possible phase transitions. The 
characteristic feature of these results is the presence of a 
temperature region where the boundary magnetic field 
grows with temperature. This leads to the possibility of a re- 
entrant transition: within a certain range of values of the 
magnetic field, a transition can occur from a uniform to a 
nonuniform state as the temperature increases. As the tem- 
perature increases further, the system always evolves into 
the uniform state. For n > 4.  lo2' cm -' the system is in the 
uniform state for any temperature and field. Note that for a 
bulk sample with the same parameters, the uniform state is 
established even for no = 1 . 9  lo2' cm - 3, i.e., the region of 
stability of the nonuniform state is wider in the film than in 
the bulk. 

' I  A similar insulator-conductor transition is possible at intermediate dop- 
ing, where the potential of the defects plays a decisive role. These transi- 
tions are caused by the dependence of the critical donor concentration at 
which delocalization of the donor electrons occurs on the local and 
average magnetizations of the crystal.' 

2' For T = 0 and H = 0 in the nearest-neighbor approximation, or for 

H >  214, IS, the magnetic free energy reduces to a purely bulk term de- 
termined by Eq. (4)  for any exchange radius, while the surface contri- 
bution to this energy reduces to zero. At finite temperatures this surface 
contribution is different from zero; however, we can assume that it is 
small compared to the electronic energy. " Conditions for the appearance of the heterophase state in EuSe are con- 
siderably more favorable; however, theoretical investigation ofthis state 
is hindered by the fact that EuSe is a metamagnet with an extremely 
complicated phase diagram. 
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