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The density of electron levels in small metal particles with defects is analyzed in the case in which 
the defectiveness of the particles in terms of shape and structure is too slight for the application of 
the Dyson level statistics. Surface or bulk impurity atoms or vacancies play the role of small-scale 
irregularities in the particles, while fluctuations in the sizes of the particles play the role of large- 
scale fluctuations. Defects give rise to an "ensemble width" of the levels of identical particles of an 
ensemble with different distributions of these defects. This width is nonzero even in the first 
approximation in the defect potential, but it fades away with increasing particle size. This 
ensemble width also determines the correlation function of the levels. As different levels merge 
with each other, this correlation function vanishes in a manner which is generally different from 
that in Dyson statistics. The large-scale fluctuations wipe out the correlations in the arrangement 
of levels which are far apart. A smooth density of levels is found for small particles and thin films 
and is used to determine how the defects affect the size dependence of the Fermi level. 

INTRODUCTION 

The distribution of discrete electron levels is a question 
of fundamental importance to the low-temperature thermo- 
dynamics and kinetics of small metal particles. This distri- 
bution is extremely complex even for particles of regular 
shape without bulk defects. For spherical particles, for ex- 
ample, the energy of an electron level is determined directly 
by two quantum numbers, n and I, so at large values of n and I 
the sequence of levels appears to be random. These levels 
have a high degree of degeneracy, 2 (21 + 1 ), where the typi- 
cal orbital quantum number I is on the order of k,R, where 
k ,  is the Fermi momentum, and R is the radius of the parti- 
cle. 

Very often, the shape of small particles is far from regu- 
lar, and the distribution of energy levels in them is even more 
complex, since the degeneracy in terms of the orbital angular 
momentum is lifted. Since there is obviously no hope for 
success in solving the problem of the distribution of levels for 
an arbitrary shape of the particles, an ansatz approach has 
been taken: The most important features of this distribution 
in an ensemble of particles with arbitrary shapes have essen- 
tially been guessed. Of primary interest for the low-tempera- 
ture properties is a two-level distribution function P(o) 
which describes the probability that two levels will be sepa- 
rated from each other by o. It was assumed in Ref. l that 
there are no correlations in the arrangement of levels. It was 
suggested in Ref. 2 that the distribution of levels in particles 
is similar to that predicted by Dyson's theory of random 
mat rice^,^ i.e., that at small values ofo  the probability P(w) 
vanishes, while at large distances it oscillates and falls off 
according to a power law. 

The postulates of Refs. 1 and 2 of course require a foun- 
dation at the microscopic level, especially since doubt has 
been expressed regarding the universal validity of the Dyson 
di~tribution.~ Unfortunately, microscopic calculations have 
yet to provide the unambiguous resolution of this question. 
A rigorous solution of the one-dimensional problem has 
shown that the Dyson level statistics is not valid in the one- 
dimensional case.5 An ensemble of two-dimensional rectan- 
gular potential wells was studied in Ref. 6; the length of one 

side of the rectangle was varied. It was found that the distri- 
bution of levels in this ensemble again is not described by 
Dyson statistics: There is no repulsion between levels. This 
result essentially confirms that Dyson statistics is indeed not 
of universal applicability, so the range in which it actually is 
applicable must be determined. 

Serious progress in this direction was made in Ref. 7, 
where it was shown that if the number of Fourier harmonics 
describing a surface irregularity is small then the level distri- 
bution is very different from a Dyson distribution, but as this 
number of harmonics increases it approaches a Dyson distri- 
bution. The results of a numerical simulation8 provide 
further evidence for this tendency. The electron spectrum of 
a particle of regular shape but with a random internal poten- 
tial U(r) was studied in Ref. 9. Under conditions such that 
the potential U causes a shift of the levels in the spectrum 
which is large in comparison with the average distance 
between the quantum-size levels but small in comparison 
with the Fermi energy, it was found possible to analytically 
derive a correlation function of the levels which was inde- 
pendent of the amplitude U and which was the same as the 
Dyson correlation function for all three ensembles (unitary, 
symplectic, and orthogonal). Although the calculations of 
Ref. 9 directly confirm that there is a range of applicability 
for Dyson statistics, it is difficult to directly compare the 
results of those calculations with real physical systems be- 
cause the calculations were based on a model. 

If we look at real small particles, on the other hand, we 
find that their shape is fairly regular for many of the techno- 
logical procedures used to produce them. For example, crys- 
talline indium particles with a nearly ideal spherical shape 
were produced in Ref. 10. Nevertheless, the presence of sur- 
face defects (vacancies or impurity atoms) and the scatter in 
the sizes of the particles make the spectrum of particles ran- 
dom, although this random nature is definitely not described 
by the Dyson theory, because of the relatively small number 
of defects. Our purpose in the present study was to learn 
about the distribution of levels in small particles with a shape 
which is not very irregular. 

Consider the following model. The particles making up 
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the ensemble are rectangular parallelepipeds with a simple 
cubic lattice structure. At the surface or in the interior of a 
particle there are point defects. There is the further possibil- 
ity that there are large-scale irregularities, which are mod- 
eled here, as in Ref. 6, by a scatter in the length of the edges of 
the rectangular parallelepipeds. The calculations are carried 
out in first order in the relative defect concentration v, but 
without any restriction on the magnitude of the defect poten- 
tial U (the limit U- m corresponds to vacancies). 

Strictly speaking, in this model the spectrum remains 
discrete (in contrast with Dyson's theory) after an average 
is taken over the distribution of defects over a particle. The 
average distance between levels is a N - 2,  where N )  1 is the 
number of atoms in the particle (if the particle size is greater 
than 50 A, the value of N will definitely be greater than 
lo3-lo4). Since the typical distance between the levels in an 
ideal particle is c N - however, the average spectrum 
can still be regarded as continuous. This continuous nature 
has nothing in common with the level broadening caused in 
an infinite sample by the scattering of electrons by defects. 
The width of a line, depending on U, will be nonzero even in 
first order in U. Since it is proportional to N - however, it 
vanishes for bulk samples. Physically, an ensemble width of 
levels of this type describes a scatter in the positions of the 
levels in particles which are identical in shape but in which 
the distributions of defects are different. This scatter leads in 
particular to a scatter in the positions of the Fermi level of 
these particles, which in turn leads to differences in emission 
and other properties. 

Repulsion between levels should naturally occur again 
in this case. The width of the distribution of distances 
between two levels is on the order of the ensemble width of 
these levels. If the level in the ideal crystal is degenerate, it is 
split by an impurity. A two-level distribution function van- 
ishes with decreasing distance between the components of 
the level, in the same manner as in an orthogonal Dyson 
ensemble. If the levels in the ideal crystal are instead nonde- 
generate, then the decay of their two-level distribution func- 
tion as the levels move closer together follows an exponential 
rather than a power law. 

In addition to the correlations between nearest levels, 
the correlations between levels which are very far apart are 
also of interest. If we restrict the discussion to small-scale 
irregularities, we conclude that this correlation should per- 
sist, at least for small values of U, since the impurity which 
smears the levels has essentially no effect on the positions of 
their centers of gravity. Taking an average over the large- 
scale irregularities erases this "long-range order" in the ar- 
rangement of levels, while small-scale irregularities intensify 
the effect of the large-scale irregularities. The disappearance 
of correlations, however, occurs in a manner different from 
that described by Dyson statistics. 

At high temperatures the actual density of levels g can , 

be replaced by a smooth density g(E) found by taking an 
average of g over energy intervals AE which are small in 
comparison with Tbut large in comparison with the average 
distance between levels. In contrast with g (E)  , the quantity 
g(E)  is a continuous function of the energy E, and a "mem- 
ory" of the level quantization is manifested by a surface in- 
crement& (E) in the ordinary density of levels g.(E). If the 
irregularities are of large scale, this increment will depend on 
only the surface area, according to Ref. 11. There has been 

no previous study of how large-scale irregularities affect 
g(E). It is shown below that wheng(E) is averaged over the 
intervals AE the dependence of g(E) on the nature of the 
impurity distribution disappears in first order in v. Since the 
impurity part of the surface density of levels 2, depends on 
the energy more strongly than the ideal part of this density 
does, the relative contribution of surface defects to such 
characteristics as the Fermi energy may be far greater than 
the relative concentration of such defects. 

DENSITY OF LEVELS OF A CRYSTAL OF FINITE DIMENSIONS 
WITH DEFECTS 

We consider a crystal with a simple cubic lattice. The 
sample is a right parallelepiped with sides whose lengths are 
equal to Li lattice constants ( i  = x,y,z). It is bounded by 
(100) planes. In the nearest-neighbor approximation, the 
electron Hamiltonian is 

Here the operators a,*, 4, create and annihilate a conduction 
electron at site g (we are omitting the spin index); the sub- 
script S specifies atoms in the first surface layer; and the 
prime on the summation sign for the summations over g and 
g' in the expression for Ho means that the summation is to be 
carried out over nearest neighbors. The subscript n repre- 
sents the coordinates of the defect, which has a &function 
potential U. 

We perform a canonical transformation of the electron 
operators which diagonalizes the Hamiltonian H,: 

where f(p,g) ( t  = s or c )  represents trigonometric func- 
tions: 

%piE sin(Lipi)lL, sin pi. 

The allowed values of the momentum components pIi are 
determined by relations which follow from ( 1 )-(3): 

I{p.t=nn.t+arcctg Q (p,{), 

~~~~t=illtn~~-arctg Q (pet), ( 5 )  

where 

Q (p) = (v-cos p) /sin p, v=U0/B, li= (Li-4) 12. 

The integers nl i  in (5)  are found from the condition that the 
momentap,, belong to the interval [0, T I .  Relations (5)  are 
based on the assumption that the surface potential Uo is not 
strong enough to give rise to surface bands in the spectrum of 
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an ideal crystal. According to Ref. 12, the inequality lul< 1 1 d 
must therefore hold. g d ( ~ ) = - I m z ~ l n ~ . ( E ) .  n 

As a result of the transformation (2)-(5), the Hamilto- 
n 

nian ( 1 ) becomes Obviously, go is the density of levels of an ideal crystal, and 
g,  is the correction to it for defects. Expression ( 15) can be 

H = x EPa;ap+u x F~.F.~.~;%.*, (6) interpreted in any order in Uwith the help of (12) and the 
P P.P ' .~  relations 

E,=~B (cos p,+cos p,+cos p ~ ) .  
-- 

The density of electron levels is found from the imaginary 
part of the retarded one-electron Green's function: In the Born approximation we find, for 

( E ,  - Ep. )'$I (Hd)pp, 1'- U 'v/N [see expression (25) be- 
((ap~ap~*)),=-i([ap(~)ap~'+ap~'ap(~)] )€l(z), low ], 

a, (T) =exp (~HT)  a, exp (-~HT) , 

where O ( 7 )  = 1 for 720 and O(7) = 0 for 7 < 0, and the an- P 

gle brackets imply temperature averaging with the Hamilto- 
nian (6).  Constructing equations of motion for the Green's E ~ = E ~ + u  ,I ~ F ~ ~ ' [ I + L I ~  P'+P F~:~(E~-E~~)- ' ] .  ( 17) 

functions, and transforming to their Fourier time trans- 
forms, In the limit U+ W ,  which corresponds to vacancies, on the - other hand, we find fr6m ( 15) 

we find 

where 

From (8)  we find an equation for the quantities Xu: 

Equations (8)  and (9)  can be solved by expanding in the 
relative impurity concentration v as in Ref. 13. To first order 
in Y we should set R,, -S,, on the right side of (9):  

According to ( 18), near the bottom of the conduction band 

(8)  the density of levels can be written as in ( 16) with 

From (10) we directly find an expression for the den- 
sity of electron levels which is exact if there is only a single 
defect in the crystal: 

AVERAGING THE DENSITY OF LEVELS OVER THE IMPURITY 
DISTRIBUTION 

The spectrum of a crystal of finite dimensions differs 
from that of an infinite crystal in that it depends on the impu- 
rity distribution even in first order in v [because the number 
of terms in the sum over n in (15) is finite]. The impurity 
does not by itself convert the discrete spectrum of an individ- 
ual particle into a continuous spectrum, but in an ensemble 
of particles the arrangement of levels is random, so the spec- 
trum of the entire set of particles in the ensemble can be 
assumed continuous. A change of g' in the defect coordinate 
g changes the electron energy by an amount 
a (Fig - Fig. ). Since Fig, a 1/N takes on N values as g is 
varied, the distance between neighboring possible positions 
of the level Ep is on the order of N - '. In other words, ac- 
cording to ( 5 ) and (7)  this distance is on the order of N 5'3 of - 
the typical distance between levels in an ideal crystal with 
p - 1. The set of possible level positions in the particles of an 
ensemble can be interpreted as the spectrum of a particle 
averaged over the ensemble. 

We will now average the density of levels over an en- 
semble of identical particles with different numbers of de- 
fects. The calculation below is valid both for impurities in 
the Born approximation and for vacancies, regardless of 
whether the defects are in the interior of the sample or at its 
surface. We first consider an ensemble of particles which are 
asymmetric parallelepipeds (L, # L, # L, ) . In this case the 
spectrum of an ideal crystal is nondegenerate, since different 
energies, (5 )  and (7),  correspond to states with sinusoidal 
and cosinusoidal wave functions (3)  and (4) ,  in contrast 
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with the case in an infinite crystal. Since the summation over 
p' in (17) and (19) actually leads to an averaging over the 
coordinates of the defects, the density of levels averaged over 
the distribution of the defects can be written 

Here k is the defect index, and the quantity ep, whose mean- 
ing is obvious from ( 17 ) and ( 191, is assumed to be indepen- 
dent of the defect distribution. It is possible to calculate (20) 
explicitly because there is no correlation in the positions of 
the defects. Using F2 cc 1/N, we find from (20) 

=LZ J d l ~  exp [ ih (E-E,) I 
2* p -or 

where the distribution function w(g) describes the distribu- 
tion of defects over the crystal, and M = vN is the total num- 
ber of defects in a particle consisting of N atoms 
( N  = L,  L, L, ) . We also have 

If the impurity is distributed uniformly over the entire crys- 
tal, we have 

If the impurity is instead distributed uniformly over the sur- 
face, we have 

The result (21) is equivalent to that found by the usual 
method of steepest descent. This result can be used after the 
summation over g, ...g, is replaced by an integration. As a 
result of this integration, we are left with an integral over R 
whose integrand contains the large parameter Min  an expo- 
nential function. Since the calculation of (21 ) is approxi- 
mate, we find an expression which is smoothed in energy and 
thus a continuous function of the energy. Mathematically, 
this smoothing arises as a consequence of the truncation of 
the series expansion of the exponential function on the right 
side of the first equation in (21) in terms of 1/N. I t  is not 
difficult to verify, by direct calculation, for example, that 
this truncation causes a smoothing of a rectangular pulse 
into a Gaussian curve which has the same characteristic pa- 
rameters as those of the rectangular pulse. Thephysicaljusti- 

fication for the switch to a continuous spectrum is given 
below. 

I t  follows from (21) that each of the lines has finite 
width - ~ v ' ' ~ N  - Although this width is small in com- 
parison with the average level shift b~, it is definitely large in 
comparison with the average distance between levels, 
- B /N, because of the obvious condition M %  1. For infinite- 
ly large samples, this ensemble broadening of the levels does 
not occur. We should stress that this ensemble broadening, 
which is nonzero even in the first approximation in U, has 
nothing in common with the level broadening in an individ- 
ual large particle. In that case the broadening stems from the 
decay in the continuous spectrum, i.e., is proportional to U 2. 

Although the results derived above apply to particles 
which are parallelepipeds, they are also valid qualitatively 
for particles of arbitrary shape. The estimate of the ensemble 
width of a level found above depends only on the bulk char- 
acteristics of the crystal, not its surface characteristics. An 
attempt to find a more rigorous solution of this problem runs 
into serious mathematical difficulties. For a spherical parti- 
cle, for example, one would have to deal with the circum- 
stance that the particle can be regarded as spherical only in 
the long-wave approximation, but that approximation is ina- 
dequate for a correct description of point defects. At the 
atomic level, on the other hand, the surface of such a particle 
is a set of microscopic steps, so a quantitative description of 
the surface becomes extraordinarily difficult. 

Ensemble broadening may be manifested as scattering 
in the Fermi energies of particles which are identical in size 
and shape; with v = 0.1, 0 = 5 eV, and N = lo4, this scatter 
could reach 0.05 eV. Because of this, the threshold for the 
external photoelectric effect would be smeared, etc. Another 
possible manifestation of this broadening is mutual charging 
of small particles with different Fermi energies, as a result of 
the tendency for their electrochemical potentials to equalize 
(in the estimates above, this charging could actually occur if 
the small particles were in a medium with a dielectric con- 
stant 2 10). Because of this charging, forces would arise 
between the particles; these forces would fall off with dis- 
tance in a Coulomb fashion, i.e., far more slowly than the van 
der Waals forces d ~ . ' ~ , ' ~  

It should also be noted that if there is a spread in the size 
of the particles in the ensemble and if there is a spread in the 
impurity concentration in the particles, these spreads will 
also contribute to the level broadening (more on this below), 
promoting the manifestation of the effects described above. 
However, the effect of a spread in size on the Fermi energy of 
the particles has already been discussed, in Refs. 14 and 15; 
the corresponding effect of a spread in concentration is not 
specific to small particles. For this reason, one can also ig- 
nore the fluctuations in the density of conduction electrons 
which stem from fluctuations in the impurity concentration. 

Although the mutual charging of small particles differ- 
ing in size has been observed e ~ ~ e r i m e n t a l l ~ , ' ~  there appear 
to be no corresponding results on identical particles with an 
impurity or with shape defects. The same comment applies 
to the smearing of the threshold for the photoelectric effect 
in such particles. 

CORRELATION FUNCTION OFTHE LEVELS 

The same method has been used to calculate the level 
correlation function P ( w ) ,  which determines the probability 
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that two levels will be separated from each other by a dis- 
tance a :  

where 

(if none of the three components of p coincides with a com- 
ponent of p', we have Dpp. = D, ). 

It follows from (22) that - the - two-level probability 
reaches a maximum at w = Ep - Ep, and vanishes over a 
length scale which is on the same order of magnitude as that 
in the ensemble width of a level, i.e., h " 2 ~  - Because of 
the imprecision of the method of steepest descent, which we 
mentioned in the preceding section of this paper, Ppp, (0) 
formally does not vanish and is instead merely exponentially 
small. In any case, it can be seen from (22) that P,,, vanishes 
in the limit w - 0 not according to a power law but exponen- 
tially (one should recall that the typical distance between 
nondegenerate levels in an ideal crystal, having the behavior 
a N - I/', is large in comparison with the ensemble width of 
the levels). 

It is not difficult to see that a characteristic energy on 
the order of the ensemble level width is determined by the 
two-level probability even when the particle is symmetric in 
shape and has degenerate unperturbed levels. The presence 
of an impurity lifts the degeneracy, and the components of a 
split level repel each other. Below we will discuss the case of 
a parallelepiped with a square base ( x , y ) .  We will find the 
quantity P,, - (w) for the components of the split level, 
z ,+ and z; . For a doubly degenerate level with wave func- 
tionsf (pg, If (p, g, If ( qg, andf ( p  , g, If (pg, If ( qg, 1, the en- 
ergies of its components are given by the following expres- 
sions in first order in U, according to ( 3 ) ,  (4),  and (6): 

U 
E* (p. pi. q )  =E (P. pi, q )  + 7 ( ~ t l + ~ 2 2 * ~ ~ h )  f (qn,), 

d 

nl 

According to (23), the level splitting is determined not only 
by the random off-diagonal matrix elements but also by the 
random difference between diagonal matrix elements. This 
result is at odds with the standard hypothesis. This random 
difference between diagonal matrix elements increases the 
level splitting even further. 

One can determine the manner in which P + , (w) van- 
ishes in the limit w-0 by assuming, as in Ref. 6, that the 
distribution function of the quantity R is 

w (R) =r-' (n+l  ) yn+ 'Rne-TR, (24) 

where T(n)  is the gamma function. To find the parameters 
w(R) it is sufficient to know the first two moments of R. 
Under the assumption of a random distribution of the impu- 
rity over the volume, we find the following values for these 
<moments: 

<R>=13UZAl/32N2, <R2>-0,34U'Mz/N4. (25) 

It follows from (24) and (25) that the two-level probability 
P(w) is proportional to wo9 in the limit 0-0, i.e., that its w 
dependence is very nearly linear and valid for an orthogonal 
ensemble. The relatively slow vanishing of P,, - (w) in the 
limit w -0 confirms that it vanishes according to a power 
law nature as suggested above. In addition, and in contrast 
with Dyson theory, the length scale for P(w ) is not W/Nbut 
UV"~N - i.e., the ensemble level width ( Wis the width of 
the conduction band). 

Up to this point, the number of defects in a particle, M, 
has been assumed fixed. In the case of alloys (an impurity in 
the interior) one can deal with the fluctuations in these 
numbers from particle to particle by assuming that only the 
total number of impurity atoms in the ensemble is given. If 
there is no correlation between defects, then the distribution 
of the number of defects, M, in the particles is described by a 
Gaussian function for which the mean value M of the num- 
ber of defects is equal to the standard deviation (a Poisson 
distribution reduces to a distribution function of this type in 
the case M, 1 ) . Averaging expressions (2  1 ) and (22) over 
M with a distribution function of this sort increases the en- 
semble width of a line but does not change the order of mag- 
nitude of the broadening. 

Lines of course acquire an ensemble width as the result 
of an averaging not only over small-scale irregularities but 
also over large-scale irregularities. An important difference 
between the averaging procedures in these two cases is that 
the small-scale irregularities do not by themselves wipe out 
the correlations in the positions of well-separated levels, 
while large-scale irregularities do precisely that. That the 
former part of this assertion is tfue can be seen from (22): 
The value of Pppf (w) at the maximum is essentially indepen- 
dent of the difference Ep - Ep. . To verify the second part of 
the assertion, we consider the class of irregularities consist- 
ing of fluctuations in the dimensions L, , L,, L, of asymmet- 
ric right parallelepipeds, i.e., essentially, fluctuations in 
their shape. These fluctuations are assumed to be small 
enough that we can ignore the level degeneracy due to a 
coincidence of side lengths. 

For the calculation below it is sufficient to assume 
p, = 2rn, /L, [see ( 5  I .  In the absence of defects, and if the 
dimensions are distributed in an equiprobable fashion over 
intervals of width 2xL, centered at z, , the average two-level 
probability is given by 

X X Y  

- - 1 J G n  sin (a&) d t ,  2 n ~ ~ 1 a ~ a ~ ~ ~ ( - _  t -iO 
(26) 

wi = 2B (pi sin pi -pi' sin pi'), w, = w - Ep + Ep', 

pi=2nnilli, { I ,  2, 3) ={x, y, 2). 
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Although the integral in (26) can be calculated in terms of 
the residue in an elementary manner, we will not reproduce 
the general expression for it, since this expression changes, 
depending on the relations between w,, on the one hand, and 
o,, a,, and a,, on the other. In all cases, (P,,. ) vanishes at 
loOl>xXiloiI. If w,=w, =0, then at lool <xlw,l the 
quantity (P,,. ) is equal to Ixw, I - '. In general, (P,,. ) is 
proportional to lo, w,w3 1 - I .  Under the conditions 
IwlI+Io21+ I ~ 3 1 > I ~ o I ~ - ' > I ~ 1 1 + I ~ z I - I ~ 3 1 , f o r e x -  
ample, we have 

It follows from (26) that the decay of the amplitude 
(Ppp. ) with increasing separation of levels p and p' depends 
directly on this separation only in the one-dimensional case 
and with a quadratic dispersion law. In general, (P,,. (w ))f 
is a far more complex function of p and p'. 

SMOOTHED LEVEL DENSITY AND FERMl ENERGY 

In many problems it is sufficient to know, instead of the 
actual level density, a smoothed level density of an individ- 
ual particle, which can be found by taking an average of the 
actual density over energy intervals AE which are small in 
comparison with the characteristic energies but large in 
comparison with the mean distance between levels, 6. At this 
point, a smoothed density g(E) of this type has been con- 
structed for ideal crystals. It has been shown that this den- 
sity can be represented as a sum g(E) = 2, + g,, where g, 
andg, are proportional to the volume Vand the surface area 
S, respectively, of the crystal (provided that the surface is 
sufficiently smooth; see the review in Ref. 1 1 ) . Although g is 
a continuous function of the energy, a memory of the dis- 
crete spectrum is retained through the surface increment g, 
in g,. The inequality p L )  1 is a necessary condition for the 
splitting of g into g, and g,. 

To simplify the equations, we will discuss the particular 
case of a film with surface or bulk defects. We find a 
smoothed level density for the film by making use of the fact, 
established in Ref. 12, that the procedure of taking an aver- 
age is equivalent to the use of the Euler-Maclaurin formula 
in the summation over the quantized momentum projection. 
According to Ref. 12, for any function f(p) the following 
relations hold in first order in L - ': 

where p, and p, are given by ( 5 ) . 
In a calculation of g, relations (28) must be applied to 

expressions ( 13 )-( 15 ) . It is first necessary to find smoothed 
values GCn and Gm of the Green's functions G, and G, in 
( 11). For this purpose we should transform the expression 
for xp in (4) ,  which enters Gn through F i n ,  in such a way 
that the large parameter pL can be eliminated from it with 
the help of (5). We then find 

n 

1 Gn=t".n+Gm=Go, Go = -- J G ! ~ ~ [ E - E ( ~ )  ] - I ,  (29) 
(2n) -n 

where Go is the Green's function of an infinitely large ideal 
crystal. The contribution of defects to the smoothed level 
density is correspondingly given by the same expression as 
for a crystal of unbounded dimensions: 

z d =  - UMRI3t I Zo 1 2 ,  
d R = ( l -U Re Go) Im Go'+U Im Go Re Go', G ' - -Go, 

O - dE 

The smoothing in energy thus erases the dependence of the 
level density on the defect distribution. Nevertheless, g,  can 
be incorporated in the bulk or surface parts of the smoothed 
level density, depending on whether the impurity is distrib- 
uted over the volume or over the surface. 

Both surface and bulk defects can strongly influence the 
size dependence of the Fermi energy p ,  which can be written 
in the form p = po +,us for samples of finite dimensions, 
where po is the Fermi energy of an infinite sample, and 
p, a S/V. Surface defects act directly onp,, contributing to 
this part of p a quantity 

Pol 

k ~ u  = -[goi(po~ 1-1 J & ( E ) ~ E ,  (31) 
-OD 

wherego, andpoi are the level density and Fermi energy in an 
ideal crystal. 

Bulk defects, in contrast, act onp, indirectly, through a 
change in the density of levels at the Fermi surface of an 
infinite sample upon the appearance of defects in the sample. 
In this case we have 

where g, is the surface density of levels of an ideal crystal. 
An expansion of go and po in v makes it a simple matter to 
distinguish the defect component of p,. 

As an example, we can estimate the shift of the Fermi 
level due to surface defects. According to (30) and (3  1 ), the 
Fermi level is given by the following expression near the 
bottom of the conduction band: 

~8d~uvIZO (0) 

where the relative defect concentration v is related to the 
surface coverage by defects, a ,  by v = 6a/L in the case of a 
cube-shaped sample. Consequently, even in the absence of 
virtual impurity levels [Zo ( 0 )  zz 1 1, with U- 1-5 eV, 
a = 0.1, and L = 20 the value ofp, may be extremely large, 
possibly greater than 0.1 eV. It becomes even larger if there 
are virtual levels. 
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