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We consider the spectrum of polar optical phonons in solid solutions of uniaxial crystals. The 
presence of directional dispersion in the spectrum of the polar optical phonons leads to a state 
density of the same form as in cubic 4 0  and 5D crystals. The method of asymptotic summation of 
perturbation-theory series (the Lipatov-Brezin-Parisi method) is used to find the Green's 
function of the polar optical phonons G(w2,q) and the frequency distribution functionp(w2). It is 
established that through localization suppression in such 4 0  and 5D systems the instanton 
solution of the nonlinear equations of the effective field theory determines the asymptotic 
behavior of the effective perturbation-theory series for G(w2,q) for all frequencies, both on "tail" 
p ( ~ 2 )  and in the continuous spectrum, as well as in the diffusion region. It is shown that, 
compared with the single-instanton contribution to the phonon self-energy part 2 (w2,q) that 
describes multiple scattering of phonons by isolated fluctuations, the many-instanton 
contributions to the phonon self-energy part Z (w2,q), which describe the interference of 
scattering of various phonons by various fluctuations turn cut to be small at all frequencies, 
including the diffusion region. Under conditions when the interference effects are suppressed in 
the diffusion region, an exact solution is obtained in the 5D case and a solution with logarithmic 
accuracy for 4 0  systems. It is shown that the dependence of the line width for absorption or 
scattering of light by optical phonons on the composition of the solid solution has an 
exponentially sharp maximum. It is established that the width of the optical phonon line depends 
on the phonon-propagation direction, i.e., has directional dispersion. 

The energy spectrum of three-dimensional ( 3 0 )  disor- 
dered systems, such as crystals with impurities or solid solu- 
tions, contain between the region of the continuous quasi- 
particle spectrum and the "tail" of the density of state an 
intermediate diffusion part of the spectrum, in which the 
mean free path of the quasiparticle and its de Broglie wave- 
length are of the same order, and the quasiparticle diffuses 
rather than propagates freely.' In the same region of the 
spectrum a transition takes place from delocalized and local- 
ized states, i.e., a localization threshold is located. In the 
diffusion region, important roles are played simultaneously 
by single scattering of the quasiparticles by one fluctuations 
and by multiple scattering of quasiparticles by various fluc- 
tuations. As a rule, therefore, it is impossible to obtain in the 
3 0  case an analytic expression for the Green's function 
G(w,q)  ofquasiparticles and for the state densityp(w) in the 
diffusion region in the 3 0  case.' 

There exist, however, low-symmetry (uniaxial and 
biaxial) crystals in which the density of states for dipole- 
active excitations (polar optical phonons, excitons, plas- 
mons) the density of states has the same form as in cubic 4 0  
and 5D  crystal^.^ In Refs. 3 and 4 was investigated the for- 
mation of state-density tails of dipole-active excitations in 
solid solutions of low-symmetry crystals, and the same sup- 
pression of fluctuations that would occur in cubic 4 0  and 5D 
crystals would take place was observed. In this sense one can 
say that low-symmetry crystals have effective dimensionali- 
ties D = 4 and 5. 

Let us consider polar optical phonons whose dispersion 
law in uniaxial crystals is of the form5-' 

where mi,  is the frequency of a longitudinal optical phonon 
polarized along the optical axis, 0 is the phonon dispersion 
coefficient over the dispersion zone, a is the directional dis- 
persion coefficient, I9 is the angle between the wave vector q 
of the phonon and the optical axis of the crystal, a is the 
lattice constant. For a < 0 andB < 0 the frequency w1,is the 
edge of the continuous spectrum. 

Let us examine the laws of localization of the vibrations 
near the edge w!, of the continuous spectrum, using as an 
example the solid solution A, , B, C, where the localization 
takes place on fluctuations of the composition x. The "bind- 
ing energy" Aw2 of a localized vibration is equal to the differ- 
ence is equal to the difference between the "phonon kinetic 
energy" B ( ~ U ) ~  + a sin2$ and its "potential" energy 
V,Ax(r), resulting from the excess fraction of the heavy 
component B in the volume of the fluctuation. (Here V, is 
the total concentration shift of the square of the frequency 
on going from outer component of the solid solution to the 
other: V, = myo (AC) - wyo (BC). ) The shift of the square 
of the frequency of the local vibration relative to the edge of 
the continuous spectrum i;iyo = =yo (AC) - x V, is equal to 

where (...) means averaging over the localized vibrational 
state. 

It follows from ( 2 )  that formation of a local vibration 
with a specified Aw2 in the presence of directional dispersion 
calls for a fluctuation with a larger value ( V,Ax(r)) than in 
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the case when there is no directional dispersion. This in- 
crease of (VoAx(r)) lowers the probability of fluctuation 
formation and consequently decreases, compared with the 
3 0  case, the frequency distribution f~nction, ' .~ and the lo- 
calization turns out to be suppressed.It is shown in Ref. 4 
that for a 4 Vo the tail of the frequency distribution p (w2) 
has no Gaussian section and the entire tail is determined by 
the Fermi fluctuations of the composition. It was established 
in Ref. 3 that at 

(no is the characteristic width of the three-dimensional dif- 
fusion region) the tail of the functionp(w2) contains a Gaus- 
sian section, but in this case the frequency distribution func- 
tion 

P (aZ) = exp (4) 

turns out to be exponentially suppressed with the 3 0  case on 
account of the frequency-independent exponentially small 
factor 

Suppression of the localization points to the possibility 
of obtaining exact analytic expressions for the phonon 
Green's function G(w2,q) and the frequency distribution 
functionp(w2) in the diffusion region of the spectrum. In the 
present paper we solve the problem of the Green's function 
of optical phonons in a solid solution with directional disper- 
sion, i.e., in 4 0  and 5D disordered systems, for the simplest 
case corresponding to an exponentially suppressed Gaussian 
tail of the function (4).  Exact expressions are obtained for 
the G(w2,q) andp(w2) of the phonons in a wide range of the 
energy spectrum, including the diffusion region. The solu- 
tion is obtained by the method of Lipatov,' Brezin, and 
Pari~i,~." based on asymptotic summation of high orders of 
perturbation theory and separating the instanton contribu- 
tions into a Green's function. 

A similar problem with suppression of fluctuations was 
solved by Larkin and ~hmel'nitsk; for a second-order 
phase-transition in uniaxial ferroelectrics. ' ' 

1. FORMULATION OF PROBLEM 

For an ideal crystal, the energy spectrum of polar opti- 
cal phonons having directional dispersion is of the form 
shown schematically in the figure. The frequency distribu- 
tion function near the edge of the continuous spectrum wk, 
is determined mainly by the contribution of the branch ( 1 ) . 

In the solid solution A, _ , B, C with uncorrelated distri- 
bution of the atoms A and B over the sites of one of the 
sublattices, the composition fluctuations produce for an op- 
tical phonon, near the edge of the continuous spectrum, a 
"Gaussian random potential" V(r). If the edge of the con- 
tinuous spectrum of the solid solution is chosen to be the 
edge of the spectrum of the so-called virtual crystal 
ijl; =apo(AC)  -xVO, then (V(r))  =0, and 

The phonon Green's function averaged over the ran- 
dom potential V(r), just as the electron Green's function,I2 

FIG. 1 .  Scheme of the spectrum of polar optical phonons in uniaxial crys- 
tal with directional dispersion. The shaded areas are the areas of direction- 
al dispersion. The double-degenerated branch is shown by the double line. 

can be expressed with the aid of the replica method in the 
form of a functional integral 

where the action S[Y] for an N-component phonon field is 
equal to 

A 

1% (7) ,  T is the "phonon kinetic energy" operator, 
(Texp(iqror) =a - ' [w2(q )  -Epo]exp(iqror)). The di- 
mensionless coordinates r in (6)  and (7)  are expressed in 
units of the characteristic dimension ro = a(P /a) of the 
optimal fluctuationY3 and the dimensionless shift of the 
square of the frequency E = a - ' [w2 - ;Po ] is written in 
units of the directional-dispersion coefficient a. The second 
term in (7)  is the result of averaging the Green's function 
over the random potential; g is a dimensionless coupling con- 
stant and its value for the solid solution A, -. B,Cis equal to 

The last term in (7)  takes into account the fluctuation shift 
of the edge of the continuous spectrum of the solid solution 
relative to the edge of the spectrum in the virtual-crystal 
approximation: 

where E in (7)  is now measured from the renormalized edge. 
The action S[Y] [see (7)  ] has the same form as the 
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effective Hamiltonian in the problem of the second-order 
phase transition.I3 In contrast to Ref. 13 we have here g < 0 
and the integral (6)  formally diverges. Nonetheless, the 
Green's function (6)  exists as an analytic continuation of a 
similar integral from the semi-axis g > 0 on the complex g 
plane with a cut along the semi-axis g < 0.'2v'4 To make this 
analytic continuation, we use the method of calculating 
functional integrals of type (6),  developed in the papers by 
Lipatov,' Brezin, LeGouillou and Zinn-Justin," and Brezin 
and Pari~i.~." 

2. LOCALIZED VIBRATIONS OF THE TAIL OF THE 
DISTRIBUTION OFTHE FREQUENCIES OF LONGITUDINAL 
OPTICAL PHONONS 

In Secs. 2-4 below we calculate the Green's function of 
the optical phonons of branch ( 1 ) for a solid solution, i.e., 
the Green's function of phonons in a quasi-5D-disordered 
system. Expansion of the Green's function (6)  in powers of 
the coupling constant g 

m 

G  ( a e ,  q )  = (--g)' G"' (ae ,  q? 
K=O 

corresponds uniquely to the perturbation-theory diagram 
series. At frequencies lower than the energy-spectrum gap, 
however, i.e., at w < z),  or E < 0, a11 these diagrams turn out 
to be real and make no contribution to the frequency distri- 
bution function 

It is known, on the other hand, that inside the gap the fre- 
quency distribution function has a tail corresponding to 
p ( ~ )  > 0.394 The cause of this seeming contradiction is that 
Green's-function series similar to expression (9)  are asymp- 
totiC.~-~o,~5 Such a series is analyzed by breaking it up into 

two parts: 

where 

The first part of the series (1 I ) ,  G ( ~ E , ~ ) ,  is obtained by 
direct summation of a finite number of diagrams and turns 
out to be pure real at E <O. It makes no contribution to 
p ( a ~ ) .  The Borel ssymptotic method is used for the second 
part of the series, G ( a ~ , q ) .  

To carry out the asymptotic summation, we calculate 
the coefficient of the series (9) with the larger number K. By 
analogy with Refs. 8, 9, and 15, we have 

1 1 dg 
GtK) (aa ,  q) = - -lim -9-j D Y i ( r )  j d3r 

a N,02ni ( - g )  

For K )  1, the integral ( 14) is calculated by the saddle-point 
method with respect to g and by a functional saddle point 
with respect to \Vj ( r ) .  The conditions for the determination 
of the saddle point [9] yield for \Vj ( r )  a nonlinear equation, 
a nonzero (so-called instanton) solution of which can be 
represented in the f ~ r m ~ . ' ~  

where u, is a unit vector in the replica space, @ ( ~ , r )  is the 
nonzero solution of the equation for the optimal fluctuation 

F @ ( e ,  r )  -m3(e ,  r)  =em (a ,  r) ,  (16) 

and 

In (a ,  q )  = 1 Bn ( e ,  r )  exp (-iqror) d3r. (17) 

It is shown in Ref. 3 that, owing to directional disper- 
sion in the phonon spectTm ( 1 ), and hence in the "phonon 
kinetic energy operator" T from ( 16), the function @ ( ~ , r )  in 
the phonon spectrum ( 16) is almost independent of& as E- 0 
at distances of the order of the dimension of the optimal 
fluctuation. The integration overg in ( 14) and over \Vi ( r )  in 
the vicinity of the saddle point is practically independent of E 

as E-0. The integration in ( 14) over g and over \V, ( r )  in the 
vicinity of the saddle point is carried out a t e  < 0 in a manner 
similar as used by Berezin and Parisig and yields 

co(8) l I J ( e , q )  1"  
G'") ( a s ,  q )  = 

a [ & - &  ( 4 )  1' 

Here, in contrast to Ref. 9, the functions I,(E,O), I ,(E,~) and 
Co(e) in the limit as E-0 are independent of E. An expres- 
sion for Co(&) is given in the Appendix. 

It follows from ( 18) that the asymptotic behavior of the 
series ( 1 1 ) for the phonon Green's function is monitored by 
the instanton solution ( 15) with constant action 

Under the constraint (3  ) on the directional-dispersion coef- 
ficient a ,  the coupling constant g of (8 )  is small, and conse- 
quently the instanton action is large: 

Note that owing the weak dependence of I,(E,O) on E the 
action S(E) remains large also in the limit as E-0. 

The condition (19) means that the terms 
( - g)KG ( K ) ( a ~ , q )  - K  ![S(E) 1 - of the series (9)  with 
numbers K that are not too large ( 1 < K ~ K  = S(E) ) de- 
crease in succ_ession, and later begin to increase at K 2 E .  
The function G ( ~ E , ~ )  from (13) is obtained by substituting 
GCK)(a&,q)  from (18) in ( 13) and by asymptotic Borel 
summation (see Ref. 10). As a result we have 
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x J e-'[-4gt/I, (E, 0) IKoii  
dt.  (20) 

1+[4gt/I,(&,O)] 

An estimate of the real part of the integral (20) shows that it 
is best to break up the initial series (9) for G ( E , ~ )  into two 
components with KO in the initial section of the asymptotic 
series, i.e., at 1 g K,  <K = S(E) .  ~ e g ( E , q )  is then smaller 
than the last, largest term of G ( E , ~ )  [see Eq. (12) l .  The 
integral (20), which converges and is real at g > 0, has after 
analytic continuation on the complex plane g with a cut 
along the g < 0 axis, on the upper edge of the cut, an imagi- 
nary part 

where 

In (21) the imaginary part of G ( a ~ , q )  is calculated in 
the single-instanton approximation corresponding to 
allowance for multiple scattering of the phonons into isolat- 
ed fluctuations (optimal and close to optimal). The quantity 
l ? ( ~ , q )  contains an exponentially small factor 
exp{ - S(E)),  proportional to the small density of the fluc- 
tuations capable of localizing the vibration. 

The frequency distribution function p ( a ~ )  in the very 
same single-instanton approximation is determined by the 
contribution of the vibrations localized on the isolated fluc- 
tuations, and is obtained by substituting ImG(as,q) from 
(2 1 ) in ( 10). Just like T(&,q) ,  the quantityp(ae) is propor- 
tional to exp{ - S(E)). Owing to the weak dependence of S 
on E as & - P O ,  the quantity p ( a c )  is proportional to 
exp{ - S(E)) .  Owing to the weak dependence of S on E as 
E+O, the quantity p ( a ~ )  contains in this limit a frequency- 
independent exponentially small factor exp{ - S ( 0 ) )  that 
reflects suppression of the localization in the 5D system 
compared with the 3 0  case. 

The expression obtained in the single-instanton approx- 
imation for G ( a ~ , q ) ,  is subject to many-instanton correc- 
tions corresponding to phonon scattering by two, three, and 
more fluctuations, and due to contributions made to the inte- 
gral (6)  can generally speaking be represented, with 
allowance for such corrections, in the form of a series in 
powers of the powers of the concentration of the fluctuations 
capable of localize the phonons (see, e.g., Refs. 17 and 18); 

where 

does not contain the exponential factor exp{ - S(E)),  
J 

G* ( a ~ ,  q) = i  Im G(aE, c r )  

~ ~ ( q l ~ ,  q)yexp{-2S(&) 1,. . . 
wexp {-S_(E.)} 7 % 

The exponential factors in G, ( a ~ , q )  ( n  = 2,3, ... ) ensure ex- 
ponential suppression of these contributions relative to 
GI ( a ~ , q )  in terms of the parameter 

Since S(0)  is finite, the parameter (24) is small at arbitrarily 
distance from the edge of the continuous spectrum. 

To make clear the physical meaning of T(c,q), let us 
compare the expression that follows from ( 11 ), ( 12), and 
(13) for the Green's function G(ae,q) with the general 
expression for the phonon Green's function 

where Z ( E , ~ )  is the phonon self-energy part due to phonon 
scattering by the fluctuations of the solid-solution composi- 
tion. The quantity Z ( E , ~ )  can be expressed as a series in 
powers of the density of the fluctuations that are capable of 
localizing the phonons, i.e., in powers of expi - S(E)): 

where Zo(&,q) does not contain as a factor exp{ - S(E)) ,  
2, ( ~ , q )  a exp{ - S(E)  1, zZ(&,q) cc exp{ - ~ S ( E )  ), etc. All 
the contributions to Z ( E , ~ ) ,  starting with Z , ( E , ~ ) ,  are small 
compared with I;, ( ~ , q )  relative to the parameter (24). Re- 
taining then only 2, and 2, in (26),  substituting the sum 
Z = Z, + 2 , in (25),  and expanding the Green's function in 
powers of Z,, we get 

The third and all succeeding terms in the expansion 
(27) can be neglected to the extent that the parameter (24) 
is small. In the second term, which contains the small factor 
Z, ( ~ , q )  cc exp{ - S(E)) ,  the denominator can be expanded 
in powers of 2, a g and (27) can be represented in the form 

Since only the principal contributions with respect tog  were 
taken into account in the calculation of the coefficients of the 
asymptotic series ( 13) and its asymptotic summation, it is 
necessary to neglect in the curly brackets of (28) to the same 
approximation all the terms but the first. 

On the tail of the frequency distribution function 
p ( a ~ ) ,  i.e., at E<O, the quantity Z , , (E ,~)  in (28), just as 
G ( a ~ , q )  in ( 12), is pure real, and only the second term of 
(28) contributes to the value of I m G ( a ~ , q ) :  

Im G ( u E ,  q)=Im XI(&, q ) / a Z [ ~ - ~ ( q )  12. (29) 

Comparing this expression with (21 ), we see that 
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Relation (30) means that the quantity r ( ~ , q )  in (22) is the 
phonon damping due to their scattering by the exponentially 
rare fluctuations capable of localized vibrations (i.e., by op- 
timal or near-optimal fluctuations). 

3. LONGITUDINAL OPTICAL PHONONS OF CONTINUOUS 
SPECTRUM 

To find the Green's function of the phonons of the con- 
tinuous spectrum of a solid solution, it is simplest to consider 
the phonon self-energy part Z , (E ,~ )  due to phonon scatter- 
ing by all possible composition fluctuations and represent- 
able in the form of a series in powers of the coupling constant 
g : 

Each term in (31) can be represented by a diagram. The 
imaginary part, which describes the phonon damping, of 
each diagram contains, in at least one section, the integral 

[here p , ( a ~ )  is the frequency distribution function in an 
ideal crystal], and the integrals in all the remaining cross 
sections remain finite. Since the functionp,(a~) in an ideal 
crystal has for the phonon branch with the spectrum (1)  a 
quasi-5D form and is proportional to ( a ~ ) ~ ' ~  (Ref. 2) ,  the 
phonon reciprocal lifetime calculated by perturbation theo- 
ry is equal to y ( ~ )  = l g l a ~ ~ ' ~  / 6 ~  and satisfies, in contrast to 
the 3 0  case, the weak-damping condition 

for all E arbitrarily close to zero, and tends to zero as E - 0. 
Finite damping of the phonons near the edge of the con- 

tinuous spectrum can be obtained by taking into account 
additionally the multiple scattering of the phonons by com- 
position fluctuations capable of producing quasilocal vibra- 
tions in the continuous spectrum. Such multiple scattering 
can be considered by analogy with multiple scattering of 
phonons by fluctuations capable of producing local vibra- 
tions of the frequency distribution-function tail. To obtain 
the phonon Green's function G ( a ~ , q )  for the continuous- 
spectrum frequencies, we continue analytically the instan- 
ton solution ( 15) of the equation 6 s  /STi ( r )  = 0 with E < 0 
to the complex E plane with a cut along the semi-axis E > 0. 
As noted in Sec. 1, at short distances from the optimal fluctu- 
ation, the solution Q , ( E , ~ )  of Eq. ( 16) is independent of E as 
E-+ - 0. All that depends on E is the asymptote @ ( ~ , r )  at 
large distances. For the solution continued into the region 
E > 0 of the solution, such an asymptote is equal to 

The normalization integral $ 1  @ ( ~ , r )  I'd 3r for the function 
@ ( ~ , r )  (33) diverges, as it should for the amplitude of a 
quasilocal vibration. 

However, the action integral 

converges at short distances of the order of the size of the 
optimal fluctuation. Therefore at E >  0, i.e., in the contin- 
uous spectrum, the action S(E),  remains first finite: 

and second, large in value: 

As E-0 the action S is practically independent of S: 
S(E) z S ( 0 ) .  

It follows from (34) that for E > 0 there exists a single- 
instanton contribution of form (21) to the phonon Green's 
function; in this contribution the phonon damping T ( E , ~ )  is 
described by an equation of type (22). It is shown in the 
Appendix that the pre-exponential factors I , ( E , ~ )  and 
C,(E) in (2)  are practically independent of E as E- + 0. 
Consequently, phonon damping @ ( ~ , q )  is also independent 
of E in the limit as E- + 0: 

According to (30), - iT(&,q) = i Im Z ,  ( ~ , q )  is the one- 
instanton contribution to the phonon self-energy part. It fol- 
lows from (35) that the many-instanton corrections to 
r ( ~ , q )  = - ImB(&,q) are small in terms of the parameter 
(24). 

The frequency distribution function p ( a ~ )  is obtained 
by substituting T(w,q) from (36) in (21) and then in (10). 
Just as in the tail, p ( a ~ )  is proportional to the parameter 
exp{ - S(E)) and remains finite as E-0. The quantity 
p ( ae )  calculated in this manner has the meaning of the dis- 
tribution function of the frequencies of quasilocal vibrations 
coupled on isolated composition fluctuations, both optimal 
and close to optimal. 

4. DIFFERENTIAL REGION OF LONGITUDINAL-OPTICAL- 
PHONON SPECTRUM 

In a narrow frequency region near the edge of the con- 
tinuous spectrum, when a E S  r(O,O), the weak-damping 
condition (32) is violated. The phonon damping become 
strong, and the phonon mean free path is of the same order as 
its wavelength. In this sense the behavior of the phonons can 
be called diffusive, and this spectrum region called diffusive. 
The 5D scattering by phonon fluctuations having frequen- 
cies in the diffusion region, however, differs in principle 
from the 3 0  case. 

In the 3 0  case we have S(o) = [ -C,(w2 
- wi )/a,] 'I2 (Ref. 19), therefore at - (w2 - 0:) 5 R, 

the one-instanton parameter exp{ - S(w))  is no longer 
small and all many-instanton contributions to Z(w2,q) de- 
scribing interference effects in phonon scattering become 
substantial. The analogous parameter of the perturbation- 
theory series on moving from the direction of the continuous 
spectrum, which takes into account phonon scattering by all 
possible composition fluctuations in the 3 0  case, is equal to 
[R,/(w2 - w; ) ] 'I2 (Ref. 20) and becomes large at 
10' - W: 1 S a,, likewise reflecting the substantial role of in- 
terference effect. Therefore the diffusion part 
1w2 - I 5 0, turns out in the 3 0  case to be inaccessible to 
an analytical des~r ip t ion . ' .~~  

The main feature of 5D systems is that the parameter 
exp{ - S(E)) remains small as E-+O both from the side of 
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the tail [see ( 19) 1, and on the side of the continuous spec- 
trum [see (35) ], thus ensuring smallness of the many-in- 
stanton contributions to Z ( ~ , q )  for all E that tend to zero. As 
shown in Sec. 3, the perturbation-theory-series parameter 
for E,,(&,q) also turns out to be small in the 3 0  case for all E 

[see (32) ] in the entire frequency region near the edge of the 
spectrum, including also the diffusion region. Therefore it 
suffices to retain in expression (26) for Z ( E , ~ )  only 
i ImZ, ( ~ , q )  = - i T ( ~ , q )  and one can neglect both the 
multi-instanton contributions B, ( ~ , q )  cc exp{ - nS(&)) 
(n = 2,3, ...), and the contributions Z , (E ,~)  cc gaE and 
Rex, ( ~ , q )  -a& exp{ - S(E)),  which vanish as E-0. The 
final expression for the exact Green's function of the phon- 
ons G(a&,q) is obtained by making the substitution 
Z ( E , ~ )  = - i r ( ~ , q )  in (25). 

Suppression of the multi-instanton contributions in 
E ( E , ~ )  relative to the parameter (24) means suppression of 
the interference of phonon scattering by various fluctuations 
at all frequencies, including also the diffusion regions, some- 
thing that does not occur in the 3 0  case. The question of the 
localization threshold of the vibrational states is not consid- 
ered in the present paper. 

To obtain the frequency distribution functionp(a&) in 
a wide frequency range including the tail, the diffusion re- 
gion, and the continuous spectrum we obtain ImG(a&,q) 
from (25) and substitute in (10). Using expression (2)  for 
r ( ~ , q )  and taking into account the relation 

which is obtained by the Fourier transform ( 16), we get for 
p ( a ~ )  

[ (as)V-tr2 (0,O) 1"-ae '" 

2 ) roo} .  (37) 

In the diffusion region of the spectrum, at IaEI-  r (0,0) ,  the 
second term in (37) is of the order of 
l?3/2(0,0) ar exp{ - +S(O)), and is small compared with the 
first term of order exp{ - S(0)). 

In the continuous spectrum at a c )  T(0,O) the second 
term in (37) yields for the distribution function of the fre- 
quencies of the freely propagating phonons of an ideal crys- 
tal 

In this case the total distribution function is a sum of contri- 
butions of quasilocal and free vibrational states: 
p ( a ~ )  = pqu (0) +pfr (a&).  The contribution of the free 
states to p ( a ~ )  becomes predominant in the continuous 
spectrum at, E 2 lgl - 4/3exp{ - f-S(O)}, i.e., far beyond the 
limits of the diffusion region. 

On the tail at E < 0, la~l) r(0,0) ,  the second term in 
(37) is equal to - ( 1 2 2 )  - '( P 2 )  -3/2.+I'(0,0)a1/21~I I", 
andp(a&) takes the form 

For I E ~  5 g2 the main dependence ofp (a&) on E is determined 
by the correction - IEI''~, while at larger values of 1 ~ 1  the 
principal role is assumed by the exponential decrease of 
p ( a ~ )  due to the exponential decrease of the probability of 
optimal fluctuation, which follows, according the Ref. 3, the 
law 

Green's function and the frequency distribution function of 
the prolonged optical phonons near the frequency we,. The 
quantity 1m{ - EL '(o)) observed in the optical experi- 
ments, the maxima of which correspond to the frequencies of 
the longitudinal phonons, and also the cross section for Ra- 
man scattering of light, are proportional to the spectral den- 
sity of the phonons d ( 0 2 , q )  = - T -  ' ImG(02,q), (Refs. 
2 1,22). From the expression for Im G ( a ~ , q )  it follows that 
the optical phonon line near we, has a Lorentz form, and its 
width I?,,, is equal to (2geO ) - 'r(0,O). Substitutingg from 
(8)  in (22) we obtain in explicit form the dependence of the 
width of the optical phonon line Fop, on the parameters of 
the phonon spectrum and on the composition of the.solid 
solution x: 

a, 
= const .y exP{- 

I, (0.0) a"y' ) 
2OLOll x2 (~-X)~V: 2x (1-1) Yo2 

(39) 

At x = 0.5 the line width I',,, has an exponentially 
sharp maximum, substantially sharper than in a hard 3 0  
solution, where r,,, (x)  = I?:,'x2( 1 - x2) (Ref. 23). The 
experimental data on the optical spectra of the solid solu- 
tions Pb(Mo0,) , _ , ( WO,) , , which have the Scheelite 
structure, confirm qualitatively the conclusion that the de- 
pendence of Top, on x has an exponentially sharp maxi- 
mum.24 

5. GREEN'S FUNCTION AND FREQUENCY DISTRIBUTION 
FUNCTION OF TRANSVERSE OPTICAL PHONONS 

The dispersion law of the transverse optical phonons in 
uniaxial crystals near the edge who of the spectrum is8-" 

and the frequency distribution functionp(w2), equal to2 

has a quasi-4D-dependence on E = (w' - myo )/a (here 
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B(y )  is the Heaviside step function). The main difference 
between quasi4D systems and the 5D case considered above 
is that the perturbation-theory series for the phonon self- 
energy part Z , ( E , ~ )  describing phonon scattering by all pos- 
sible solid-solution composition fluctuations is now along- 
side the parameter g ln(a/  - E )  (Refs. 25, 26), which 
becomes larger as E -+O. Summation of series of this type in 
the parquet approximation, which yields a sum with loga- 
rithmic accuracy, was carried out by Larkin and Khmel- 
'nitsk6" for the problem of a second-order phase transitions 
in uniaxial ferroelectrics. 

For phonons in a solid solution, besides scattering, de- 
scribed by perturbation theory, for all possible composition 
fluctuations, there is also another scattering mechanism- 
multiple scattering by composition fluctuations, capable of 
producing local and quasilocal vibrations. This mechanism 
corresponds to the instanton contribution to Z ( E , ~ ) .  The 
single-instanton approximation parameter (24) turns out in 
the 4 0  system, just as in the 5D case, to be small for arbitrary 
E-+O. This makes it possible to take into account, in a wide 
frequency range that includes the tail, the diffusion region, 
and the continuous spectrum, both scattering mechanisms: 
the perturbation-theory series sum calculated with logarith- 
mic accuracy in Ref. 11 for B ( ~ , q ) ,  and the single-instanton 
contribution B, (c,q) = - i r ( ~ , q ) .  The obtained phonon 
Green's function is 

-1 

- i r  (E ,  0) + i r  (E ,  q) -aE (q) } . (42) 

Substituting ImG(a~ ,q )  of (42) in ( l o )  we obtain, with the 
same logarithmic accuracy the frequency distribution func- 
tion 

{ IgI a 
'/. 

p ( a ~ ) =  I--1n } [ ~ ~ n a ' ( p o ~ ) ~ ] - ~  
8n [ (ae) '+r2 (e, 0 )  I" 

a 
{ r ( ~ ' ~ ) l n  [ (ae)z+r2(E,0) 

-I- ae arctg --- 
-aE 1 r ( ~ ,  0 )  

cy dependence of S(E) is due to the pre-exponential factor 
I n \ & \ ' ,  and still farther from the edge of the continuous 
spectrum, at I E ~  2 Igl ( ln\gJ  - I )  2 ,  to the exponential de- 
crease of the probability of the optimal fluctuation in pro- 
portion to exp{ - s ( ~ ) ) .  

From (42) it follows for the phonon Green's function 
that the characteristic width of the optical phonon line is 
equal to (2wt0) - 'T(0,O). The dependence of the width on 
the composition of the solid solution, just as in the 5D case, 
has an exponential sharp maximum at x = 0.5. 

We have considered above phonons that are close in 
frequency either to the edge wlo of the continuous spectrum 
or to the edge obo of the continuous spectrum. These phon- 
ons propagate respectively at angles 9 = 0 and ~ / 2  to the 
optical axis and correspond to the edges of the directional- 
dispersion region. For phonons propagating at angles 
9- # 0 and 77/2 to the optical axis, however, the frequencies lie 
inside the directional dispersion region, i.e., inside the con- 
tinuous spectrum, where the frequency distribution function 
is not small. The damping of such phonons, due to scattering 
by composition fluctuations, can be calculated by perturba- 
tion theory. The result is: 

The damping (45) determines also the width of the cor- 
responding optical phonon line. For a branch with direction- 
al frequency dispersion, i.e., with a dependence of w on 3, the 
width r,,, (45) also depends on 9, i.e., also has directional 
dispersion. 

Investigation of various dependence of the widths of 
optical phonon lines on the composition x and on the angle 
make it possible in principle to distinguish all the listed line- 
broadening mechanisms. 

Note that the results pertain not only to polar optical 
phonons, but also to other dipole-active excitations in low- 
symmetry crystals (excitons, plasmons). 

CONCLUSION 

The results of the present paper can be represented by a 
table that permits a comparison, in various regions of the 
energy spectrum, of the properties of 3 0  crystals and of low- 

In the diffusion region of the spectrum, at Ia~l- r (0,0), the 
symmetry (uniaxial and biaxial) crystals with effective di- 

second term in the last curly brackets in (43) is of the order mensionality 4D and 5D. 
of r(0,O)and is small compared with the first term, which is 

The authors are deeply grateful to A. A. Klyuchikin 
-r(o,o) / \g( .  and to A. V. Yung for helpful discussions. The authors are 

In the continuous spectrum, however, at 
also indebted to V. M. Nagiev, Sh. M. Efendiev, and V. M. 

a E ~ r ( 0 , 0 ) / g 9  i'e'? far the limits of the diffusion Burlakov, for supplying the experimental data of Ref, 24. 
region, it is precisely the second term which becomes princi- 
pal, and expression (43) forp(aa) goes over into expression APPENDIX 
(41) for p (ae)  of the ideal crystal. On the tail, at E <O, we 

In the calculation of the functional integral (14), the have lac1 % r(O,O), and the expression (43) for p ( a ~ )  goes 
over into integration with respect tog and \V, ( r  ) produces in the vicin- 

1 1 ity of the saddle point a pre-exponential factor CO(&)  equal 
P ( ~ E )  = r ( ~ , O ) l n - .  

32na" (pa")" 
(44) to I E I  

4.3" 

Substituting in T(E,O) a exp{ - S(E)) the S(E) depen- C o ( E )  = n21; / .  (&, 0) [ ~ , ( r ) ~ . ( e ) ~ , ( e )  I " [  ? - ( E ' " 3 )  ] I h  , 
dence, which takes according to Ref. 3 the form 

D (&, 1)  

where 

we can verify that at I E I  5 IgJ (lnlgl - ' ) - * the main frequen- P,(E)= J (  a m ~ ~ ' r ) - ) 2  W ( E ,  r )d3r.  (A21 
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TABLE I Compar~son of the properties of cub~c 3 0  crystals and low-symmetry crystals w~ th  effect~ve d~rnens~onal~ty 4 0  and 5D 

The expressions for 2, ( E )  and 25, ( E )  are similar. 
The quantities D ( E ,  1 /3 )  and D ( E ,  1 ) in ( A 1  ) are equal 

to 

Dimensionality 
Parameters and properties 

I w I 5D 

D  (e ,  ' / , )  = lim D  ( 8 , ~ )  D(e,  2 )  D(e ,  i ) = l i m  -. 
*-.I,, (1-3z)= ' * 1-2 

Born-approximat~on 
parameter 

Small at 

One-instanton approxi- 
mation 

Small at 

Scattering of phonons 
from continuous spectrum 

Scattering of phonons 
from diffusion region 

Analytic expressifns for 
G(02,q) andp(w-) 

Here D(E,z)  is the infinite product 

where A, ( E )  are eigenvalues determined from the equation 

I O ~ - - O O ~ ~ ~ Q P O  

oa - aoa 
 ex^ ( - (- c8 -ab)l'l) 

I o a - o ~ 8 1 s R ~  
o<oo 

Born 

multiple + interference 

none 

Since the integral in ( A 2 ) ,  just as the integrals I ,  ( ~ , q )  of 
( 17), converge at short distances on the order of the size of 
the optimal fluctuation, where ( ~ , r )  is practically indepen- 
dent of& the quantities Y,  ( E ) ,  Yy ( E ) ,  Y,  ( E )  are 
practically independent of E as E - 0.  

The frequency dependence of the eigenvalue A, ( E )  of 
( A 5 )  as E +  0  can be determined by expanding in a series in E: 

The correction SA, ( E )  for A, ( 0 )  in ( A 6 )  is proportional to 
E .  With increase of n, the function X ,  (9 , r )  becomes more 
and more oscillating; the integrals in ( A 6 )  are determined 
by the smoothed values of Z ( 0 , r )  and are independent of n  

u 

g ln - (aa - 043 

exp ( - S (oJo)) = exp { -- S (8 = 0)) 

arbitrary w 

Born + multiple 

multiple + interference 

with logarithmic accuracy 

as n- m. 

Substituting SA, ( E )  of ( A 6 )  in ( A 4 )  we obtain the cor- 
rection SD(E,Z) --D(E,z) - D(0 ,z )  to D(0 ,z )  for small E:  

g 

arbitrary w 

exp { - S ( ~ r l ] ~ ) )  = exp { - S(e = 0)) 

arbitrary w 

Multiple 

Multiple 

exact 

z26hn ( e )  
"("."'= {Ehz(~) [ h n ( ~ ) - z ]  } D ( o , z ) .  (A71 

n-1 

The contribution of large n to the sum ( A 7 )  can be repre- 
sented in integral form 

and the contribution of large n to the infinite product ( A 4 )  
in the form 

n.. . - e x p { z l n . .  .}= exp{j  n(h) .  . . dh} 
n n 

[here n ( A )  is the density of the eigenvalues A, 1. Since the 
phonon spectrum ( 1 ) goes over into a quadr2tic 3 0  spec- 
trum at large quasimomenta, and the operator Tof ( 16) and 
(A5  ) becomes a 3 0  Laplace operator, the eigenvalue density 
n (A  ) turns out to be as A -, w as in the 3 0  case (see Ref. 9 ) : 
n ( A )  -A ' I 2 .  Therefore both integrals with respect to A con- 
verge as A -. w . Consequently, both the infinite product 
D(0 ,z )  of ( A 4 )  itself and the correction to it, described by 
( A 7 ) ,  turn out to be finite. It follows from ( A 7 )  that the 
correction SD ( E , z )  - E as E + 0.  

We have proved thus that the pre-exponential numeri- 
cal factor C, that enters into expression ( 2 2 )  for phonon 
damping and in expression ( 3 7 )  for the frequency distribu- 
t i o n p ( a ~ )  tend to a constant as E +  m. 

' B. V. Petukhov, V. L. ~okrovskii, and A. V. Chaplik, Zh. Eksp. Teor. 
Fiz. 53, 1150 (1967) [Sov. Phys. JETP 26,678 (1967)l. 

'E. I. Rashba, Fiz. Tverd. Tela (Leningrad) 4,3301 (1962) [Sov. Phys. 
Solid State 4, 2417 (1963)l. 
' F. V. Kusmartsev and V. A. Shchukin, Pis'ma v Zh. Eksp. Teor. Fiz. 43, 

123 (1986) [sic]. 
F. V. Kusmartsev and V. A. Shchukin, Fiz. Tverd. Tela (Leningrad) 28, 
1152 (1986) [sic]. 

561 Sov. Phys. JETP 70 (3, March 1990 I. P. lpatova and V. A. Shchukin 561 



'M. Blackman, Proc. Phys. Soc. A 65,394 (1952). 
6H. Poulet, Compt. Rend., Paris, 234, 2185 ( 1952). 
'S. I. Pekar,Zh. Eksp. Teor. Fiz. 35,522 (1959) [Sov. Phys. JETP8,360 
(1959)l. 

'L. N. Lipatov, Zh. Eksp.Teor. Fiz. 72,411 (1977) [Sov. Phys. JETP45, 
216 (1977)l. 

9E. Brezin and G. Parizi, J. Stat. Phys. 19, 369 (1978). 
I0E. Brezin and G. Parizi, J. Phys. C. ?3,307 (1980). 
"A. Larkin and D. A. Khmel'nitskii, Zh. Eksp. Teor. Fiz. 56, 2087 
(1969) [Sov. Phys. JETP 29, 1123 (1969)l. 

562 Sov. Phys. JETP 70 (3), March 1990 

I'D. J.  Thouless, J. Phys. 8, 1803 (1975). 
"A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase 

Transitions, Pergamon, 1979. 
I4J. S. Langer, Ann. Phys. 41, 108 (1967). 
"E. Brezin, J. C. LeGuillou, and J. Zinn-Justin, Phys. Rev. D 15, 1544 
(1977). 

I6A. A. Klochikhin and S. G. Ogloblin, Leningrad Inst. Nucl. Phys. Pre- 
print No. 1319, 1987. 

Translated by J. G. Adashko 

I. P. lpatova and V. A. Shchukin 562 


