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The physical properties of metastable liquid systems in various parts of the metastable region are 
investigated. The role of the Ginzburg criterion in determining possible penetration depths into 
the metastable region is analyzed. The problem of the equation of state of metastable liquids and 
of the possibility of reliable extrapolation of the isotherm from the stable to the metastable region 
is considered. Problems of the fractal nature of the new-phase seeds are discussed for various 
penetration depths into the metastable region. 

1. INTRODUCTION 

The study of the physical properties of materials exist- 
ing in the metastable state near first-order phase-transition 
points has in recent years aroused growing interest.'-3 This 
has to do in large measure with the overall progress towards 
understanding the nature of phase transitions. At the same 
time, on the theoretical plane it has not been first-order 
phase transitions and metastable states, but rather contin- 
uous phase transitions (second-order phase transitions) 
that have received the most attention. The application of 
fundamental ideas that lie at the basis of scaling and the 
renormalization group has permitted the development and 
realization of analytical and numerical methods of arriving 
at a consistent account of fluctuation effects due to the inter- 
action of fluctuations of the characteristic order parameter 
of the investigated system which are correlated over large 
distances and times. 

Fluctuation effects prove to be important also far from 
the critical points in the case of deep penetration into the 
region of metastable states. In fact, as the boundary of ther- 
modynamic stability of the homogeneous phase states (the 
spinodal) is approached the response functions of the system 
(the isothermal compressibility, the isobaric heat capacity, 
the thermal expansion coefficient, etc.) grow. A consistent 
description of the metastable states near the spinodal re- 
quires first that those peculiarities of the response functions 
which are due to strongly interacting homophase fluctu- 
ations of the order parameter be taken into account and sec- 
ond that the complex nonlinear process of generation and 
growth of large-scale heterophase fluctuations, taking place 
against this background, also be taken into account. It is 
specifically the coalescence of the nuclei of the new phase 
(droplets, bubbles) in the process of coalescence and coagu- 
lation that leads in the final stages of their growth to the 
appearance of macroscopic, thermodynamically stable for- 
mations. 

It is natural that in the near vicinity of the first-order 
phase transition line (the phase-coexistence curve of the 
phases or the binodal) there exists a region quite far removed 
from the critical point and from the spinodal where fluctu- 
ation effects, which are characteristic of continuous phase 
transitions, do not play a noticeable role. The phase diagram 
of the metastable system (for definiteness, the liquid-vapor 
system) shown in Fig. 1 illustrates the schematic arrange- 
ment of those regions where fluctuation effects do not play a 

decisive role (region 1 ) and those in which an account of the 
fluctuations is of fundamental importance (region 2).  Re- 
gion 3 is transitional (crossover) from fluctuational to non- 
fluctuational behavior of the metastable system. 

In this paper we present a study of the physical proper- 
ties of metastable systems for various penetration depths 
into the region of metastable states. A criterion for the fluc- 
tuational (or nonfluctuational) description of the metasta- 
ble region is obtained, which in a certain sense is an analog of 
the well-known Ginzburg-Levanyuk criterion of the appli- 
cability of self-consistent field theory to the description of 
second-order phase transitions and critical phenomena. We 
also analyze the problem of the equation of state of metasta- 
ble matter. Knowledge of such an equation of state and the 
physical properties connected with it is needed to analyze 
the available experimental data on the thermodynamic prop- 
erties of metastable In particular, this is important 
for the study of metastable liquids, and also for those systems 
in which it is possible to achieve a quasi-equilibrium penetra- 
tion depth into the metastable region (polymers, liquid crys- 
tals, etc. ). Questions are also discussed which are associated 
with the fractal nature of the nuclei (seeds) of the new phase 
which form in the various regions of the phase diagram. 

FIG. 1.  Coexistence curve (binodal) QKU and spinodal FKN of the sys- 
tem liquid-vapor in the coordinates density ( p )  and pressure ( p);  K is 
the critical point,p, andp, are the critical values of the density and pres- 
sure. 
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FIG. 2. Theisotherms SULNFQcorresponding to a temperature T <  T, in 
the coordinates density ( p )  and pressure ( p);  K is the critical point; 
QKUis the binodal; FKNis the spinodal;~, is the density of the gas on the 
binodal;pz is the density of the liquid on the binodal at the temperature T; 
pi s  the observed density in the metastable state; p, is the pressure on the 
binodal; and T,, p,, and p, are the critical values of the temperature, 
pressure, and density. 

2. THE GINZBURG CRITERION AND METASTABLE SYSTEMS 

Let us consider metastable states in a one-component 
liquid system at fixed temperature. The corresponding nota- 
tion is shown in Fig. 2. As the system moves along a noncriti- 
cal isotherm, e.g., SULNFQ, at a subcritical temperature 
( T <  T,), it turns out that on the segment UN the system is 
in the region of metastable states. In this region ( U is the 
binodal point) thermodynamic stability with respect to the 
fluctuational formation of new-phase nuclei (bubbles of va- 
por) having a volume greater than the volume of the critical 
nucleus breaks down. 

So that at some point L of the metastable region the 
system will still retain its thermodynamic stability, it is nec- 
essary that the inequality 

be satisfied, where Rmi,  is the minimum work necessary for 
the formation of a new-phase nucleus of critical dimension, 
and Xis  a dimensionless quantity k lo2. In the case of the 
formation of liquid droplets in the metastable supercooling 
of vapor one commonly takes X = 60 (Ref. 4). In fact, the 
frequency or rate of nucleation J i s  proportional to the prob- 
ability w - exp( - R,, /k, T) of formation5 of the new- 
phase nucleus, and in the superheating of a liquid we have 

J = p z K  exp (-Rmfnlk,T) , 

where p2- lo2' m-3 ,  and the kinetic factor K- 10" sec 
(Ref. 3).  Then for R,, > 102k, T the quantity J becomes 
vanishingly small. As the system continues to move along 
the isotherm in the direction of the spinodal point (the point 
N in Fig. 2) the quantity R,, decreases and, consequently, 
the stability condition is violated. 

Obviously, the equality R,,, = Xk, T determines the 
maximum permissible heating of the liquid (the physical 

spinoda1)- the dotted curve K W in Fig. 2. To the right of 
the curve KW in the metastable region near the binodal, 
where 

is found the region where density fluctuations are not impor- 
tant for the description of the thermodynamic properties of 
the system, and to the left of the curve K W, where 

is found the fluctuation region. In the intermediate region, in 
the vicinity of the curve K Witself, there takes place a cross- 
over in the behavior of the system from the classical nuclea- 
tion regime to the spinodal nucleation regime. In this region 
strongly developed fluctuations of the order parameter play 
a decisive role. 

Let us consider the region corresponding to inequality 
( 1 ) . In this case the characteristic dimension of the critical 
nuclei exceeds the correlation radius of the density fluctu- 
ations. Correspondingly, actual nuclei in the system are al- 
most spherical in shape. In fact, the critical profiles which 
form as a consequence of the density fluctuations, do not 
have a spherical shape at the moment of formation; however, 
the spherical harmonics with nonzero indices vanish quick- 
ly, so that the critical profile acquires a spherical shape.697 

In the case of new-phase nuclei of spherical shape the 
expression for R,,, is written as 

wherep, is the pressure on the binoda1,F = p (  p, T ) ,  and cr is 
the coefficient of surface tension. We introduce the dimen- 
sionless temperature t = T/T,, density R = p/p,, pressure 
difference Ap=(p , -p ) /pc ,  density difference 
Ap=(p , -p , ) / p ,  and parameter E = ( ~ , - - ; ) /  

( p, -p , ) ,  which defines the penetration depth into the re- 
gion of metastable states along the isotherm. Criterion ( 1 ) 
can then be rewritten in the form 

where z = k, T,/p,v, is the compressibility factor and vc is 
the critical volume per molecule. 

Inequality (4)  is the Ginzburg criterion, which defines 
the boundary of the nonfluctuation region. To prove this, let 
us first consider thermodynamic states far from the critical 
point, where the density of the saturated vapor is small (i.e., 
p , ( ~ 2  1. Thens 

w 

where g ( r )  is the radial distribution of the liquid phase and 
p ( r )  is the potential of pairwise intermolecular interaction. 
Choosing p ( r )  to be in the form of the three-dimensional 
Kac potential 

( O0, r<D, 
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where D is the diameter of the rigid core of the model mole- 
cule y -  ' = R, is the radius of action of the attraction forces 
between the molecules, and a y 3 / 4 ~  is the interaction con- 
stant, we obtain 

For an approximate estimate of the magnitude of the terms 
in brackets in expression (7),  one can set g ( x ~ , )  =: 1, which 
is valid for large values of R,. We then have 

Let us now approximately estimate the coefficient of D /R, 
in the second term. If we use the van der Waals equation for 
this purpose (the intermolecular potential (6)  leads to an 
equation of state of such type for R,-+ m ), then 

i.e., a quantity of the order of unity far from the critical 
point. 

Thus, for D /R, 5 1 the main contribution to the coeffi- 
cient of surface tension a comes from the first term in brack- 
ets in expression (7).  Within the framework of this approxi- 
mation the coefficient in front of the brackets in expression 
(7)  is equal to 

a~~R,/32=3p,R~R,/32. 

We then have the following estimate for the surface-tension 
coefficient u 

Let us calculate a for argon with the help of this expres- 
sion. For argon near the triple point R z 7.2 and p, -4.9 
MPa. If we take as R, the value of the amplitude of the corre- 
lation r a d i u ~ , ~  then R ,z  1 .6 .10"  m and it then follows 
that a- 12.7- 10- N/m, while experiment gives 
a z  13.4. N/m. If R0z3.4-  10- 'O m, which approxi- 
mately corresponds to the position of the first maximum of 
the radial distribution function, then a- 27.10 - N/m. 
These estimates confirm the validity of the obtained rela- 
tions for a .  Substituting expression (8)  into inequality (4),  
in the approximation E (  1 and p ,  (p, we obtain a criterion 
for the nonfluctuation region in the form 

Note that experimentally obtainable maximum values of E 

are of the order of 10- 2 .  

The left side of inequality (9)  is the product of different 
kinds of factors. The factor 

is the quantity that determines the position of the system in 
the thermodynamic plane. The factor 

depends only on the individual molecular properties of the 
investigated system. The compressibility factor for a large 
number of materials is equal on average to 3.7. For a large 
number of liquids (carbonic acid, ethane, ethylene, meth- 
ane, benzene, water, argon, etc.) v, -- (4-5)vo, where 
v, = 43712,/3 is the volume occupied by one molecular and r, 
is the corresponding radius of the molecule. Taking the 
above-presented estimates into account, inequality (9)  can 
be rewritten as 

102 Gi" (AP)'(AP)'~ K 
R8 

where 

Gi= (rolR,) ' 

is the Ginzburg number." 
Thus the applicability of theories of the metastable state 

in which fluctuation effects are not taken into account is 
determined both by the properties of the molecular param- 
eters of the materials ( G i g  1 ) and by the parameters that 
characterize the thermodynamic state of the system. If the 
system moves into the region of metastable states along the 
isotherm, then the factor which determines the behavior of 
the system is the magnitude of the isothermal compressibili- 
ty x in light of the singular character of its dependence on the 
density with approach to the spinodal. 

It is interesting to note that the van der Waals model 
corresponds to the case y -+ 0 (or R, -+ m ), wherefore Gi = 0 
and the behavior of the system over the entire metastable 
region all the way to the spinodal is described by the mean- 
field theory. For real systems the closer the Ginzburg num- 
ber is to zero, the better this theory works. Such a situation 
corresponds to far-range attraction forces between the mole- 
cules, which is the case for large values of the dipole moment 
of the molecules, as, for example, in the case of liquid crys- 
tals, where Gi - 0.2. ' l  

Let us obtain order-of-magnitude estimates of the quan- 
tities on the left-hand side of inequality ( 10) in the case of 
water. Far from the critical point for the isotherm with 
T =  433 K we have pl/p,z0.025. Then upon penetrating 
into the metastable region from the liquid branch of the iso- 
therm p, = 0.62 MPa and for jj = 0.1 MPa we obtain 
(Ap)2z0.6.10-3, Ap2/R ' - l o 3 ,  t-1, andz = 4.35. In- 
equality ( 10) takes here the form 

If we allow for the fact that for water ro-R,, then it is clear 
that in the pressure interval O.l<p<0.62 MPa isothermal 
compression of water at T = 433 K can be described by stan- 
dard methods of thermodynamic perturbation theory not 
allowing for fluctuational corrections to the thermodynamic 
quantities and their derivatives. 

Note that the derivation of criterion ( 10) does not de- 
pend on whether we consider a superheated liquid or a su- 
percooled (supersaturated) vapor. However, it is of interest 
that criterion (10) is not symmetric with respect to these 
two terms if we carry out the corresponding numerical esti- 
mates. It turns out that the values of the quantity R - for 
the liquid branch of the isotherm is a few orders of magni- 
tude smaller than in the case of the gaseous branch of the 
isotherm. In fact, taking water as an example, we have 

474 Sov. Phys. JETP 70 (3), March 1990 



(Rl/R,)8- (p2/pl)8- loz0 at T =  433 K, (R,/R,)~-  10" 
at T = 533 K, and (Rl/R,)8- lo9 at T = 573 K, where R, 
and R, are the values of R on the gaseous and the liquid 
branch of the isotherm, respectively. The values of the ther- 
modynamic quantities used to make the estimates were cho- 
sen near the binodal. Thus, whereas in the case of the super- 
heated liquid inequality ( 10) is satisfied with room to spare, 
in the case of the supercooled vapor it can hold only at insig- 
nificant penetration depths (which corresponds to small Ap 
orp/pS near unity). Consequently, in considering the equa- 
tion of state of the supercooled vapor it is necessary to take 
into account the decisive role played by the fluctuational 
corrections immediately after the transition through the bin- 
odal. 

In considering metastable states near the critical point 
we will make use of universal relations that follow from the 
theory of scale invariance. Thus, for the coefficient of sur- 
face tension the relation 

is valid, where no is the amplitude of the coefficient of sur- 
face tension, T = (T, - T)/T,, v is the critical exponent of 
the correlation radius R,. Since the coexistence curve is 
characterized by the equality 

where @ = ( p - p, )/p,, 0 is the index of the coexistence 
curve, and xo is the corresponding amplitude, 

and R,,, is written as 

Utilizing the expression for the critical isotherm 

where S is the index of the critical isotherm and Do is the 
amplitude of the critical isotherm, we obtain the following 
expression for Rmi, : 

Taking into account the universal relation between the 
critical amplitudes xo and Do (Ref. 9 ) 

where go is the amplitude of the correlation radius, the equa- 
lity relating the indices P, S, and v 

and also the approximate equality hp -- 245, we arrive at the 
expression 

where c = u: vf / ( k ,  T, ) is a dimensionless quantity. Ac- 

cording to the law of corresponding states,'' c is a universal 
quantity for a class of liquids with similar intermolecular 
potentials. As a result, inequality (4)  can be rewritten in the 
form 

where the Ginzburg number is equal to 

We will give corresponding numerical estimates for wa- 
ter, taking into account known values of the critical expo- 
nent S = 4.8 and the amplitude ~ ~ ~ 0 . 2  J/m2 (Ref. 9) .  In- 
equality ( 16) can then be rewritten in the form 

If in the estimate of the Ginzburg number we use the value 
go = 0.13 nm from Ref. 9 and as r, the characteristic "radi- 
us" of the water molecule r 0 ~ 0 . 2 9  nm, then Gi R 10' and it 
is clear that not taking account of the fluctuations which 
lead to the formation of the new phase, we can achieve a 
description of the thermodynamic states in the metastable 
region near the critical point only for small values of the 
penetration depth. In this regard, it should be noted that 
near the critical point, in the description of the thermody- 
namic properties of the material, it is necessary to take into 
account the strongly developed, interacting density fluctu- 
ations, whose role in the behavior of the system becomes 
decisive even outside the metastable region. 

It should be noted that near the critical point the crite- 
rion of penetration depth into the metastable region is asym- 
metric. The reason for this is the presence of asymmetric 
corrections to the equations of state of asymptotic scaling. In 
addition, in the asymmetric corrections to the scaling it is 
necessary to allow for the fact that the value of the correction 
terms depends on the sign of @. 

3. THE EQUATION OF STATE IN THE NONFLUCTUATION 
REGION 

In the nonfluctuation region on both sides of the coexis- 
tence curve the system possesses the same type of symmetry, 
wherefore the description of its thermodynamic properties 
can be based on the same approach for the metastable as for 
the stable states. In the investigation of the thermodynamic 
properties of the material in the vicinity of the spinodal 
points the appearance of a new type of symmetry, described 
by the renormalization group, is important. 

Since in the nonfluctuation region the system possesses 
a definite symmetry with respect to simple variation of the 
scale of the spatial variables: r ]  = qr, (not averaging the or- 
der parameter over regions with dimensions of the order of 
the correlation radius), we will use this simple scaling trans- 
formation to construct a thermodynamic perturbation theo- 
ry. If the scaling factor q is chosen to be of the f o r r ~ ~  

where Vo is the initial (reference) value of the volume V, 
then for the configuration part of the sum of states the equa- 
lity 
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is valid, where N is the number of molecules in the system 
and 

is the configuration part of the sum of states of the system of 
N particles in volume V, with intermolecular interaction po- 
tential q(qr) .  Since the choice of the magnitude of q here 
satisfies Eq. ( 17), this means that the variation of the vol- 
ume A V = ( V, - V)/ V,, during the scale transformation en- 
ters into the potential function since A V = 1 - q3. 

It is possible thus to construct a thermodynamic pertur- 
bation theory using as the small parameter the dimensionless 
quantity A V. Indeed, if we turn to the experimental data in 
the metastable region,' then, for example, for water in the 
pressure interval around 10 MPa A Vz0.02. In essence, the 
smallness of the parameter A Vover a wide pressure interval 
is ensured by the smallness of the isothermal compressibility 
X* since (x* = p a )  

in the nonfluctuation region and X* - (in the case of 
water for Tz400-500 K).  

In Refs. 13 and 14 a number of thermodynamic pertur- 
bation theories were constructed with the help of an expan- 
sion of the free energy in a functional Taylor's series in modi- 
fied Mayer functions 

ex~{-[(~(~r)-(~(r)llk~T)-~. 

The use here of the Kac potential (6) as the intermolecular 
potential leads to an equation of state that is a generalization 
of the well-known isothermal Tate equation 

where ( p - p,) , is the pressure difference corresponding to 
the Tate isothermal equation of state: 

and the constants A, B, M, and H are given by the following 
expressions 

A- l2nk,T exp ( yD) /ay6D, 

Herep: is the part of the pressure that is due to the repulsion 
forces between the molecules at V = V,; C = ( 1/3) 
X [alng(r)/arl,-, +,, where g ( r )  is the radial distribu- 
tion function calculated also at V = V,. 

Since the numerical values of the quantities A, B, and C 
naturally depend in a major way on the choice of the inter- 
molecular potential, it seems best to consider them on the 
isotherm as fitting parameters if we have in mind an investi- 
gation of the equation of state of a real rather than a model 
system. Let us compare the results of calculation according 
to Eq. (20) with experimental data3 for ordinary water, 
heavy water, and argon. Note that for AV4 1 Eq. (20) 
changes over into Eq. (21), whose differential form 

allows us to use the data of Ref. 3 on the isothermal com- 
pressibility. 

First, from the experimental points from Ref. 3 in the 
region of stable states we find the parameters A and B. Since 
V, and p, were chosen near the binodal, A V- 10 - ', which 
presents the possibility of using the differential form of the 

Water, isotherm T=260" C, p1=4,694 MPa 

TABLE I. 

Water, isotherm T=300° C, pa=8,592 MPa 

v, iok3 m'/kg 

Argon, isotherm T-125 K, pr=1,5812 MPa 
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Tate equation and determining A and B from only two 
points. Further, as the need arises, the parameters M and H 
can be found from the data in the metastable region. Results 
are shown in Table I. 

For water at T = 260 "C, V, = 1.2 188. m3/kg, 
and p, = 10 MPa, we obtain A = 0.098 and B = 53.067 
MPa, with the mean relative error A in the extrapolation of 
the differencep, - p with the help of the Tate equation into 
the metastable region equal to 0.2%. In the calculation of 
(dp/dV) in the metastable region A = 0.4%. The same val- 
ues of d and B in the same pressure interval were used to 
describep, - p in the metastable region of heavy water. Here 
p, = 10 MPa, V, = 1.1449. lo- '  m3/kg, and A = 0.13%. 
For water at T = 300 "C, V, = 1.3978.10-3 m3/kg, and 
p, = 10 MPa, we obtain A = 0.089, B = 18.997 MPa, 
M = 9.121 MPa, and H = - 1.195. In thecaseofextrapola- 
tion ofp, - p into the metastable region with the help of Eq. 
(20) we have A = 0.2%, and in the calculation of (dp/dV) 
with the help of the Tate equation we have A = 0.5%. These 
same values of the parameters A, B, M, and H lead to 
A = 0.15% for the description of the quantity p, - p in the 
metastable region of heavy water in the same pressure inter- 
val ( V, = 1.2694. m3/kg and p, = 10 MPa). In the 
case of argon at T = 125 K, V, = 0.8743.10 m3/kg, and 
p, = 4.5 MPa, we obtain A = 0.086, B = 6.919 MPa, and 
A = 0.3% for extrapolation ofp, - p and A = 1 % for extra- 
polation of (dp/dV). with the help of the Tate equation. 

Note that if we find A and B by using the entire set of 
points in Ref. 3 and not just two points in the stable region, 
then the magnitude of the errors A is substantially de- 
creased. Thus, in the metastable region (in its nonfluctua- 
tional part) to describe the isothermal penetration we can 
use the Tate equation of state and its modification in the 
form of Eq. (20). It is interesting that even for an extremely 
unrealistic Kac intermolecular interaction potential the re- 
lation between the fitting constants M and H and the quanti- 
ty Cis  satisfactorily maintained. Indeed, starting with Eq. 
(221, 

and at T = 300 "C the quantity Cis  equal to - 4/3 (as was 
noted in Ref. 14, C < 0 and / C I < 1 ) . It follows then that 
H = - 2, while experiment gives H = - 1.195. 

One should especially note the possibility of describing 
the thermophysical properties of metastable heavy water un- 
der isothermal conditions using values of the constants of the 
equation of state found in the stable region of ordinary wa- 
ter. This is possible because the parameters of Eq. (22) are 
determined by the potential of the intermolecular forces and, 
consequently, should be identical for H 2 0  and D,O. The 
equation of state which we have proposed here differs in this 
property from empirical equations whose constants are 
bound to an entire set of reference points. 

The results presented here, which testify to the possibil- 
ity of extrapolating the isotherms from the stable to the 
metastable region, are found to be in agreement with the 
conclusions of Ref. 1 to the effect that the peculiarity of the 
thermodynamic potential on the binodal is very weak and is 
not detected experimentally. 

In the fluctuation region near the critical point, where 

the condition of smallness of the quantity X* is not fulfilled, 
the Tate equation and its modified form are inapplicable. In 
this case it is necessary to use the asymmetric scaling equa- 
tion of state (see Ref. 15 and 16). 

4. ON THE FRACTAL NATURE OF THE NEW-PHASE NUCLEI 

As was shown in Refs. 6 and 7, nuclei of spherical shape 
appear quite rapidly as a result of the temporal evolution of 
critical formations of quite arbitrary shape. Analysis of the 
results of numerical experiments on the formation of micro- 
clusters during the nucleation process" confirms that the 
clusters which obtain as a result of equilibrium fluctuations 
are nearly fractal in shape. The question of the interaction 
(coalescence) of such formations, which is very important 
for the refinement of the criteria of stability of the metastable 
state, remains open at the present time. 

Analysis of the dimensionalities of the density fluctu- 
ations shows that the appearance of compact nuclei as a re- 
sult of equilibrium fluctuations, although possible, is ex- 
tremely improbable. Indeed, for the fluctuation of the 
number of particles in the volume V we have 

whereas for the formation of a cluster of compact shape of 
dimensionality d with density p, = p2 - p, Ap ( Ap + O )  it is 
necessary that ( (AN ') ) a L d, where L is the characteris- 
tic linear dimension of the fluctuating volume. In the non- 
fluctuation region x is not a singular quantity and therefore 

Thus, it is impossible for the fluctuation of the number 
of particles to lead to the formation of a compact cluster 
(manifold) of dimensionality d. Such a manifold in the 
space Rd does not look locally like a piece of this space; it 
does not even have the form of a piece of the space Rd- I 
(with the exception of the case d = 2). In the fluctuation 
regionxaRf- '7 ,  R,+L and 

where 7 is the critical index of the correlation function and 
df is the fractal dimensionality of the forming new-phase 
clusters. 

Using known values of the critical indices u and P, we 
can draw the following conclusions regarding the metastable 
states near the critical point. Ford = 4 the dimensionality of 
the forming manifold (Dim(M) = df) is equal to 3, whereas 
the c~dimensionality,'~ Cod(M) = d - Dim(M), which 
characterizes the dimensionality of the boundary, is equal to 
1. Thus, ford = 4 there appears as a result of the fluctuations 
a fractal "foam." Ford > 4 the role of fluctuations leading to 
the formation of the new phase is insubstantial since in this 
case Cod(M) > 1. Fo rd  = 3 more compact structures arise 
than for d = 4 since in this case Dim(M) = 17/7 and 
Cod(M) = 4/7 < 1. Finally, for d = 2 fluctuational forma- 
tions can in fact already play the role of nuclei of the new 
phase since Dim(M) = 15/8=2 and Cod(M) = 1/8. It is 
interesting to observe that for the formation of a compact 
new-phase nucleus it is necessary that Dim(M) = d and 
Cod(M) = 0 for any dimensionality of the enveloping 
space. 

The latter circumstance underlines the importance of 

477 Sov. Phys. JETP 70 (3), March 1990 BoTko etal. 477 



introducing the concept of codimensionality. Thus, the con- 
cept of transversality can also be formulated in the language 
of codimensionalities. Two submanifolds in Rd intersect 
transversly at a given point if they either do not intersect at 
all at this point or 

Cod (Mi) +Cod (M2) Gd,  Cod (M, nM,)  =Cod (M,) +Cod (M,) . 
(25) 

For two arbitrarily chosen manifolds the probability that 
they intersect nontransversally is infinitesimally small." 
Thus, if as a result of fluctuation in the number of particles in 
different volumes fractal manifolds (new-phase clusters) 
form in the system, then the situation in which they intersect 
tranversally is typical. The probability of their nontransver- 
sal intersection is equal to zero. Thus, near the critical point 
in the metastable region for d = 3 manifolds form with 2 
< Dim(M) < 3 and intersect transversally with 
Dim(M,nM,) 5 2 and Cod(M, nM,) = 8/7. In the case 
d = 2 we have Dim (M) = 15/8 5 d, and the transversal in- 
tersection of the forming clusters is a manifold of dimension- 
ality 14/8 5 d, i.e., the coalescence of the clusters, leading to 
the growth of the new phase, is the most probable in this 
case. 

The above analysis of the dimensionalities of the fluc- 
tuational manifolds shows that the question of the criteria of 
stability of the metastable state cannot be consistently re- 
solved within the framework of an approach that uses the 
hypothesis of the formation of new-phase nuclei of compact 
shape. In connection with this, note should be taken of the 
results of numerical experiments according to which the 
structure of the clusters forming in the metastable region is 
nearly fractal. '' 
5. CONCLUSION 

In the investigation of the behavior of matter in the re- 
gion of metastable states a correct account of the fluctua- 
tional corrections of the thermodynamic properties of the 
investigated system is necessary. Far from the critical point 
the corrections associated with the instability of the system 
with respect to the fluctuation formation of the new phase 
play a decisive role. As the critical point is approached, the 
role of long-range density fluctuations grows. The condition 

that determines the importance of the fluctuational contri- 
bution to the thermodynamic quantity of interest for each 
concrete system is the Ginzburg criterion associated with 
the characteristics scales of the forces of attraction and re- 
pulsion between the n~olecules. 

In the nonfluctuation region of superheated liquids the 
thermodynamic properties of the system are well described 
by the standard methods of the statistical mechanics of dense 
gases and liquids. The Tate isothermal equation of state and 
its modified form do not change their form upon passing 
through the binodal and make it possible to extrapolate the 
corresponding experimental dependence from the stable re- 
gion into the metastable region all the way to the limit of 
superheating attainable in present-day experiments. 
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