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A density-functional method is used to derive a system of equations for the response function of a 
slightly nonequilibrium gas-like system in the local approximation. The resulting equations are 
applicable to the problem of diffusion of interacting Brownian particles in a dense system. 
Retardation is taken into account in a calculation of the diffusion coefficient in such a system. 

The kinetics of relaxation to equilibrium in a system of 
particles is usually described by means of kinetic equations 
for one- or two-particle distribution functions. I-' When that 
approach is taken, the kinetic equations are usually derived 
through an expansion of the Liouville equation in a small 
parameter (e.g., ?c = nri 4 1, where n is the density of parti- 
cles, and ro is their interaction range). That approach has 
some indisputable advantages, but it also has several disad- 
vantages, primarily the complexity of justifying the kinetic 
equations used for the given physical problem. It becomes 
particularly difficult to justify the equations for systems of 
particles in which the gas parameter is not small (?t - 1 ) . 

Another method which could in principle be used to 
study systems with x-1 is the autocorrelation-function 
method,4s9 in which transport coefficients are calculated 
with the help of the Kubo equatiom4 It was shown in Ref. 9 
that this method is completely equivalent to a kinetic-equa- 
tion method. The method of autocorrelation functions re- 
quires an analysis of an entire set of diagrams which arise in 
the expansion of the exact evolution operator in a small pa- 
rameter.4 It is thus difficult to apply this method to specific 
physical systems. Methods have recently been developed in 
the quantum theory of many-particle systems for describing 
relaxation kinetics through the use of a density-functional 
f ~ r m a l i s r n . ' ~ ' ~  When that approach is taken in the so-called 
local approximation," it becomes possible to construct a 
closed equation for the response function which is valid at all 
densities. 

Our purpose in the present paper is to show that an 
approach starting from the density-functional method can 
be extended to classical many-particle systems. This ap- 
proach proves to be extremely promising for studying collec- 
tive phenomena and phase transitions in homogeneous and 
inhomogeneous states in classical kinetics. 

1. FREE DIFFUSION AND RESPONSE FUNCTION OF AN 
EQUILIBRIUM GAS-LIKE SYSTEM 

By "gas-like" we mean a system with a binary interac- 
tion between particles whose state can be described by speci- 
fying a one-particle distribution function f, (x),  where 
x = (r,p) ( r  andp are, respectively, the coordinate and mo- 
mentum of the particle). As systems of this type we might 
cite a nonideal dense gas, a liquid, and so forth. The descrip- 
tion below is carried out for the particular case of a system of 
particles of a single species. At the end of this section of the 
paper, we will make the necessary generalizations to the case 
in which the system contains particles of several species. We 
consider a system which contains N particles which interact 
with each other in an arbitrary way. We denote by 

H = H(x,  ,x, ,..., x, ) the Hamiltonian of this system, and we 
write it as 

where Ho (p)  is the kinetic energy of one particle, and V(r) 
is the potential ofthe binary interaction between particles. A 
complete description of this system can be found by specify- 
ing its N-particle distribution function. According to basic 
principles of statistical mechanics, the time scale r0 of varia- 
tions in the multiparticle distribution function 
f, (x, ,x2 ,..., xs ,t) (S = 2,3 ,..., N) is considerably shorter than 
the time scale of variations in the one-particle function 
f, (x,t). At times t% ro,  the multiparticle functions are thus 
capable of adjusting to accommodate each instantaneous 
value off, (x,t). In other words, at t)  r,, the multiparticle 
distribution functions are functionals of single-particle dis- 
tribution functions:' 

The time dependence off, is determined exclusively by the 
dependence f, (x,t). Knowing the Hamiltonian H, we can 
calculate the energy of this system4 

E [ ~ ~ I =  J H ( ~ ~ ,  . . . , x N ) j N ( ~ l , .  . . , Z N ,  j, ( 2 ,  t )  ) d x , .  . . dz,,., 

and also its entropy, 

It follows from ( 1.1 )-( 1.3) that the energy and the entropy 
are both functionals of the single-particle distribution func- 
tion f, (x,t) at t)  T ~ .  In the equilibrium state, the one-parti- 
cle distribution function is independent of the time, and its 
value is found from the extremum of the free energy for a 
given number of particles: 

6F -- 
sf* - 1.11 

Here Tis the temperature, and the parameter p is related to 
the chemical potential of the system. Using the explicit 
expression for the Hamiltonian, we can relate the free energy 
of the system to the two-particle distribution function. We 
assume that the dependence of the potential energy on the 
interaction constant A has been singled out in the Hamilto- 
nian. We then write 
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In the limit A-0, the system reduces to an ideal system; in 
the limit A -+ 1, we obtain a real system. From ( 1.5) we find 
that the multiparticle distribution function is a function of 
the parameter A: f, = f, ( A ) .  For the free energy we then 
find the expression3 

Here Fo is the free energy of the ideal system, i.e., of the 
system without an interaction between particles, and 
f2 (x, ,x2 ,A) is the binary distribution function calculated 
with the help of Hamiltonian ( 1.5). The quantity Fo corre- 
sponds to a system of particles in which the interaction "has 
been turned off." On the other hand, this system of particles 
is not necessarily an ideal gas; it might be a system of parti- 
cles in an external field or a system of particles which are 
interacting with a reservoir. For convenience in the discus- 
sion below, we introduce a free energy defined for an arbi- 
trary "effective charge": 

h' 

With g = 1, the quantity F, gives us the pure free energy; its 
derivative with respect to g at g = 1 determines the incre- 
ment in the energy of this system because of the binary inter- 
action between particles: 

(1.8) 
Here 

is the energy of the system if the binary interaction is ig- 
nored. 

In accordance with the discussion above, the binary dis- 
tribution functionf, (x, ,x2 ,A) is a functional of the one-par- 
ticle distribution function f, (x) .  The extrema of the func- 
tional F, [f, ] determine the equilibrium distribution 
functionf, (x)  for an arbitrary effective charge: 

We express the free energy in terms of a static generalized 
susceptibility (response function), which we define in the 
following way. We assume that the system considered is in a 
time-independent external field eve,, (x) .  The static re- 
sponse function ~ ( x ,  x')  of this system in the external field 
eve,, ( x )  relates the change in the one-particle distribution 
function, Sf, (x),  to the external field eve,, (x)  which causes 
this ~ h a n g e : ~ * ~  

In the limit e-0,  the response functionx(x, x') is obviously 
independent of e. Following Ref. 11, we write definition 
( 1.10) in operator form: 

For convenience, we will use this form of the definition be- 
low where it will not cause any misunderstanding. If the 
external field does not depend on the momentum p, we find 
from ( 1.9) a relationship between fluctuations of the density 
of this system and the external field which causes this 
change: 

6n (r) = I fj (r, r t )  evexi (r') dr', (1.12) 

where 

If there is an external field, the free energy of the system in 
the limit e -+ 0 is determined by 

Here F, is the free energy at e = 0, found from ( 1.7). To 
calculate the linear-response function, we use Eqs. ( 1.7) 
with F = FF ' .  We set e = Oin ( 1.7); we then find the follow- 
ing expression for the equilibrium distribution function: 

We write the solution of (1.4) in the limit e - 0  as the sum 
f, (x) = f (O)(X) + Sf(x). In first order in e we then have 

In the limit e - 0, the quantity S2~F'/Sf: is independent of 
e. Comparing ( 1.1 1 ) and ( 1.14), we find an expression for 
the generalized susceptibility X, (x,xl), calculated for an ar- 
bitrary effective charge: 

Varying ( 1.7) twice, we find 

wherex0-'= - S2Fo/Sf: is a generalized susceptibility of 
the system of noninteracting particles, and 

1 6' 
R, (5, x') = - 

2 Sf1 (x) Sf1 (x') 

The function R, (x,xl) is related to the effective interaction 
between particles, u, which is in turn given by 
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From ( 1.17) we find 

dR.1 =LL (x, X I )  . 
dg ,=I 

Multiplying ( 1.16) from the left by X, and from the right by 
,yo, we obtain 

x~'x~S.X~RFX~. (1.20) 

or, in expanded form, 

Equation ( 1.2 1 ) can be used to determine the generalized 
susceptibility of a system of interacting particles if the R, 
function is known; relation (1.19) determines the effective 
interaction in the system. 

The free energy F, can be expressed in terms of the 
response function X, (x,xl). The one-time, single-particle 
distribution function is related to the binary distribution 
function in the thermodynamic limit:3 

(6f (x) 6f(xf) )=I2 (x, x', 1) -f, (z) f,  (2 ' )  

+6(.-.')j, (XI, (1.22) 

where the average is over the equilibrium state correspond- 
ing to Hamiltonian ( 1.5). According to the fluctuation dissi- 
pation theorem,' on the other hand, we have 

<sf(.) sf(.') )=-TX(X, x', a ) .  (1.23) 

From ( 1.22) and ( 1.23) we find 

1 2  (x, x', a) =f1 (x)f1 (x') -Tx (x, x', a) 
-6 (x-x') jl (x) . ( 1.24) 

Using the expression for the free energy in terms of the bina- 
ry distribution function, we finally find 

Varying ( 1.25) twice with respect to the one-particle distri- 
bution function, we find the relationship between the R, 
function and the generalized susceptibility: 

1 
R,(x, 3') =gV (r-r') - - 6" 

2 6fl (x) 6fi (x') 

Equations ( 1.2 1 ) and ( 1.26) constitute a complete system of 
equations for describing the behavior of an equilibrium gas- 
like system of arbitrary density. The binary distribution is 
found from the known response functionx(x, x', g )  [which 
is a solution of Eqs. ( 1.21 ), ( 1.26) ] with the help of relation- 
ship (1.24). The effective interaction in the system can be 
found by differentiating the R, function with respect to the 

effective charge g in ( 1.19). The free energy of this system 
can also be calculated from ( 1.25). 

Equations ( 1.2 1 ) and ( 1.26) simplify when we are in- 
terested in only the spatial response function P( r ,  r '). For 
this case, we write ~ ( x ,  x') in the form 

where q, ( p)  is a normalized Maxwellian distribution. Substi- 
tuting (1.27) into (1.21) and (1.26), we find 

T S2 
R,(r, r') =gV(r-r') - - -- 

2 Sn (r) 6n (r') 

x 1 V(r,-r,) p, (ri, r,) dh dr, dr,. ( 1.28) 
0 

2. EQUATIONS FOR THE RESPONSE FUNCTION 

Equation ( 1.28) for the R function is a functional equa- 
tion. There are no methods for solving such equations. We 
must accordingly transform ( 1.28) into a simpler equation 
(or a system of equations). For this purpose we can take the 
variational derivative of both sides of ( 1.28) once, twice, etc. 
In this fashion we generate a chain of equations which relate 
functional derivatives. This chain of equations is equivalent 
to an ordinary Bogolyubov chain. To transform it into a sys- 
tem of ordinary differential equations, we need to carry out a 
transformation to couple the nth derivative with the 
( n  - 1)st in the last equation, which contains the variation- 
al derivative of highest order n. A transformation of this sort 
which is "integrally" exact was proposed in Ref. 1 1. Looking 
ahead to the derivation of a closed nonfunctional equation 
for the response function, we use the following approxima- 
tion of the second functional derivative of the functional 
p(x,  [p] ) (as in Ref. 1 1 ) : 

"' = 6 (x-x,) S (x-x,) d2" (x, P) 
6p (xi) 6p ( ~ 2 )  dp' ' 

A r C (2.1) 

The meaning and accuracy of this approximation can be 
clarified by going over to a Fourier representation ofp(x)  : 

1 
P (x) = 7 1 exp (ikx) p (k) dk. 

( 2 ~ )  

We then find 

1 6% "" =---j-- 
6p (x) 6p (x') (23%)' 6p (k) 6p (k') 

x exp (-ikx) exp (-ik'x') dk dk'. (2.3) 

In this case relation (2.1 ) becomes 
6% dZ 

6P (k) 6p (k') 
= e x p [ i ( k + k ' ) x ]  ( ~ ( x ,  p) ,  (2.4) 

dp 

wherep-p(k-0). 
It follows from (2.4) that approximation (2.1 ) is exact 
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in the limit k, k' -0. Representation (2.1 ) is thus "integral- 
ly" exact in the sense that the integrals of the two sides of this 
relation over the variables x, and x, are equal. The meaning 
of (2.1) is the same as that of the customary local approxi- 
mation. 11,12,14 Using local approximation (2. l ) ,  we find 

from (1.28), 

B 

.1 dZ (2.5) 
R r )  = g ~ ( r - r )  - - T V (r-r') P I  (r, r r )  dh. 

2 dn 

For an unbounded system, it is convenient to write Eqs. 
(2.5) in the Fourier representation: 

Equations (2.5) or (2.6) constitute a closed system of inte- 
grodifferential equations for the response function /?, (k)  in 
the local approximation. For potentials whose Fourier 
transforms V(k), having an extremum as I k I - 0, fall off rap- 
idly with increasing Ikl, Eqs. (2.6) determine the response 
function fig (k  + 0). This function is related to the compress- 
ibility 

Relation (2.7) can be used to calculate the equation of state 
of this system from a given susceptibility f ig=, (k  = 0). It 
can be shown in a similar way that for this class of systems 
the local approximation can also be used to calculate the free 
energy of this system. 

For the class of potentials specified above, the local ap- 
proximation and Eqs. (2.6) (which correspond to the local 
approximation) are suitable for calculating the response 
functions of a system over large spatial scales, k-0. 

A qualitatively good agreement with the empirical be- 
havior can also be found for a class of potentials whose Four- 
ier transforms do not have an extremum in the limit k- 0. 

In deriving Eqs. (2.5) and (2.6), we took into account 
the correlation functions (variational derivatives) of arbi- 
trarily high order. In this sense, Eqs. (2.5) and (2.6) are 
more "accurate" than, for example, the Kirkwood and Per- 
cus-Yevick equatiom4 Such equations should be used only 
for potentials which have a finite Fourier transform. For 
other potentials, Eq. (2.5) must be used. 

To conclude this section of the paper, we will write out 
for reference the equations which are found from (1.28) in 
the approximation which comes after the local approxima- 
tion. For this purpose we vary Eqs. ( 1.28) with respect to the 
density. We determine the functions 

( 1 )  W,(r,, ~ 2 )  Pg (rl ,  r,, r,) = 
( 1 )  , K g  ( r l r  rL, r3) = 

GRg(ri, rz) 
6n (r,) 8nb.J ' 

Using the local approximation to calculate SR /S, ,SD/S,, 
we then find from ( 1.28) 

I ' d  fl#(r, r') =gV(r-r') - -- ~ ( r , - r ' )  pi1)  (rr, ri, r)drl, 
2 dn 

where 

Equations (2.9) constitute a closed system of equations for 
determining the response function fig in the approximation 
that follows the local approximation. These equations can be 
used to calculate response functions which are valid for both 
large and small length scales, in which cases the equations of 
the local approximation, (2.5 and (2.61, are not sufficient- 
ly accurate. 

Equations (2.5) and (2.6) can easily be generalized to 
multicomponent systems. To make this generalization, we 
note that for a system of several particle species the free ener- 
gy can be expressed in terms of the partial binary distribu- 
tion functions g$) (r,  ,r, ,A) (a and fi specify the particle 
species) : 

*' 

Without repeating the arguments which led us to Eqs. 
( 1.2 1 ) and ( 1.261, we immediately write the following re- 
sults, which are found from (2.10) : 

P=e (g) =I:;) f pi: RFv (g) P V B  (g) , (2.11) 
B 

T 6' 
Rap (g) = g V a ~  - - j dh VwvPp (h) . 

2 6na 6np 

A repeated index in (2.10) and (2.1 1 ) implies a summation; 
fiaD ( g )  is the partial response function, which is determined 
from 

6n,(r) = pa,  (r, r') dr'. (2.12) 

Using the local approximation (2.1) we find from 
(2.11 ) a closed system of equations for the partial response 
functions: 

Equations (2.13), which are similar to Eqs. (2.5) and (2.6) 
in terms of their meaning and the nature of the approxima- 
tions used in their derivation, can be used to calculate the 
response functions of multicomponent systems. Theories of 
the liquid state lack a suitable mathematical apparatus for 
analytic studies of multicomponent 

3. EQUATIONS FOR THE RESPONSE FUNCTION OF 
SLIGHTLY NONRELATlVlSTlC SYSTEMS 

The response-function apparatus developed in the pre- 
ceding sections of this paper makes it possible to study the 
kinetics of the relaxation of slightly nonequilibrium systems 
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to equilibrium. According to ( 1.2) and ( 1.3 ), these func- 
tions and thus the entropy and energy of this system are 
functionals of the one-particle distribution functions f, (x,t) 
at times greater than the time scales of the variation of the 
multiparticle distribution functions, r0 . In real systems, the 
time ro is the time scale of collisions of particles of this sys- 
tem. Assuming that the system is a relaxing system with a 
steady-state temperature, we construct the following combi- 
nation from the energy and the entropy: 

F ( t )  =E ( t )  -TS ( t )  . (3.1) 

The quantity defined in this manner is the same as the free 
energy of this system in the equilibrium state. According to 
( 1.2) and ( 1.3), F ( t )  is a functional of the distribution func- 
tion f, (x,t). By "slightly nonequilibrium" states we mean 
states for which the functional F ( t )  has the same form as 
(1.7): 

The time dependence of the functional Fg( t )  is governed 
entirely by the time dependence of the distribution function 
f, (x,t). According to definition (3.2), those states (for ex- 
ample) for which the distribution function f, (x,t) is a func- 
tional of its first moments are slightly nonequilibrium states. 
Definition (3.2) holds for any gas-like system which relaxes 
over times such that the method of a nonequilibrium statisti- 
cal operator can be used to describe it at T = const (Ref. 2) .  

The description of the relaxation to equilibrium based 
on functional (3.2) thus holds in the final stage of the evolu- 
tion of the system. We introduce the mean value of the free 
energy of a nonequilibrium system: 

'T 

Functional (3.3) reaches an extremum for the equilibrium 
state (f, = f ( O ) )  of a gas-like system with a number of parti- 
cles which is not fixed: 

If the number of particles is instead fixed, it is convenient to 
replace ( 3.3 ) by the functional 

A [ ~ ~ I =  l i m { l [  J ~ . ( t ) d t - p  J / , ( x i ,  t ) d x  d t ] }  , (3.5) 
7- Co ' t o  0 

which is at an extremum for an equilibrium system with a 
fixed number of particles (a&, /sf = 0). 

Functionals (3.3)-(3.5) can be used to determine a 
generalized susceptibility of a gas-like system. We put the 
system in a weak external field eve,, which varies over time 
scales such that the conditions (3.2) for a slight nonequilib- 
rium nature of this system are not violated. We define the 
response function 2 of this system by 

In the case fo = fo (t) ,  the response function 2 depends on 
the time arguments t and t ' themselves-not only on their 
difference. This dependence is conveniently put in the form 

~ ( x ,  xr ,  t ,  t r ) = ~ ( x ,  x', t-t', t ) .  (3.6a) 

The dependence of the response function on its second argu- 
ment is determined exclusively by the time dependence of 
the one-particle distribution function f, (x, ,t), of which2 is 
a functional. The quantity 2 is related to the static suscepti- 
bility X ,  introduced earlier, by 

When there is an external field eve,, (x,t), the func- 
tional FF ' ,  which is the free energy of the nonequilibrium 
state in the limit e-0, is determined by an expression similar 
to (1.13): 

The functional A:) [f, ] is given by 

From this point on the arguments are similar to those pre- 
sented above in the derivation of Eq. ( 1.20). Varying 
&, [f, ] with respect to the distribution function f, (x,t), and 
making use of the extremal nature of this functional in the 
case of the equilibrium value f, = f 'O', we find an equation 
which determines the response function of the nonequilibri- 
um system: 

e=- [, *I-' s f  (XI, t l )  sf (xz,  t2) ' 

wheref, is the response function of a system of noninteract- 
ing particles. 

The binary distribution function can be related to the 
response function by using (as before) the fluctuation dissi- 
pation t h e ~ r e m : ~  

m 

t 6 f  (x, t )  6 f  (x', t )  )=-T J ~ ( x ,  x', h, T, t )  dz, 
0 

<sf ( x ,  t)Sf (x ' ,  t ' )  > (3.11) 

The binary distribution function f, and the response func- 
tion2 in (3.1 1 ) depend on the time t through the quasiequili- 
brium one-particle distribution function f, (x,t), of which 
they are functionals. Using (3.1 1 ) and (3. lo) ,  we finally 
find 
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To transform from the function 2 to the response function 
B(r, rl, t, t ') for the density we set 

where p(p, t )  is a normalized quasiequilibrium momentum 
distribution function: 

Substituting (3.13) into (3.9) and (3.12), integrating over 
momentum, and using ( 1.19), we find 

f&(z, z f )=Po( z ,  z l )  + 1 dzi dz2 Po(z, z , ) R g ( z l ,  z2)Pg(zo,  z f ) ,  

T 
R,(z ,  z') =gV ( r - r r )  6  ( t - t ' )  - - 

2 

X 
8' I m. j vcr i - r2)  aA czi, 2,) dz, dz,, (3.16) Sn ( z )  Sn (2 ' )  , 

z-  (r, t )  . 
To find a closed equation, we use the local approximation, 
which in the case at hand is 

d 
6 2 q ( z i y [ n 1 )  = t j ( ~ ~ - ~ ) ~ ( ~ ~ - ~ ' ) - - ~ .  (3.16a) 
6n ( z )  6n(z')  dn2 

In the static limit, w - 0 ,  Eqs. (3.18) naturally go over into 
Eqs. (2.6). 

Equations (3.18 ) differ from the equations describing 
the response function of a Fermi system" in that even the 
local approximation for the 3, function contains a term 
which depends on the frequency w. There is thus the hope 
that the description of the spectrum of this system can be 
more accurate than that of Ref. 1 1. 

The formal reason for the difference is a difference in 
the expressions for the fluctuation dissipation theorem in the 
classical and quantum-mechanical cases. In the classical 
case, the one-time correlation function (Sf(x,t)Gf(xl,t) ) is 
expressed in terms of the static part of the generalized sus- 
ceptibility in accordance with (3.1 1 ) . In the quantum-me- 
chanical case, there is no such correspondence. Equations 
(3.18) generalize in a natural way to systems consisting of 
several particle species: 

~ e r e p i " ( k , w )  are partial response functions of the particles 
of species a and p, and V,, is the potential of the binary 
interaction of a particle of species ,u with a particle of species 
Y.  

The relaxation spectra of this multicomponent system 
can be found from the equation 

Using (3.16a), we find closed equations for the response det[(9,p-'(k, a ,  g = f )  1=0, (3.21) 
function: 

where B $' (k,w,g = 1 ) is the matrix which is the inverse of 

8 ( z .  z J )  -80 ( z ,  z ' )  + 1 dz, dzi ( 9 0 ( ~ ,  2') R g ( z 1 ,  2.) 8.(z2, L ' ) ,  the generalized-susceptibility matrix Baa (k,w,g = 1 ). 

If the parameters characterizing the ground state of the sys- 
tem are assumed to depend on the time, it is convenient to 
transform from Eqs. (3.17) to equations for the Fourier 
components of the response functions: 

Ijg(k, (1))=80(k. ~ ) + P o ( k ,  a ) R g ( k ,  a )Pg(k ,  a ) ,  
P 

Equations (3.18) can be used to determine the response 
function6, (kw) of a slightly nonequilibrium system, which 
in turn determines the relaxation spectrum of the system 
under consideration: l7 

( k ,  0 )  =O. (3.19) 

4. RELAXATION SPECTRA OF ASYSTEM OF INTERACTING 
BROWNIAN PARTICLES 

Let us use the formalism developed above to study the 
relaxation spectra of a system of Brownian particles which 
are interacting with each other, for an arbitrary density of 
these particles. If the density of the system of Brownian par- 
ticles is comparable to the density of particles in the medium, 
there may be a significant change in the properties of the 
medium: The medium may become polarized. This effect 
can.be taken into account by replacing the "bare" binary 
interaction potential of the Brownian particles, V(r), by an 
effective potential V,, ( r )  which incorporates the polariza- 
tion of the medium. The generalized susceptibility Do (k,w) 
of a system of Brownian particles which do not interact with 
each other can be calculated3 in the following way: 

n o o ( k )  80 (k, (0) =- - , o, ( k )  =-iDk2, 
T 0+mo(k )  

(4.1) 

where D is the spatial diffusion coefficient, n is the density of 
Brownian particles, and Tis the temperature of the medium. 
Using (4.1 ), we find from (3.18) and (3.19) equations for 
the relaxation spectrum of this system: 
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Equation (4.2) can be solved in its general form for the qua- 
sistatic case w-0. We expand the response function 
PA ( k  - g,w) in a series near w = 0 and retain terms up to 
-w. Substituting this expansion into Eq. (4.2), and solving 
it, we find the relaxation spectrum of this system: 

n 
w (k) =ao (k) [ I  + - ~ ( k )  

T 

Relations (4.3) can be used to calculate the relaxation 
spectrum of a system of interacting Brownian particles from 
a known response function. A further simplification of (4.3) 
can be achieved in the long-wave limit k-0, w = 0. From 
(4.3) we find 

This equation can be used to determine (for example) the 
relaxation spectra of a dense system of particles from the 
known response function of a system of hard spheres, xi1'. 
Another possible path for applying this formalism is to use 
definitions ( 1.15) and (3.10). The idea is that once we know 
the response function X, we can, according to (2.8), deter- 
mine the higher-order functions flg',"',flg,,'2', etc. These re- 
sults then make it possible to construct the free energy (the 
functional A )  of the system as a series in deviations of the 
density from its mean value: 

X 6nq(k, a )  6n(k, o f ) d k  d o  dk' do'  + . . . , Gn=n-i. 

(4.8) 
This relation can be used to study phase transitions in the 
system. According to Ref. 18, the conditions for the occur- 
rence of a phase transition are 

o (k) =-iDk2, 
1 

Relations (4.4) are conveniently rewritten with the help of a 
binary distribution function n,  (r,/l). Making use of the rela- 
tionship between the response function in the limit w = 0 
and binary distribution function (3.1 I ) ,  we find from (4.4) 

o (k) =-iDk2, 

Relations (4.5), derived in the local approximation, are nev- 
ertheless completely rigorous (for gas-like systems), since 
the local approximation is exact in the limit k-0, w -0. 
Relations (4.5) thus determine the diffusion coefficient of a 
dense system of interacting Brownian particles. The binary 
distribution function n,  (r,/ l)  can becalculated with the help 
of Eqs. (1.24) and (2.6).  

The method developed in this paper can be used to cal- 
culate the equation of state and the relaxation spectra of 
classical systems with a binary interaction. In principle, that 
method can be generalized widely. 

Equations (1.20) and (3.9) thus make it possible to 
carry out a known renormalization procedure'' which can 
be outlined as follows: We assume that the response function 
xi1) is constructed in terms of the effective interaction R ;I ) :  

The total response function X, then satisfies the equation 

From the expansion of the functional A in the ratio Sn/E, we 
easily find an equation for the order parameter-the ampli- 
tude of the mode, Sn (k,  @)-at k z  k,,w -- w,, through an 
expansion of the functional A in wave vectors at k z  kc (Ref. 
18). The parameters of the equation for the order parameter 
are expressed here in terms of a known function, viz., the 
generalized susceptibility fl(k,w). 

Equations (3.18 ), derived above, are based on the fluc- 
tuation-dissipation theorem in its thermodynamic form. In 
principle, this approach can be generalized to highly non- 
equilibrium systems through the use of a kinetic version of 
the fluctuation-dissipation t h e ~ r e m . ~  We will use the gen- 
eral expressions which have been derived to describe the 
concentration dependence of the diffusion coefficient for 
atoms (in particular, hydrogen atoms) in metals. 

The following features have been identified by now in 
the concentration dependence of the diffusion of hydrogen 
in palladium." At low concentrations the diffusion coeffi- 
cient is essentially independent of the concentration. An in- 
crease in the concentration leads to a decrease in the diffu- 
sive mobility of hydrogen. In this case, the diffusion 
coefficient vanishes ( a  critical slowing) at sufficiently low 
temperatures. At even lower temperatures, it takes on nega- 
tive values, which correspond to a stratification of the solid 
solution into two phases, differing in hydrogen content.20 As 
the concentration is increased further, the diffusion coeffi- 
cient increases to positive values again, goes through a maxi- 
mum, and then drops sharply.21 This extremum in the be- 
havior of the diffusion coefficient has yet to be explained, 
since the existing theories are all restricted in some way. 
They apply to high temperatures," they apply to low con- 
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cent ration^,'^ or they are based on assumptions whose valid- 
ity cannot be verified.I9 

The relations derived here can be used to explain the 
observed behavior without introducing additional assump- 
tions regarding the nature of the diffusion of hydrogen in 
metals. Hydrogen atoms in a solid, like point detects of any 
sort, interact with each other in a hard-sphere fashion at 
r<a, where a is the lattice constant, while they interact as 
dilatation centers in the case r % a  (Ref. 24): 

u (r) =-8 (alr)'s (n) , J s (n) dn=O. (4.10) 

Let us assume that the nature of the interaction of hydrogen 
atoms is determined by (4.10) at r z a  also. Using (3.9), we 
calculate the response function in this system. For this pur- 
pose we go through a renormalization to a short-range inter- 
action (r<a) .  Using (4.6), we find 

whereflis the response function of a system of hard spheres. 
We adopt some simplifying assumptions. (a )  We assume 
R - R ( ' ) z u ( r ) ,  where u( r )  is determined by (4.10). (b)  
We write the response function in the system of hard spheres 
in the approximation of second-order in the density:4 

Assumption (a )  corresponds to the well-known approxima- 
tion in which a short-range interaction is "dressed" by a 
long-range interaction treated in the random phase approxi- 
matiom4 

The Fourier transform of the potential u ( r )  depends 
only weakly on Ikl by virtue of the condition $s(n)dn = 0. 
Setting u( k )  z u ( 0 )  = - &a3, we then find an expression for 
the temperature dependence of the diffusion coefficient from 
(4.5), (4.11), and (4.12): 

FIG. 1. Relative diffusion coefficient versus the concentration at various 
temperatures. I-+ = E / T  = - 3.5; 2-a = - 2.5; 3- = - 2.0. 

Figure 1 shows the behavior D(c)  calculated from (4.13) for 
various temperatures (for various values of a). It follows 
from this figure that expression (4.13) gives a qualitatively 
correct description of the experimental situation, including 
the increase in the diffusion coefficient at cz0.6.  The D(c) 
curve runs tangent to the c axis at c = 0.25; this value agrees 
with the experimental value of the beginning of the region of 
critical slowing of diffusion:19 cz0.25 + 0.05. 
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