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A general expression for the cubic susceptibility tensor of an atomic gas is derived by taking into 
account level degeneracy, thermal motion, and depolarizing collisions. The expression is used to 
investigate the influence of depolarizing collisions and of the Doppler effect on Raman scattering 
in the presence of single, double, or triple resonances and also its influence on two-photon 
absorption and phase conjugation. Some methods are proposed for the determination of the 
relaxation constants of atomic multipole ~ o m e n t s  and for the identification of forbidden 
transitions. The methods are extended to include Raman scattering from excited states and to 
spectroscopy free of Doppler broadening. 

Raman scattering (RS)  is extensively used to study sol- 
ids, liquids, and gases.'-5 Principal attention in the investi- 
gation of gases is usually given to the study of molecular 
systems. Atomic gases, however, have their own attractive 
features and admit of a rigorous quantum-mechanical de- 
scription of RS with account taken of depolarizing collisions 
and of the form of the interatomic potential. Light interac- 
tion with atoms and relaxation processes in gases in the pres- 
ence of depolarizing collisions are described by using the 
multipole moments that appear when the density matrix is 
expanded in periodic tensor operators. Multipole moments 
of various ranks are indicative of the population, orienta- 
tion, and alignment of the atoms. They determine the polar- 
ization of the spontaneous emission and the properties of the 
spectral line, and enter directly in many physical experimen- 
tally observed quantities.'.' The damping of multipole mo- 
ments by depolarizing collisions is studied by various meth- 
ods based on depolarization of the fluorescence, broadening 
of the Hall-effect signal, level crossing, and quantum 
beats,"-' and also photon echo%nd quasistationary RS." 
All these methods, however, have limited applicability re- 
gions and can find only some of multipole-moment relaxa- 
tion constants, so that the search for new effective methods is 
a timely problem. 

In the present paper we obtain the atom's multipole- 
moment relaxation and other spectroscopic information by 
using stationary RS produced in various excitation regimes 
that differ in the location of the resonance levels of the atom, 
and also in the number and character of the resonances. To  
this end, we solve first the general-physics problem of calcu- 
lating for an atomic gas a cubic-susceptibility tensor that is 
valid in the presence of thermal motion, depolarizing colli- 
sions, and any possible number of resonances, since the ear- 
lier  calculation^"^^^^^' of this tensor are not valid for our 
problem (other papers are cited in Ref. 4).  Owing to the 
obtained cubic-susceptibility tensor, many optical four- 
wave mixing phenomena, such as light scattering in the pres- 
ence of single, double or triple resonances, the generation of 
new waves, two-photon absorption, and phase conjugation 
are represented as various manifestations of RS. With the 
traditional excitation scheme, using Raman (or  two-pho- 
ton) resonance and an arbitrary trial pulse, we formulate a 
general approach to the investigation of the depolarizing 
collisions with the aid of stationary RS. On the basis of the 
law governing the variation of the intensity and polarization 
properties of RS we propose a method of determining three 

relaxation constants for a homogeneously broadened forbid- 
den transition, and also their derivatives with respect to the 
pressure of the buffer gas. We determine in addition the 
collisional shifts of the spectral lines and the ratios of the 
cubic-susceptibility tensor parameters, and identify the for- 
bidden transition. Furthermore, the proposed method can 
be generalized to include the case when both levels of a for- 
bidden transition are excited and are coupled to the ground 
level by two allowed transitions resonant to the pump-wave 
frequencies. The RS amplitude depends here on two reson- 
ances, one of which belongs to the allowed transition, so that 
it is possible to determine in addition to the indicated spec- 
troscopic information also the homogeneous width and the 
width of the spectral line of the allowed transition. For com- 
parison are shown the capabilities of the method of coherent 
anti-Stokes scattering (CARS)2,'35 in the investigation of 
the depolarizing collisions in an atomic gas. We consider 
next other modifications of the stationary RS, since the ob- 
tained cubic-susceptibility tensor can be used for all excita- 
tion regimes of atoms used for single resonance as well as for 
a combination of different resonances. In particular, in the 
two-photon absorption regime in the presence of frequency 
degeneracy, the range of validity of Doppler-free RS spec- 
t r o s ~ o p y ' ~ . ~ , ~  has been extended to the case of depolarizing 
collisions. This has made it possible to determine the relaxa- 
tion constants for the forbidden transition regardless of the 
character of its broadening. Also determined are the spec- 
tral-line collisional shifts needed for the calculation of exact 
positions of the resonance levels. It follows from the results 
that a new field of research is opened for the spectroscopy of 
stationary RS in an atomic gas, which includes, together 
with the determination of the exact positions of the energy 
levels of the atoms, the emission of the depolarizing colli- 
sions and their influence on the shape, width, and shifts of 
the lines in the RS spectra. Furthermore, a comparison of the 
theoretical conclusions with experiment will permit a verifi- 
cation of the universally accepted model of depolarizing 
collisions. l 5  

1. CUBIC SUSCEPTIBILITY TENSOR 

If three light waves are incident on an atomic gas new 
waves are formed in it by four-photon interaction. The total 
electric field has therefore the form 
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where the indices n = 1, 2, 3 correspond to three incident 
waves, while n = 4, 5, ... correspond to the newly formed 
waves. Here the frequencies w,, and the wave-vector direc- 
tions k,, with indices n = 1, 2, 3 are given while those with 
other indices n = 4, 5, ... are to be determined. Amplitude a,, 
is a slow function in comparison with exp(ik,, Sr). Gas-atom 
behavior in the electric field ( 1 ) in the presence of depolariz- 
ing collisions is described by means of a density matrix p 
which satisfies the equation 

where H i s  the Hamiltonian of a free atom which is moving 
with the velocity v,d is the dipole operator and Tp is the 
collisions integral. Since the state of the atom is character- 
ized by an energy E, a total angular momentum J ,  and its 
projection M on the quantization axis, it is convenient to 
write ( 2 )  in JM-presentation. However, it takes the simplest 
form after expanding it in 6j-symbols and at E = 0 it yields 

k*) 
afg= ( E ~ - E ~ ) ~ - ~ ,  y:3) = ~ ~ ~ + r ~ ~  , 

f(v) =(n'"u)-' exp (-v2/u2), 

where p,v,,vs is the density matrix in JM-presentation, 
pj,"' (J ,J , )  is a multipole moment of rank K and y; is the 
relaxation constant of this multipole moment. The constant 
y, describes radiation decay and gaskinetic collisions, while 
rj,"' and A),"' are determined by depolarizing collisions, 
with A::' = rgil = 0 and A:,"' = - Ag' (see, for example, 
Refs. 15 and 10). Next, f(u) is Maxwell's distribution func- 
tion, u the most probable speed, and N, the stationary den- 
sity of atoms on the E, level in the absence of the field ( 1 ). 
The indices f and g independently run through a number of 
values which correspond to all atomic levels. 

To calculate the vector P = $Sp(pd)dv of the dielectric 
polarization of a gas in the stationary case the equation (2 )  
along with the equation (3 )  was solved by perturbation the- 
ory in the cubic approximation in the field ( 1 ). This permits 
the vector P to be written as asum of linear PL and nonlinear 
P'I- parts 

P(r,  t )  =PL(r, t)+PNL(r, t ) ,  

where xj ' with i = 1,2,3 is obtained from xj + by ex- 
changing of indices 1 ~ 2  in the quantities w, , w, , xj + ', and 
X: ' with the simultaneous renotation of index + - - , 
while is obtained from x,' + ) with by replacing 
w 5 + and w, - - w,. The quantity 
Q:, (w,w,, , - w, ) is equal to the right-hand side of (7 )  with 
the replacement w, - k, v -+ - w, + k, v, the designations, 
of the 6j-symbol and of the reduced dipole moment d,, are 
taken from Ref. 16. Here in ( 5 ) are retained only those terms 
which contain products of all three incident-wave ampli- 
tudes. 

We introduce the cubic susceptibility tensor x,,, ac- 
cording to the equation (Ref. 17) 

t 

PiNL(rr t )=  9 XtJkl  ( t - t l ,  t-tff, t - t t r r )  
- w 

XE, (r, t ' )  E,  (r, t") E l  (r, t"') 

x dt' dt" dt"', ( 8  

where indices i, j, k, and 1 take on the values x, y, and z 
marking the vector projections onto the Cartesian axes X, Y, 
and Z. Substituting expression ( 1) for the electric field in 
(8 )  and retaining terms which describe RS we obtain 

PiNL(r, t)  =6{xijkl(0+; 01, -02, m3)aijaZk*a31 exp [i(k+r--o+t) 1 
+xtju (0-; -01, 02, ms)ajl.azka3r 

where all other terms are omitted to make for brevity and th 
following notation is used 
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Xexp[i( + w, r ,  f w2r2 

+ w , r 3 ) ] d r , d r 2 d r 3 .  

Comparing ( 5 ) and ( 9)  we find the main result 

The formula ( 10) determines the general expression for 
the cubic susceptibility tensor 

x V k l  (o ;  W t ,  0 2 ,  0 3 )  ( ~ t 6 ~ 6 1 1 t ~ 2 6 t h 6 l 1 + ~ s 6 t ! 6 1 h ) ~  ( 1 1 ) 

~1='le[Qi(0,  0 1 .  a z ) S ; Q z ( ~ ,  at, 0 2 )  

+ Q 1 ( o ,  a t ,  os)+Qz(o, 0 1 ,  W S ) ~  

+ ' / , [Qo(o ,  0 2 ,  O S ) - Q Z ( ~ ,  mzr 0 3 )  I ,  
~ a ' = ' / z [ Q i ( ~ ,  0 2 ,  ~ O + Q ? ( O ,  0 2 ,  0 1 )  

+Qi(a, 0 2 ,  o s ) + Q z ( a ,  ~ 2 , ~ s )  I 
+ ' I S  [ Q o  ( 6 1 ,  U S ,  0 1 ) - Q 2 ( ~  0 3 ,  0 1 )  1, 

x8='lz[Qi(o, as, ol)+Ql(o, ot, 0 1 )  

+ Q t ( u ,  us, 0 2 )  +Qz(w, 0 3 ,  ma) I 
+'i? [Qo(o, 0 1 ,  a2)-Qz(o, u1902) I ,  

( , ,=o,+o,+o3, k=k,+k,+k,. 

where spatial dispersion is determined according to (7)  by 
the Doppler effect just as in the case of dielectric susceptibil- 
ity (4) .  The tensor ( 11 ) is symmetrical with the reference to 
any permutation ofj, k, and 1 taken two at a time in case of 
the simultaneous permutation of the corresponding indices 
of frequencies w,, , wave vectors k,,  and quantities x,, with 
m = 1,2,3. If we neglect the dispersion or assume 
w, =w, =w, (and k ,  = k ,  = k , )  we g e t x ,  =x, =x,,  
and the tensor (1 1 ) becomes symmetric with respect to any 
pair of indices from i, j, k, and 1 according to Kleinman's 
relations. For w, = w, ( k ,  = k ,  ), w, = o, ( k ,  = k, ) and 
w2 = w, ( k ,  = k ,  we have respectively X,  = X, , X, = X, 
and,yz = X, and this results in the symmetry over two pairs 
of indices i, I (i, k) ,  as well as i, k (I, j )  and i, j (k, I). The 
components of the tensor ( 1 1 ) satisfy all the relations typi- 
cal of isotropic media, for example, x,,,, = xxxyV + xxyxy 
+ xxyYx . Besides, we have * (W;W I , a z  ,w, 
- 
- xvr1 ( - a ;  - a , ,  - w,, - W, ), while in the right side of 

this equation the corresponding wave vectors reverse their 
signs too. If we neglect the irreversible relaxation the tensor 
( 11 ) becomes real and satisfies the permutation symmetry 

where frequencies under the integral over the velocity v in 
(7)  are permuted together with the Doppler shift. 

Thus the tensor ( 11 ) meets all necessary requirements 
and represents a general type of the cubic susceptibility ten- 
sor of atomic gas with the Doppler effect and depolarizing 
collisions taken into account and is correct either with any 
possible resonances or without them. In this case the for- 
mula ( 11) is still valid when the quantities yj;) and A;:' are 
functions of the velocity v, as for resonance atoms whose 
mass is small compared with that of a buffer atom.'" 

It  should also be mentioned that the tensor ( 11) can be 

written in a short symbolic form 

h 

where the operator P acts as follows: terms obtained by 
means of two cyclic permutations of indices 1, 2, 3 for the 
frequencies and wave vectors together with the same simul- 
taneous permutation of indices j, k, I are added to the initial 
expression in the braces. 

In order to study RS we use the Maxwell's equations 
and the obtained dielectric polarization vector (5)  while we 
seek RS waves in ( 1 ) with indices n = 4, 5,6, 7 in the form 

+a(@- ,  s-)exp [ i (s -r -o- t )  ] - 
+a (a+, &) - exp [ i ( i+r-a+t)  ]+a (a -, s- )  

x exp [ i  (s-r-6)-t) ] + c.c., (12) 

where the wave frequency for w, < w ,  + w, is 
Iw - I = w, + w ,  - w, . After that the field ( 12) amplitudes 
and vectors s + - (9, ) are determined by the equations 

x exp[ i (k*-s , )r l ,  (13) 
a ( @ * ,  s,) =o*2e"(o, ,  s*)/2s,cZ, o , 2 ~ ' ( o * ,  s*)=sf2c2,  

Here a (w + ,sf ) is the absorption coefficient, ~ ( w  + ,s, , is 
- 

the dielectric function, and ~ ' ( w  , ,s ) and E" (w , ,s + ) are 
the real and imaginary parts of a(w , ,s , ). We make next 
use of the slowly-varying-amplitudes approximation and 
omit the second-order derivatives in ( 13). We neglect also 
the incident-wave exhaustion, considering them to propa- 
gate linearly in this nonlinear medium with dispersion law 
W;E'(W,, ,k,, ) = k f,c2 where n = 1,2,3. Besides, we assume 
that the angles between the vectors k ,  , k ,  , k ,  (as well as s + 

and J ,  ) are small in the range between 0 and - 1 0  radi- 
an, or large ones ranging between n- and - (a-  - l o - , )  
radian and therefore the term (s  , P(w + ) ) s t  /s: may be 
neglected. Under these assumptions proJections of the am- 
plitudes of the field ( 12) on to the Cartesian axes at the point 
r = s, L /s: at the exit from the gas will have the form 

( 0 ) .  ( 0 )  ( 0 )  
a* (o - , s - )=6G(o- ,  s - ) ~ i j , ,  (o-;  -02, 0 2 ,  o , ) a j j  a,, a,, , 

(15) 

where q - , is the sum of the incident-waves absorption coeffi- 
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cients, L , is the gas linear dimension in the s  , direction, 
and the index ( 0 )  marks the incident waves amplitudes at 
the boundary point r = 0 on entering the gas for the small 
convergence angles of these waves. The multiplier 
G(w + ,s , ) determines the possible s + while the - optimal 
values of the above vectors are s + = k + and S ,  = k + . The 
amplitudes a, ( 5  + ,S - + ) are obtained from ( 13)-( 15)by re- 
placing w +  - 5 + ,  s i  - S + ,  w,- -w,, k , -  - k ,  and 
a?'-a:"'*(ai0'* --a?'). With the help of ( 14) and ( 15) we 
obtain the intensity 1 ':' which corresponds to the electric 
field RS projection on to i-Cartesian axis in the form 

Ia(i)=clai(o*, s,) I2/2n, i=x, y ,  z. (16) 

2. SINGLE RAMAN OR TWO-PHOTON RESONANCE 

In case of Raman w, - w, = w,, and two-photon 
w, + w, = w,., resonances the incident waves with the fre- 
quencies w, and w, are pumping waves, while the third wave 
with the frequency a,-is a probe wave. The physical quan- 
tities with + and - indices belong to anti-Stokes (high- 
frequency) and Stokes (law-frequency) waves. Here the co- 
efficients in the tensor ( 10) for the Raman resonance have 
the form 

where nonresonance terms have been omitted. 
Since all wave frequencies in this four-wave mixing are 

nonresonance we can neglect the linear absorption in 
G(w - , ,s - + ), and thus the amplitudes (14) and (15) have 
the form 

where I,, -the incident wave polarization vector. The ampli- 
tudes obtained can be written as sums of three typical parts 

a ( o + ,  S+)=GNR(CO+, ~ + ) a ~ ( ~ ) a ~ ( ~ ) * a ~ ( ~ )  

X {i/3Bo(+)13 (1,lC) +1/2B,(+)13 

X (1iXl;) +'/ZBz(+' [ l i ( ~ ~ l ~ ) + ~ ~ ( l s l i ) - 2 / ~ 1 3 ( l i ~ ~ )  11, 

(20) 

where the terms proportional to B ' ' ,B  + ', and B ' ' de- 
scribe isotropic, antisymmetric and anisotropic scattering 
respectively. Here each of relaxation constants y i ~ ~ ' , y ~ ~ ~ '  and 
yljl' is connected only with one of the scattering type men- 
tioned. Presenting the amplitudes in the form (20) and (21 ) 
permits the use of methods of RS amplitude-polarization 
s p e c t r o s ~ o p y ~ , ~  in the presence of depolarizing collisions, 
which in their turn will permit to determine yj;' with 
x = 0,1,2. 

Often in experiments the linearly polarized incident 
waves propagating at  small angles of the order of a millira- 
dian fraction are used. In this case we choose Xaxis along the 
polarization vector I, of the probe wave and we obtain 

1,=1, cos $,+1, sin $,, n=l, 2, 13=1,, 

where I, and I, are the unit vectors of Cartesian axes X and 
Y, Y, and Y, are the angles between I, and polarization 
vectors I ,  and I, of the pump waves. Under such conditions 
the amplitudes (20) and (21) can be written in the form 

x [3 cos $7, cos 92- cos($7,-$2) I } 
+'/21,[B1(*) sin($,--$,)+B,'*' sin($,+$,)]. (23) 

Using the RS polarization properties obtained in (22)  
and (23 ) we can choose such values of the angles Y,  and Y, 
that the components of amplitudes (22) along the axes X 
and Ywould have only one multiplier of the type ( 19) with a 
specific value of the index x .  This permits to determine in an 
experiment one by one the three decay constants yj:',yj.A' 
and yii' for a homogeneously broadened forbidden transi- 
tion if we study the intensity (16) as a function of a tunable 
frequency w, or w, . For example, if Y,  = - Y, = ~ / 4 ,  the 
intensity ( 16) corresponding to the RS electric field projec- 
tions on to axes X and Y, is proportional to ( B j + ' ( and 
I B i ' ' I ' respectively and this will give yjk' and yj:' as well 

as the collision shifts A,';' and Ad:' of the corresponding lines 
provided w,, is known or their difference A::' - A:.;' if o,, 
is not known. If we chose Y,  = Y, = arccos(3 "' ) then 
the intensity (16) with the index i = x is proportional to 
I B (0 + ' I 'and this permits to find yj:' and A:::'. However, we 
should bear in mind that in case of forbidden transitio; 
J ,  - J,  = + 2 we have B :, ' ' = B j + ' = 0, therefore only 
y;.;' and A::' are being determined. In case of J ,  - J,. = _t 1 
we have B ' ' = 0 so that only yj.;' and yit' are being deter- 
mined with x = 1,2. In case when J ,  - J ,  = Oy:.:' and A::' 
are being determined with all possible indices x. In the exam- 
ined cases the intensities ratio permits to calculate 

with the corresponding values of x .  
The proposed methods of determining yjt '  is valid if 

buffer atoms are added to the resonance atoms. In this case 
the decay constants yjl' acquire terms proportional to the 
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buffer-atom concentration or to the buffer-gas pressure p 
and it is possible to write 

(X )  - 70, - p  dy:;' l dp fb , ,  

where b, is a certain constant independent ofp. Determin- 
ing y:,"' at the same temperature of gas and different values 
of p it is not difficult to calculate the derivative dy:,"'/dp 
connected with the effective cross section of the atomic colli- 
sions. In this case the dielectric function corresponding to 
the buffer atoms should be added to ~ ( w , ,  ,k) and 
&(a+ ,s+ 1. 

The coefficients (19) contain 6j-symbols which take 
into account the selection rules for the total angular momen- 
tum of the forbidden transition Jb - J, . This makes it possi- 
ble to choose the polarization features in (20)-(22) which 
are determined only by the forbidden transition type and 
which do not depend on depolarizing collisions and other 
factors. For the transitions Jb - J, = f 2 in (23) we have 
BA' ' = B * ' = 0, therefore wave polarizations in (22) is 
linear for arbitrary angles Y, and Y, . The angle between the 
vector I, and RS electric field is determined by the formula 

FOrJb -Jc = + l a n d J b  + J c > l  wehaveBh+'=Oand 
therefore RS wave polarization in (22) is either elliptical for 
Y, # Y, or linear for Y, = Y, = Y and tan Y ,, = 3 sin 2 
Y/2 (3  cos \V - 1 ) . The exceptions are transitions 
J b = l - J c = O  and J b = O - J c = l  for which 
g ; " = ~ ( r t ) = o  and therefore in case of the real I, polar- 

ization of the RS waves according to (20) and (21 ) is linear, 
orthogonal to I, for arbitrary linear and elliptical polariza- 
tions of pumping waves. For Jb - J, = 0, the RS waves po- 
larization in (22) is elliptical for any Y, and Yz , and in the 
case J,  =0-Jc = O w e h a v e B ~ * ' = B k k ' = O , a n d  thus 
the polarization according to (20) and (2 1 ) coincides with 
the probe wave polarization either linear or elliptical one. 
The found polarization rules permit to identify experimen- 
tally the forbidden transitions. 

In case of the two-photon resonance w, + w, zw,, co- 
efficients x: + ' in ( 5  ) are obtained from ( 17 ) and ( 18 ) by 
the replacements w, , , -G, , , , w, -- - w, and k, 4 - k,, 
while anti-Stokes and Stokes wave amplitudes are described 
by the formulas (20)-(22) with substitutions 
a ; ~ )  (a;o)* + a ; ~ ) )  and I, -1, * as well as with substi- 
tutions w, -+G, , w, - - w, and k, - - k, in the expres- 
sion ( 19). That is why the proposed methods for determina- 
tion of yi,"',Al,"' and dyl;'/dp as well as the method of 
forbidden-transitions identification are still valid in case of 
the two-photon resonance. 

3. CARS IN THE PRESENCE OF DEPOLARIZING COLLISIONS 

Together with the scattering of the third (probe) inci- 
dent wave described by the formulas (20) and (21 ) the other 
types of RS independently take place when the probe wave's 
role is played by the first of the second pumping wave. In this 
case scattered waves are separated in the space due to the 
space synchronism.' If the first impulse of pumping with the 
frequency w, > w, acts as a probe wave there appear the 
types of RS at anti-Stokes w + = 2w, - w, and Stokes 
w - = w, frequencies. The former is used in CARS spectros- 
copy in the absence of the third incident For 

CARS an additional multiplier 1/2 appears in the above ob- 
tained vector P(w + ), and in (9)  for the anti-Stokes wave 
the multiplier 6 is replaced by 3, while for the Stokes signal 
the formulas will remain the same with the third impulse 
replaced by the first. Therefore in this case the cubic suscep- 
tibility tensor for both Stokes and anti-Stokes waves is given 
by the expression ( 10) with the index 3 replaced by 1 in all 
physical quantities. In the case of CARS the expressions 
(20) and (22) for the amplitudes of the anti-Stokes wave 
remain valid after index 3 is replaced by 1 in all quantities 
and Y, = 0 in (23). Hence in the CARS method the quanti- 
ties BLf ' with x = 0,1,2 for the forbidden transitions 
Jb - Jc = 0 and Jb - J, = _+ 1 exist in the anti-Stokes 
wave amplitude in the form of such sums which make it 
difficult to determine yl.,"' with x = 0,1,2 experimentally. 
The difficulty mentioned above disappears in case of transi- 
tions Jb - Jc = k 2, for which the amplitudes (20) and 
(22) contain only yL:' and A:;', as well as in case of transi- 
tions Jb - J, with small angular momenta 0 - 1 ( 1 +0),  
1/2 - 1/2 and 1/2 - 3/2 (3/2 - 1/2) for which each of the 
constants y!,"' and A:,"' has only one value yr,"' = y::' and 
A:,"' = A::' for each possible x (the same in case of transi- 
tion 0+0, where yl,"' = y::'). For transitions of that type a 
widely developed method of CARS in atomic gas in the pres- 
ence of depolarizing collisions can be used without any addi- 
tional complication. 

4. ON RS SUB-DOPPLER SPECTROSCOPY 

In case of the two-photon resonance w, + w, =acb 
there are special conditions of excitation which make it pos- 
sible to carry out Doppler-free spectroscopical investiga- 
tions. These conditions are realized when all three incident 
wave frequencies are equal 6.1, = w, = w, = w, while pump- 
ing waves are propagating in opposite directions 
k, + k, = 0. Then the Stokes signal can be described by for- 
mulas (21 )-(23) with replacing w, -+w,w, - - w, 
k2 - - kz , I2 - I; ,a?' -a$;* and B I * ' = 0. Since in this 
case the Stokes signal on frequency w is propagating in the 
direction opposite to the probe wave it can easily be separat- 
ed from the other waves if the vectors k, and k, are not 
collinear. In this case of the two-photon absorption in the 
presence of frequency degeneracy the denominator in ( 19) is 
equal to the sum 20 - wcb - A:,"' + iyl,,"' which does not 
contain a Doppler shift and this permits to carry out the 
experimental investigation of collision relaxation indepen- 
dently from the type of the forbidden transition Jb -Jc 
broadening. While we scan the frequency near the two-pho- 
ton resonance 2wzwcb and study the intensity ( 16) as a 
function of the resonance detuning with the rational choice 
of the angles Y, and 9, it is easy to determine yf,"',Af,"' and 
dyL,"'/dp with x = 0,2 by means of the method proposed 
above for both homogeneous or non-homogeneous forbid- 
den transition Jb - J, = 0. Together with it the ratio of the 
parameters I n:i'(w)I12 (w, - w)/n:;'(w)II,(w, - w) I 
is being calculated. In case of Jb - J,. = + 1, k 2 
yL:',dyl.;'/dp and A::' are being determined except for the 
transitions Jb = 0-J, = 1 and Jb = 1 -.Jc = 0 where the 
Stokes wave does not exist. 

To identify forbidden transitions one must recognize 
that in case of Jb - J, = f 1, + 2 only anisotropic light 
scattering appears while in case of Jb - J, = 0 both isotrop- 
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ic and anisotropic scattering take place simultaneously ex- 
cept for the cases of transitions Jb = 0 - J ,  = 0 ,  
Jb = 1/2  +. J, = 1/2  where the scattering is isotropic. If in- 
cident waves are polarized linearly the formula ( 2 4 )  is valid 
for J, - J, = I , ,  2  while for Jb - J, = 0  the Stokes 
wave is polarized elliptically except for the transitions 
Jb = 0 -  J, = 0 ,  Jb = 1/2 - J, = 1/2 where its polarization 
coincides with that of the probe wave either linear or ellipti- 
cal. This permits us to distinguish Jb - J, = 0  from 
Jb - J, = f 1 ,  + 2  in experiment. 

It is worth to note that in case of linearly polarized inci- 
dent waves I ,  = I, = I, or I ,  = I, and I ,  I, = 0  the Stokes 
wave is reversed related to the probe wave, and in case of 
transitions Jb = 0 - J ,  = 0  and Jb = 1 /2 -J ,  = 1/2 this 
feature remains also in case of elliptical polarization. The 
obtained rules can be used to transfer optical information 
using the well known method ( 18) in the presence of de- 
polarizing collisions. 

5. AN EXAMPLE OFTHE DOUBLE RESONANCE 

RS from excited states is of great interest when the fre- 
quencies of pumping impulses satisfy the conditions of 
resonances w, -- w,, , 13, -- w,, , and w ,  - w, z w , ,  while the 
probe wave frequency w, is nonresonant. In this case the 
formulas ( 17 1 4 2 4 )  are still valid after substituting 
GNR ( w +  ,s* )forG(w* ,s* )andalsoB~*'forthefollow- 
ing expression 

Here both levels E, and E ,  of the forbidden transition are 
excited and the RS intensity increases considerably because 
every term in the amplitudes ( 2 0 ) - ( 2 2 )  has two 
resonances. The constants y::' (A:.:' ) and y::' (A;:' ) are de- 
termined independently with the help of RS using a single 
one-photon resonance. After that with the help of the meth- 
od described above one can determine experimentally y:,"' 
and A:;' for the forbidden transition with two excited levels, 
and one can also calculate the ratio of the parameters 
Inl.:+I'(+w. )/n:;'(f w +  ) I  with x = 0 , 1  provided 
the values of J, ,  Jb ,  and Jc areknown. Here the forbidden 
transitions J, -.J, identification method described above is 
valid. 

6. DISCUSSION 

Depolarizing collision's influence on some types of RS 
has been investigated above. However, the obtained cubic 
susceptibility tensor describes all possible RS including 
those caused by the interference effects of resonant and non- 
resonant parts. In this connection we point out some other 
general rules. When three waves resonant to two adjacent 
transitions are interacting with the medium there is no sense 
in separating them into pumping waves and a probe wave, 

both in the absence of the resonance and in the presence of 
single one-photon resonance. The reason is that two of these 
three waves have the same frequencies and the total electric 
field ( 12) of scattered waves does not change in case of rear- 
rangement of the physical values related to these two waves. 
For example, in case w ,  = w ,  z w , ,  and w ,  z w , ,  ( E ,  < Eb 
< Ec ) two scattered waves with the frequencies 
w  + = 2w, - w ,  and w  _ = w, are formed. After passing 
through the gas they separate from each other due to the 
different directions of their wave vectors. The former corre- 
sponds to the double resonance and the latter-to the triple 
resonance. In this case the gas polarization nonlinear vector 
is described by the formula ( 5 )  with P ( Z  + ) = 0 .  Accord- 
ing to the calculations all types of scattering in this case- 
isotropic, antisymmetric and anisotropic depend on two or 
three constants yL:',y:i' and yL2' at the same time, unlike 
( 2 0 )  and (21  ), and this makes it difficult to determine them 
experimentally. The same problem will be easier in case of 
forbidden transitions Jb - J, with small angular momenta 
0 - 0 , l - 0  ( 0 -  1 ), 1 /2 -  1 / 2 , 1 / 2 + 3 / 2  ( 3 / 2 -  1 / 2 )  as well 
as in case of transitions J,, - Jc = f 2  with arbitrary mo- 
menta. 

In cases when three incident waves have different fre- 
quencies and are resonant to the three different adjacent 
transitions any two of them may be considered as pumping 
waves and the remaining one as a probe wave. The scattered 
waves in this case interfere in such a way that experimental 
determination of the relaxation constants is as difficult as in 
the previous case. 

Finally we note that polarizational self-action for the 
wave with frequency o z w , ,  , wave vector k and polariza- 
tion vector I is also described with the help of the formula 
(5) with P(Z+ ) = O ,  a ,  = w ,  = w ,  = a ,  k ,  = k ,  = k ,  
= k and I ,  = I, = I, = I. In a gas which is dense enough to 

satisfy the condition yLg'% y  the resonance term in (5)  coin- 
cides with that obtained in ( 19) ,  where y  = 4  1 d ,  I * w L /  
3fic"(W, + 1 )  is a probability of the spontaneous emission 
for the quantum *,, by the single atom. In this case the 
term P ( Z  + ) in (5)  describes the third harmonic genera- 
tion in the presence of depolarizing collisions. 
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