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The symmetry of the electron states in an antiferromagnetically ordered crystal is investigated. 
The elements of the two-value corepresentation apparatus for the magnetic groups are used in a 
form that corresponds to the models and methods of the microscopic theories. The symmetry 
restrictions on the quasiparticle spectra, on their interaction with the magnetic field h, and on the 
interband matrix elements are found. The spin-orbit effects are considered. It is shown that a field 
h perpendicular to the antiferromagnetic ordering vector n does not split the twofold degeneracy 
of the states at the boundary of the magnetic Brillouin zone but shifts the spectrum extrema away 
from the boundary. The results are illustrated for the case of a two-dimensional system 
corresponding to the CuO, plane in weakly doped high-temperature superconductors. The 
general conclusions are applicable to itinerant antiferromagnets, including quasi-one- 
dimensional compounds with a spin density wave. 

1. INTRODUCTION 

The observation'.' of an antiferromagnetic (AFM)  
phase in high-temperature superconducting (HTSC) mate- 
rials stimulated theoretical study of the electronic states in 
magnetically ordered media long known as "magnetic semi- 
conduc to r~"~  " or "spin-density waves (SDW)."5,h Regard- 
less of the success or difficulties of the microscopic models, 
based on weak- or strong-coupling approximations, it is fea- 
sible to carry out an analysis based purely on symmetry 
which can establish a set of model-independent results. A 
symmetry-based approach, and group theory methods, have 
always been basic tools in the theory of semiconductors, al- 
lowing determination of spectra, effective Hamiltonians, se- 
lection rules, etc. 

In this study we apply symmetry methods to the de- 
scription of electronic states in antiferromagnets in an insu- 
lating or weakly doped phase. Classification of states for var- 
ious points of the Brillouin zone and a series of selection 
rules will be given, and the interaction of electrons with an 
external magnetic field or with their intrinsic magnetic mo- 
ment will be examined. Effects accessible to direct experi- 
mental verification are found for the magnetic properties. 
Specific studies are carried out for an antiferromagnet on a 
quadratic lattice with point symmetry group D,, for the 
CuO, layer in the HTSC compounds LazCuO,. 

In the AFM-ordered phase the quantum numbers of 
charged quasi-particles, generally speaking, are indetermin- 
ate, since spin is not a conserved quantum number. None the 
less, a group-theoretical classification always applies: each 
elementary excitation manifests an irreducible representa- 
tion A of the full group symmetry of the system. These repre- 
sentations determine the Lehmann expansion (see Ref. 7 )  of 
the exact single-particle electron Green's function 

In talking further about the wave functions in the 
spectra E ~ ,  we will have in mind these values. The versions of 
the corresponding creation operators and single-particle 
Hamiltonians used further on are correct in the self-consis- 

tent-field approximation for weak-coupling nesting models 
(see the reviews of Refs. 4-6). In this model the spin projec- 
tion on the AFM-ordering axis is a conserved quantity; this 
naturally corresponds to a two-value corepresentation (see 
Sec. 2 ) ,  which is model-independent. 

From a symmetry point of view the electronic spinor 
wave functions in an AFM are the basic functions of two- 
valued irreducible corepresentations of the symmetry group 
of the system, which contains anti-unitary elements: combi- 
nations of time-reversal operations R with spatial transfor- 
mations. The formal theory and enumeration of all the core- 
presentations of the crystal groups are presented in Ref. 8. 
However, the abstraction and brevity of the exposition, due 
to the necessity for examining a large number of space 
groups, complicate their use in a multi-electron theory of 
magnetically-ordered states. In connection with present 
problems in the theory of band antiferromagnetism, it can be 
useful to have a treatment of the symmetry properties corre- 
sponding to the methods of the microscopic models. There- 
fore it is useful to discuss the way to find the two-value irre- 
ducible corepresentations of the crystal groups, which 
generalizes the construction of electronic Bloch functions in 
the normal metal, is natural from the physical point of view, 
and takes into account in a clear way the direction n of the 
AFM order parameter in the crystal (Sec. 2 ) .  We limit our- 
selves to the simplest case of a two-sublattice collinear AFM 
on a square lattice with D, symmetry, which corresponds to 
a CuO, layer in HTSC compounds of the La,CuO, type. It is 
obvious that for complex magnetic groups a comprehensive 
symmetry analysis of the magnetic extrema, regardless of 
their origin, can be more efficiently done only on the basis of 
formal methods.' Up to the present the corresponding stud- 
ies have not really been carried out. 

2. THE SYMMETRY GROUP 

A description of particles with spin, as a rule, has been 
based on the transformational properties of their wave func- 
tions (spinors) relative to time. Spinors are a two-value rep- 
resentation of the rotation group, from which their proper- 
ties relative to time reversal R also come. An alternative 
approach originating from their transformation properties 
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relative to R is also possible. In this treatment the same wave 
functions are realizations of so-called two-value corepresen- 
tations.' In describing particles in a magnetically ordered 
medium, where the full group symmetry relative to rotation 
in spin space is destroyed, the second approach is more natu- 
ral. 

Let us examine first the symmetry group 9 belonging 
to a collinear two-sublattice antiferromagnet on the sites of a 
square lattice. In  this part we will neglect the weak relativis- 
tic effects of spin-orbit interaction with the crystal lattice for 
both conduction electrons and ordered moments in com- 
parison with the exchange interaction between electrons and 
moments (see Sec. 5 further on).  In this approximation we 
assume that the position of spin space is not fixed relative to 
coordinate .pace; that is, all coordinate space rotations d o  
not act on the electron spins.9 Therefore, the system wave 
function is sensitive to the magnetic order of the antiferro- 
magnet only for those group symmetry operations of the 
crystal which interchange the magnetic sublattices; that is, 
which are combined with the time reversal operation R. For 
the systems of interest to us, on a square lattice, only the 
translations T, and Ty over the periods a, and a, of the 
lattice are such operations, if the center of coordinates is 
chosen to be one of its sites. The symmetry group of the 
antiferromagnet on the square lattice is 
9 = {D4,R T, ,R T, ). 

We will be interested in the two-value irreducible repre- 
sentations (more accurately, corepresentations, as R T i s  an 
anti-unitary operator) of the group 3 corresponding to the 
electron wave function. The formal theory of corepresenta- 
tions of crystal groups is presented in Ref. 8; however, the 
abstract exposition makes physical application difficult. In 
the following derivations we will find it useful to describe the 
derivation of the two-value representations of the group 3 
with instructions on the physical meaning of the terms used. 

The two-value representations of the group 9 are di- 
rect generalizations of the two-value irreducible representa- 
tions of the space groups, calculation of which reduces, as we 
know,'" to construction of the star { k )  of the wave vector k 
and the derivation of the two-value irreducible representa- 
tions of the symmetry group of this vector (the small 
group). The region in which the vector k is determined-the 
Brillouin zone-should be chosen so that any two basis func- 
tions corresponding to different vectors k do not transform 
identically under the action of 9. By analogy with the con- 
struction of representations of space groups we will consider 
that the two-value corepresentations of the small group of 
the vector k for the group 9 having a center of inversion are 
characterized by a two-component wave function 
p , = (u,  ,uk ). The operations R TI (i = x,y)  entering into 
the makeup of the elements of 9, aside from acting on the 
components u, , u, , change the sign ofk. Therefore, it will be 
convenient for us to combine the spinors p , and p-, in a 
four-component function (p, , p-, ) . 

Let us say that for the operators RTkthe spinor p, 
transf%rms under the action of the matrices U, . In determin- 
ing U,  we consider first the group F = {D,, 
(RT, I2,(RTy )'I; F C  9. Then we expect that the matrix 
corresponding to the operation (RT, )' in the basis ( p , ,  
p-, ) has the form 

(Here ui, is the 2 X 2 unit matrix. ) The coefficient ( - 1 ) in 
front of the transformation matrix ( 1)  is due to the fact that 
time reversal, applied twice to the spinor,zhanges its sign. 
Having solved Eq. 1, we find the matrices Ui : 

or, in more convenient form: 

O,=ia, ( C O S  (kai)   sin (ka,)  T, )  . ( 3  

Here ra,  u, (a = 1,2,3,0) are two sets of Pauli matrices. 
The matrices rcr, u, act in the spaces (p, , p-, ) and 
(u, ,u, ) respectively. 

To  understand how the new (magnetic) Brillouin zone 
is established, we note that the conditions 

A= (no),  ( 6 )  

are fulfilled, where n is a real unit vector. The relations 4-6 
indicate that the spinor A$, transforms according to the 
same representation as $, + ,; here Q = ~ ( a ,  + a, )/la12. 
We note that the vector Q and the vectors differing from it by 
a period of the crystal reciprocal lattice 2nai / /a i  1 '  are equiv- 
alent. Limiting the area of choice of k by the relationship 
Ik, / + Ik, I < ~ / a  (see the drawing), we find that the vec- 
tors k and k + Q correspond to the same Brillouin zone. 
Thus, the set of spinors p, and Ap, + is a superposition of 
wave functions of two, generally different, energy bands. In 
order to find these accurate wave functions, it is also neces- 
sary to set up the spinors $+ ,, and $- ,, , which upon trans- 
lation by a vector Q: k - k  + Q transform to themselves, 
from p, and p, + ,. The most general form of such a basis is 

with the additional conditions 

sin [a ( k f  Q )  1 =COS [a  ( k )  1, cos [ a  (k+Q) ]=sin [ a ( k ) ] .  

Also. 

Relation 8 is the analog of the Bloch theorem. 
The Hamiltonian corresponding to these two bands has 

the form 

Here a ,  ,, 10) = $ + ,,, and the summation is carried out 
over all vectors of the star in the Brillouin zone. 

Physically, such a splitting of the spectrum into two 
branches, separated by an energy gap, occurs due to a dou- 
bling of the unit cell of the normal metal upon development 
of antiferromagnetic ordering. The Brillouin zone decreases 
by a factor of two (see the figure). We note that a similar 
reorganization of the spectrum does not occur for spinless 
particles described by single-value representations, as would 
be expected. Formally, this is expressed in the fact that for 
single-value representations the analog of relation 5 does not 
exist. 
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FIG. 1. Brillouin zone of an antiferromagnet (solid line) and of a normal 
metal (dashed line) with a square crystal lattice. r, 2,  M, X, and Yare 
characteristic points. 

We now require that the matrix A have a similar form 
for all basis functions $k belonging to different vectors k of 
the star {k); that is, that it beinvariant to the transformation 
of k-space under the action of D4. We thereby identify a 
vector n with the direction of the antiferromagnetic order 
parameter, which is our approach is also invariant under D4 
and in general is a full invariant of the group 3.  

We will examine an arbitrary point k in the Brillouin 
zone. The small group of this point is determined as the oper- 
ations of the point group of symmetry s, and D,, under 
which the point k transforms either into itself, or into the 
equivalent at 2ra,  /la, I*, and also as the operations f, of D,, 
under which it transforms to a point displaced by Q. The 
operations {s, } and Cf, ) comprise the point group PC D4; S 
is the group of operations {s, }: SC P. According to Eq. (8)  
a representation of the operations f, (in the general case a 
matrix If,, ] ) is compounded with the matrix A acting in spin 
space; that is, it is a corepresentation. Therefore, a two-value 
irreducible representation of the small group of a given point 
is given by the matrices {[s, 1, V;, ]A); V], 1, [s, ] are the 
matrices of the irreducible representations of the group P, 
not involving the spin components of the system. These two- 
value irreducible representations can be decomposed in pairs 
in such a way that the matrices [s, ] are identical for each 
pair, and the matrices corresponding to the elements f, dif- 
fer by a sign. As a consequence of Eq. (8) ,  these representa- 
tions correspond to two energy bands split by a gap formed 
when the antiferromagnetic ordering emerges. The set of 
matrices [s,, ] for each pair are representations of the group 
S, and are, generally speaking, reducible. Section 4 will deal 
with the description of representations for specific points on 
the Brillouin zone boundary. As an example, results are pre- 
sented in the table for the point M. 

3. A MAGNETIC FIELD 

The two-value irreducible corepresentations of the 
group 9 at a generally situated point are two-dimensional. 
This fact, arising formally from the similarity of the repre- 
sentation matrices for operations RT, C2 in the AFM and R, 
C2 in the normal crystal with a square lattice (C2 is the rota- 
tion by 180" about the fourfold axis), is the analog of the 
well-known Kramers-Eliot theorem, according to which 
twofold degeneracy exists in a crystal with inversion symme- 
try, due to its time-reversal symmetry. In a normal crystal 
the inclusion of a magnetic field removes this degeneracy, 
destroying R T-invariance. The destruction of R T-invar- 

iance in an antiferromagnet should also lead to splitting of 
the energy levels; however, the classification of states corre- 
sponding to these levels takes place not according to spin,but 
in terms of the two-value corepresentations. 

Let the system be placed in an external magnetic field h 
or be perturbed by a ferromagnetic moment M. These cases 
are symmetrically indistinguishable; that is, they similarly 
lead to the destruction of R T-invariance: R T h  = - h, 
R T M  = - M. In the system Hamiltonian, together with 
Eq. (8)  we introduce terms a 1 ,km IfI ,k, which change sign 
upon R T-transformation, so that 

Here m(k)  is a vector in spin space which changes sign on 
R T-transformation. So, for example, in the approximation 
linear in h 

where go ( k )  is equivalent to the g-factor tensor. 
According to the definition of the Brillouin zone, the 

Hamiltonian H should be invariant to k +  k + Q, which oc- 
curs under the transform of Eq. (8) .  The condition of invar- 
iance of the Hamiltonian ( 10) means that the relation 

must be fulfilled; that is, 

[m (k) nj of (m (k) n) =- [m (k+Qj n] a+ (m (k+Q) n) , 

or, which is the same thing, 

where ml, and m, are components of m relative to n. 
As seen from Eq. ( 12), the structure ofthe Hamiltonian 

( 10) depends substantially on the position of k in the Bril- 
louin zone. For any k the g-factors g,, (k)  and g, ( k )  deter- 
mining the Zeeman splitting in the fields h I  and h, are differ- 
ent. It is especially important that g, ( k )  goes to zero at all 
points where the vectors k and k + Q are identical; that is, at 
the boundary of the Brillouin zone" (the solid line in the 
drawing). In this region, according to all the model theories, 
lie the most important electronic states. The vanishing of the 
perpendicular g-factors obviously principally affects the 
paramagnetic properties of the material, both statistical and 
EPR. The conclusions from the results formulated above in 
the weak-coupling model and a discussion of the experimen- 
tal consequences are given in Ref. 12. From the point of view 
of applications the study of the selection rules for matrix 
elements of interband transitions $ + - $ - is of significant 
interest. For operators invariant under R T-transformation 
(optical transitions, etc.) the selection rules do not differ 
from those for corresponding nonmagnetic lattices. In the 
case of operators changing their sign on R T-operations, the 
selection rules are contrary to the conditions ( 11 ) for intra- 
band matrix elements, and just on the boundary of the mag- 
netic zone transitions are allowed for vector values d perpen- 
dicular to n (or the corresponding tensor components) if 
they are odd underf;, operations. The result of this rule is 
analogous to the result of condition ( 1 1 ) . We note that un- 
der the interchange k 3 k  + Q the vector u transforms as 
u ~ 2 ( u n ) u  - u. This relation is useful in writing the selec- 
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tion rules and the conditions of interaction with external 
fields. 

We note that at several points of the Brillouin zone 
boundary the branches $ + and $ - can mix. In this case the 
division of matrix elements into intra- and inter-band loses 
meaning, and both longitudinal and perpendicular compo- 
nents of the magnetic field give an interaction term. A de- 
tailed discussion of this problem for symmetry-induced de- 
generacy is given in Sec. 4. 

In considering the case hll #O, we implicitly assume the 
presence of spin-orbital interactions. Without them we al- 
ways have a configuration with n perpendicular to h (Ref. 
13). 

We do not consider orbital effects, assuming therefore 
that in the quasi-two-dimensional system the field lies in the 
conducting plane. In the general case the dispersiong, leads 
to interferences of the orbital and Zeeman quantization.'' 
For instance, for a field perpendicular both to the plane and 
to n, for states near the X point, the Zeeman term gives not a 
splitting of the Landau level, but a shift of the center of the 
orbit. This, obviously, results from the fact (see Ref. 12 or 
13) that now a sign change in h is equivalent to a reflection of 
k about Q/2. 

4. SPECIAL POINTS OF THE BRlLLOUlN ZONE BOUNDARY 

We will examine in more detail a series of characteristic 
points of the Brillouin zone. 

At a general point Yon the Brillouin zone boundary, 
the group S contains only the identity transform, and the P 
group includes also the rotation U ;  by 180" about the X- Y 
axis (see the drawing). The corepresentations of the small 
group (a,,, + A )  correspond to two bands with wave func- 
tions $ + . A magnetic field h parallel to n, according to Eq. 
10, removes the twofold degeneracy of the spectrum, while a 
perpendicular field leaves the spectrum at the Y point two- 
fold degenerate. Expansion of the Hamiltonian ( 9 )  in the 
vicinity of the Y point according to the k-vector variation 
perpendicular (x, ) and parallel (xl l  ) to the Brillouin zone 
boundary has the form 

H=e,+ (a,xA2+~*xll)a~,.a,,.+h, (hn) 

X a~x(~a)a,,~+~~~,[hnla~.[nala,,x. (13) 

Here E ,  , a , , pi , /2 + , and y + are real coefficients. 
At the X point the physica~properties of the system are 

analogous to those examined earlier for the Y point. The 

difference lies only in the quadratic dependence of the ener- 
gy on xll. 

The point M, the corner of the magnetic Brillouin zone, 
has a richer symmetry. There, S = D, and P = D, hold (see 
the table). As is known, the group D, has four one-dimen- 
sional and one two-dimensional representations. The one- 
dimensional representations of D, are characterized by basis 
functions transforming as (6, 7 = x + y )  

The corresponding two-dimensional corepresentations, as 
shown above, split into pairs (A ,B, ) and (A,B,) . The core- 
presentations of each pair correspond to the upper and lower 
energy bands, separated by a gap. 

Special consideration is necessary for the two-dimen- 
sional representation E = { f ,  7) of the group D,. Com- 
pounded with the matrices A, it guarantees fourfold degen- 
eracy of the spectrum at the M-point, with basis functions 

where la), I/? ) are the components of the two-value repre- 
sentation. Going away from the Mpoint, the fourfold degen- 
eracy is partially lifted, splitting into two double-valued one- 
dimensional representations $ + and $ - . 

Therefore, in the case of the E representation the AFM 
gap at the Mpoint goes to zero. In analogy to the conclusions 
of Sec. 3, it can be shown that the interaction Hamiltonian 
with the magnetic field at the M point has the form 

H=Ho+~(nh)  {a++ (no) a++a-+ (na)a-) 
+iv [nh] {a++ [nu] a--a-+ [nu] a+), (14) 

where p, Y are real coefficients. We can persuade ourselves 
that for an arbitrary h-direction the spectrum of the Hamil- 
tonian ( 14) splits into two degenerate levels 

5. SPIN-ORBIT INTERACTION 

Up to now, only the exchange interaction between elec- 
tron spins and magnetic moment,s on a lattice has been ac- 
counted for, as well as the exchange interaction between the 
moments themselves leading to antiferromagnetic ordering. 
This allowed examination of spin space rotations indepen- 
dently of coordinate space rotations, which, in part, was 
manifested in the arbitrary choice of direction of the vector n 

Note: In the first column representations of the group S = D2 for the corresponding representa- 
tions split by an energy gap are enumerated (see text for explanation). 

TABLE I. Two-dimensional A , ,  A,,  B , ,  B, and four-dimensional Ecorepresentations [ 3 ] of the 
group 3 at the point M (analogs of the corresponding representations of the group P = D,) .  
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in Eq. (6)  in relation to coordinate space. Weak relativistic 
effects of spin-orbital interaction lead to linking of these two 
spaces and, generally speaking, destroy the invariance of the 
system Hamiltonian relative to the choice of n. This, in turn, 
can destroy the D, point group symmetry of the crystal. 
However, in an antiferromagnet with a square lattice these 
effects are small, since accounting for the relativistic correc- 
tions in first order does not change the classification of the 
electronic states. Such an interaction allows free rotation of 
spin space relative to coordinate space about the fourfold 
axis C. This is due to the absence of quadratic (na, ) 2  and 
(nay ) 2  terms in the expression for the anisotropic part of the 
free energy of the antiferromagnet, as well as the lack of 
connection of the electron spins with the a, and a, axes in 
first order in the spin-orbit interaction operator for the po- 
tential of a lattice with symmetry D,. 

The first order relativistic interaction fixes only the an- 
gle between the vector n and the C axis, which is equal to 90" 
or 0". The magnetic moments either lie in the basal plane of 
the crystal, as happens in La,CuO, (an easy-plane type anti- 
ferromagnet) or are aligned along the fourfold axis, as in 
La,NiO,. Taking account of higher approximations finally 
removes the unbroken degeneracy of the position of the n 
vector in coordinate space. Rotations of coordinate space 
cause rotations of spin space and the fourfold degenerate E 
representation is split up. So, for example, in the case of any 
easy axis E splits into two representations with basis func- 
tions 

(x+iy) la) ,  (x-iy)  Ifi) and (xi- iy)  la), (x-iy) la). 

Other directions of n lower the D, point group symmetry of 
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the crystal, and its magnetic group is one of the groups 
shown in Ref. 14. 

"This  obviously does not agree with the corresponding result from the 
projection-operator method (see, for example, Ref .  11) for the strong- 
repulsion model. 

ID. Vaknin et al., Phys. Rev. Lett. 58, 2802 ( 1987). 
'G. Shirane etal.,  Phys. Rev. Lett. 59, 1613 (1987).  
' Z .  Metfessel and D. Mattis, Magnitnye Poluprouodniki (Magnetic Semi- 
conductors), Mir, Moscow ( 1972). 

'E .  L. Nagaev, Physics of Magnetic Semiconductors, Mir, Moscow 
(1983).  

N .  I .  Kulikov and V .  V .  Tugushev, Usp. Fiz. Nauk 144, 643 (1984) 
[Sov. Phys.--Uspekhi 27,954 (1984) 1. 

"E. V .  Sonin, Usp. Fiz. Nauk 137,267 ( 1982) [Sov. Phys-Uspekhi 25, 
409 ( 1 9 8 2 ) ) .  

'A. A. Abrikosov, L. P. Gor'kov, and I .  E. Dzyaloshinskii, Metody Kuan- 
touoi Teorii Polya u Statisticheskoi Fizike, Moscow, Fizmatgiz ( 1962) 
[English version-Quantum Field Theoretical Methods in Statistical 
Physics, Pergamon Press, Oxford ( 1965) 1 .  
'0. V .  Kovalev, Nepriuodimye i Indutsirovannye Predstavleniya i Kopred- 
stavleniya Fedorouskikh Grupp (Irreducible and Induced Representa- 
tions and Corepresentations of Fedorovskii Groups), Nauka, Moscow 
(1988).  

'A.  F. Andreev and V .  I .  Marchenko, Usp. Fiz. Nauk 130, 39 (1980) 
[Sov. Phys.-Uspekhi 23,21 ( 1980) 1. 

"'L. D. Landau and E. M. Lifshits, Statisticheskaya Fizika, Nauka, Mos- 
cow ( 1976) [English translation-Statistical Physics, 3rd rev. ed., Per- 
gamon Press, New York ( 1980) ]. 

" B .  I .  Shraiman and E. D. Siggia, Phys. Rev. Lett. 61, 467 (1988).  
"S. A. Brazovskii et al., Pis'ma v Zh. Eksp. Teor. Fiz. 49, 557 (1989) 

[JETP Lett. 49,644 (1989) l .  
"S. V .  Vonsovskii, Magnetizm, Nauka, Moscow ( 1971 ) [English transla- 

tion-Magnetism, Keter Publ., Jerusalem ( 1973) 1.  
I4L. D. Landau and E. M. Lifshitz, Elektrodinamika Sploshnykh Sred, 

Nauka, Moscow ( 1982) [English version-Electrodynamics of Contin- 
uous Media, 3rd ed., Pergamon Press, New York ( 1980) 1.  

Translated by I .  A. Howard 

S .  A. Brazovskir and I .  A. Luk'yanchuk 11 84 


