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The problem of the nonlinear response of a cylindrical superconductor to a change in the total 
current flowing through it is solved analytically on the basis of a macroscopic description of the 
electrodynamics of the intermediate (I) state (the Andreev equations). The total current varies 
in time in a specified (generally arbitrary) way, remaining above the critical current. A nonlinear 
integral equation is derived for the time dependence of the position of the N/Iboundary. It is the 
motion of this boundary which is responsible for the nonlinearity of the response. Two types of 
electromagnetic responses of the sample are studied: the response to an abrupt change in the 
transport current and the response to small sinusoidal oscillations in this current. For the latter 
case, the frequency dependence and current dependence of two specifically nonlinear effects 
amenable to experimental test are derived and analyzed. These measurable quantities are ( 1 ) the 
amplitude of the second harmonic of the response and (2) the renormalization of the constant 
component of the voltage across the sample. 

1. INTRODUCTION 

When the superconductivity of a cylindrical sample is 
destroyed by a direct current J >  J,, where J, is the critical 
current, in the absence of an external magnetic field, the 
sample goes into a resistive state of such a nature that the 
region of the intermediate (I) state, of radius a, is covered by 
a normal-metal layer whose thickness d increases with in- 
creasing reduced current i= J/J, (Fig. 1 ). If the current 
through the sample begins to vary with the time in a specified 
way [e.g., i ( r )  = io + i- , where i- is an alternating incre- 
ment of frequency R], while remaining above the critical 
current at all times [ i ( r )  > 11, and if the intermediate state is 
able to change in structure over times ri gR- ' ,  then one 
might ask how the well-known "normal" skin effect would 
be altered in this situation by the presence of a core of radius 
a in the intermediate state. Qualitative differences are possi- 
ble by virtue of two new circumstances: the nonlinearity of 
the problem and the specific features of the response of the 
intermediate state to a change in current. 

The nonlinearity of the response [as a measure of which 
we can adopt the potential difference across the sample, as in 
the case of a conductor in its normal (N) state; more on this 
below] results from the presence of a movable N / I  bound- 
ary. The amplitude of the displacements of this boundary 
turns out to be related to the magnitude of the current 
change in a nonlinear and nonlocal way. 

Let us assume, however, that i- is of such a nature that 
the response can be treated as linear (see below for some 
estimates). It is then obvious from physical considerations 
that if the depth of the skin layer for i- in the N metal satis- 
fies 6, (a) <d  then the presence of the intermediate state 
will have essentially no effect on the impedance of the sam- 
ple. If 6, ( R )  > d, on the other hand, then the ordinary skin 
effect changes in such a way that the i- dissipation averaged 
over the period of the current oscillation (in contrast with 
the io dissipation) is zero, as we showed in Ref. 2. As a result, 
in the case of a linear response the dynamic resistance of the 
sample will be the same as that of a hollow cylinder of an N 
metal with a wall thickness d and an outside diameter equal 
to the diameter of the sample. In particular, the onset of a 

plateau along the i scale which is characteristic of the dy- 
namic resistance Rd (i,R) occurs when the relation 
6, ( R )  -d holds. It was suggested in this connection in Ref. 
2 that the frequency dispersion Rd (i)  be measured for a de- 
termination of d which would be independent of the struc- 
ture of the intermediate state. 

The description of the intermediate state which we used 
in the present paper is based on an analysis of the time-de- 
pendent equations for the macroscopic dynamics of the in- 
termediate state which were proposed by Andreev" (Ref. 
3).  Our paper is organized in the following way. In Sec. 2 we 
discuss the original system of equations in the Iand Nphases 
and the boundary conditions on these equations. In Sec. 3 we 
discuss the distinctive electrodynamics of the I state for dis- 
placements of the N/Iboundary which are not small. In Sec. 
4 we derive a general analytic solution for the problem of the 
nonlinear response of a superconducting cylinder in the in- 
termediate state to a current change, in terms of the solu- 
tions of a nonlinear integral equation (found in the same 
section of the paper) for the displacements of the N / I  
boundary. In Sec. 5 we discuss the linear response of an N /I 
boundary to small oscillations or to a jump in the transport 
current. In the last Sec. 6 we use second-order perturbation 
theory to study nonlinear electromagnetic responses which 
are amenable to experimental observatinn. 

2. STATEMENTOFTHE PROBLEM 

A constant current io > 1 flows up to the time T = 0 
through a cylindrical sample of radius Ro with a normal- 
state conductivity a. The radius of the intermediate state 
which corresponds to this current is a,. At T > 0, the total 
current through the sample then varies in accordance with 
the specified law i ( r )  > 1, with the result that the radius of 
the intermediate state (i.e., the position of the N / I  bound- 
ary) varies in accordance with some law a ( ~ )  which we do 
not know at this point. 

We are to find that electric field at the surface of the 
sample, e ( r ) ,  in terms of which we can express the measura- 
ble alternating voltage across the sample, %' (T ) ,  by means of 
the formula1 
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where Y e  is the so-called external inductance of the con- 
ductor' (an inductance which does not depend on the state 
of the conductor), L is the length of the conductor, and c is 
the velocity of light. 

In our time-dependent problem, only the axial compo- 
nents of the electric field e and of the current density j, and 
also the azimuthal projections of the magnetic field h and the 
induction b, are nonzero (and depend on only the distancep 
to the axis of the sample and the time T), by virtue of the 
geometry of the problem and our use of a macroscopic de- 
scription of the intermediate state (i.e., a description aver- 
aged over the N-S layers). 

At this point it is convenient to switch to dimensionless 
quantities, by expressing all distances in units ofR,, all times 
in units of T = 4roR G/s2, the magnetic field in units of the 
critical field Hc , and the electric field in units of Ec = cHc / 
2ruR,. [In this case 2, in ( 1) is expressed in units of 4Ro.] 

It can then be shown that in the I phase (0 < p  < a )  the 
system of Andreev equations for the intermediate state [see 
Eq. ( 15) in Ref. 31 takes the form (x, is the concentration of 
the N phase) 

It is easy to see that the problem of solving system (2)  
reduces to that of solving a single linear equation for the 
field: 

In the N phase (a  <p < 1) the quasisteady Maxwell's equa- 
tions als; reduce to single equation for the field h, 

dh 3% I ah h -=-+---- 
dz dp2 p dp p2 (4)  

and the quantity e is related to h by 

It can be shown that at the N / I  boundary [p = a ( r ) ]  the 
boundary conditions are of the usual form, despite the mo- 
tion of this boundary: 

eI ( a )  =eN ( a ) ,  hN ( a )  =h,(a) = I .  ( 6 )  

Noting that we have e, (a )  = a/2 by virtue of (2),  we find 
from (6) and (2)  that the following condition must also 
hold at the N / I  boundary: 

FIG. 1 .  Axial section of a current-carrying cylindrical superconductor in 
its intermediate ( I )  state. Here N is a normal-metal shell, and a is the 
radius of the intermediate state. 

FIG. 2. Sloping straight lines-characteristics of Eq. ( 3 )  in the coordi- 
nates ( p 2 , ~ ) ;  wavy line-a line (which intersects each characteristic only 
once) on which boundary conditions can be specified. 

In Sec. 4 we will show how this condition can be utilized 
to derive a nonlinear integral equation for a ( r )  if i ( r )  is 
known. 

3. ELECTRODYNAMICS OF THE /PHASE 

The electric field in the I phase e(p,r), satisfies a linear 
equation of the hyperbolic type, (3),  which has wave solu- 
tions (which converge on the center) of the type 
e a exp(ip), where 

and w and x are related by the dispersion relation w = x2. 
The phase velocity at which these waves, converging on the 
center (Sp < 0) ,  propagate can be found from the condition 
that p remain constant upon small deviations ofp and T. The 
result is uf=6p/Sr = - l/p. If the motion of the interface, 
a ( r ) ,  is given, then to construct solutions of Eq. (3) we 
should use its characteristics, the equation for which is dp/ 
d r  = - l/p. We find 

where T, and p ,  are integration constants. The solution of 
(3)  which we are seeking and which satisfies boundary con- 
dition (6),  e(p = a ( r )  ) = [2a( r )  ] -', then takes the form 

where T, = r1 ( p , ~ )  is found from Eq. (9) withp, = a( r , ) .  
As we know, the boundary conditions on a partial dif- 

ferential equation can be specified on only those lines in the 
( p , ~ )  space which intersect each of characteristics (9)  of Eq. 
(3)  only once. 

Figure 2 shows one such possible line in terms of the 
coordinates p 2 , ~ ,  which render characteristics (9)  straight 
lines (the sloping straight lines). It  then follows from Fig. 2 
that for a > 0 the magnitude of the velocity is arbitrary, but 
the velocity of the backward motion (a  < 0) cannot be arbi- 
trary. It is bounded by the requirement 

The physical meaning of this condition can be seen from 
an analysis for the concentration of the normal phase, 
x, ( p , ~ )  [see (2) and ( 10) ] : 

In the I phase we must have 0 < x, < 1. Let us now ex- 
amine the possibility that an Nphase will appear inside the1 
phase (i.e., the case x, > 1). For this purpose we calculate 
the derivative ax, /ap: 
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Here, as in ( l o ) ,  we have a = a ( r , )  and al=da/dr,. From 
( 13) we find a result which we have already mentioned: If 
a' > 0, then the quantity x, in the Iphase (x, < 1 ) increases 
monotonically with increasing p, reaching x, = 1 at 
p = a ( r ) .  If a' < 0, on the other hand, then we have 

(dx,lap),=,,,,=[a(l+aci)l-' 
at the boundary, so that the I phase is always stable 
[x, (p - 0)  < 1] near the boundary if the condition 
1 + aa' > 0 holds. The latter condition is obviously equiva- 
lent to condition ( 1 1 ) . 

Let us now calculate the dissipation of the energy of the 
alternating current, QI, in the I state [0 < p  < a  ( T )  I .  Since 
we have j, = cH, /4rr  in dimensional units, we have 

a(%)  a(r1  

where e(p,r) satisfies Eq. (3). Integrating (14) by parts, 
and using (3),  we easily find 

It follows from ( 15) that if a ( r )  is a periodic function of the 
time then by taking an average of the dynamic component of 
the dissipation, Q, [the last two terms in ( 15) 1, we find 
zero. This result corresponds to the possibility, noted above, 
of the propagation of undamped waves e(p,r) in the inter- 
mediate state. The absence of an average dynamic compo- 
nent of the dissipation in the I phase (in contrast with the 
situation in the N phase) can also be understood on the basis 
of the following comment: In the case of an ohmic conduc- 
tor, both jN and EN in the expression Q a jE oscillate, and 
they do so in phase, while in the I phase j, is independent of 
the time, and only E, oscillates. As a result we have g, 
a j,E, = 0. We thus have 

- 
Q, = cHcEc/2 = (cH, )'/8wR. 

We also note that the so-called internal inductance per 
unit length of a cylindrical conductor,' defined by 

a 

for a cylinder of radius a in the intermediate state, is greater 
than that for the same conductor in the N state: Even in the 
case of a constant current we would have 2: = + Lfy, 
where Lfy = c - ~ .  An important difference between 9: and 
Lfy  arises in the case of an alternating current. While 2" 
decreases with increasing frequency of the current, as a re- 
sult of the skin effect, the quantity Lff remains essentially 
constant, because of the undamped penetration of the mag- 
netic induction b = x, into theIphase during oscillations of 
the N / I  boundary, as mentioned above. 

4. NONLINEAR RESPONSE OFTHE N/IBOUNDARY TO 
CURRENT OSCILLATIONS 

It was shown in Sec. 3 that the electrodynamics of the I 
phase is completely determined once we know the law of 

motion of the N / I  boundary, a ( r ) .  In turn, the function 
a ( r )  must be determined through a self-consistent solution 
(with allowance for the motion of the boundary) of the qua- 
sisteady Maxwell's equations in the N phase for h ( p , ~ ) ,  (4),  
on the interval 1 <p<a( r ) ,  with the boundary conditions 

for T > 0 and with the "static" initial condition ( T  = 0 )  

ho (p) ='l2(pla0+a~lp) . (17) 

The "driving force" h (7) is related to the alternating incre- 
ment in the transport current through the sample by the 
total-current law.' 

The additional boundary condition in (7) will actually 
be used to determine a ( r ) .  The unknowns are h ( p , ~ )  and 
a ( r ) ,  in terms of which we can express the physical response 
e(p = 1,r) with the help of (5) .  

We wish to emphasize that despite the overall linearity 
of Eq. (4) the problem of determining h ( p , ~ )  in the face of 
finite oscillations of the N /I boundary is a nonlinear prob- 
lem because of the presence of a movable boundary. A fairly 
general method for solving such problems has been present- 
ed by Grinberg.' Borrowing some ideas from his study, we 
will first derive a closed nonlinear integral equation for the 
coordinate of the boundary, a ( r ) .  We will then write an 
expression for h(p,r) in terms of the instantaneous [ a ( r ) -  
dependent] eigenfunctions of boundary-value problem (4),  
(16). 

It is convenient to first rewrite Eq. (4) ,  introducing a 
source Q(p,r) in order to reformulate the entire problem 
with a homogeneous boundary condition at p = 1. Since the 
introduction of sources is ambiguous [and the equation for 
a ( r )  must not depend on the particular way in which the 
sources are introduced], we will not be more specific about 
the nature of the sources at this point. 

We thus replace the function h by means of the relation 
h -u  + w, introducing the new function v(p,r), with homo- 
geneous boundary conditions, 

v (p=I, r) =O, (dv/dp),=,(,)=O, (18) 

and with the auxiliary condition 

v[p=a(r),  r]=1-w[p=a(r), r ] .  (19) 

The function w(p,r) must satisfy the two conditions 

w(p=l, 7) =ha (T), (aw~ap) ,=.,,, =o (20) 

and is otherwise arbitrary. Introducing the notation 

we can then write an equation for u ( ~ , T )  in the form 

Ev+Q (p, 7) =dvldr, (22) 

where, as is easily seen, we have 

Q (P, r) = L w - ~ w / ~ T .  (23) 

We turn now to a study of Eq. (22) with the three 
boundary conditions in (18) and (19). We denote by5 
p, (p) a function of the continuous parameter A of such a 
nature that we have 
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and 

A 

It can be shown that for L as in ( 2 1 )  the explicit expression 
for this function is 

'PA ( p )  =I1 (A") KI (il"p) -KI (A") It (Asp) ,  ( 2 6 )  

where I, and K, are modified Bessel  function^.^ 
We now multiply Eq. ( 2 2 )  by pp,  ( p )  and integrate it 

overp on the interval [ a ( r ) ,  1 1. Introducing 
I 

and using the (easily verified) identity 
1 

and the relation 
1 

we find the following equations for @, using ( 2 4 ) ,  ( 18), and 

d@/at-A@=Q (A'", 7 )  -I- D (A", T )  . ( 3 0 )  

Here Q and D  are known [by virtue of relations ( 2 3 )  and 
( 19) 1 functions: 

1 

D(h", 7 )  = [ p v  ( p ,  T) (dcp~ldp-bcp*)] Io-.(,,. 

It is convenient to write a solution of Eq. ( 3 0 )  in the form 

e - " ~ ,  (r) =mi ( 0 )  + J (Q+D) e-*" d ~ ' .  

Setting T -  + w here, we find the nonlinear integrodifferen- 
tial equation for a(;.) which we have been seeking: 

where Q and D  are given by ( 3  1 ) and ( 3 2 ) ,  and @A ( 0 )  is 
given by ( 2 7 )  with T = 0.  

Before analyzing Eq. ( 3 3 ) ,  we will derive one more 
expression for the unknown function v ( p , r ) ,  assuming for 
the time being that the function a ( r )  is known. For this 
purpose we make the following substitution in expression 
( 2 6 )  for p, ( p ) :  

I t  can then be shown that p, ( p )  becomes 

so that p, ( p  = a(?) ) is an "instantaneous" eigenfunction 
of the operator 2' in ( 2  1 ) on the interval [a ( T ) ,  1 ] with the 
boundary conditions 

if the a ,  are the roots of the equation 

Here J1  and Y,  are the Bessel functions of the first and sec- 
ond kinds, respectively. Since the functions p, ( p )  form a 
complete orthogonal set, expression ( 2 7 )  for @, ( T ) ,  with 
substitution (341, can be thought of a series expansion of 
v (p , r )  in this set. If 

then v, ( T )  and the normalization constant A ,  ( T )  are deter- 
mined by 

Cm 1 

The solution of Eq. ( 2 2 )  which we have been seeking is 
therefore 

m 

where p, and A ,  are given by ( 3 5 )  and ( 3 9 ) ,  and 
t 

'Dk ( r )  -e'~'[ h ( 0 )  + j % ( T I )  e-'lT' d7.1 . (41 
0 

Here xk (7)  --Qk (7 )  + Dk ( T ) ,  and Q, and D, are found 
from ( 3  1 )  and ( 3 2 )  with the help of replacement ( 3 4 ) .  

If we are interested in only the steady state ( T -  W )  

then the expression for @, ( 7 )  simplifies, since the term 
exp(A, T ) @ ,  ( O ) ,  which describes a transient process, disap- 
pears by virtue of the relation A, = - [a ,  a  ( T )  ] < 0. 

Expressions ( 4 0 )  and ( 4  1 ), along with expressions 
( 3 9 )  and ( 3 5 ) ,  thus in principle give us an analytic solution 
of our problem: From ( 3 3 )  we can find a ( r )  as a function of 
the external driving force h,(r) ,  and we can then find the 
response from ( 4 0 ) .  

Examining Eq. (33 ) for a  ( T )  , we note that we can of 
course put it in a form which does not depend on the particu- 
lar nature of the sources in ( 2 3 ) .  Since it is a somewhat 
complicated matter to prove this assertion in the general 
case, we will point out that in order to derive the final result 
it is more convenient to make this transition by first adding 
to ( 3 2 )  a term vp(dp  /dp),=, = 0 ,  which was omitted in 
the derivation of this expression, and then, after making the 
substitution v  = h - w, setting w = 0  [because with w = 0 
this term is no longer zero, since we have h ( p  = 1 ) = 01. It is 
then convenient to rewrite expression ( 3 3 )  in the form 

I m 

1 h ( p , 0 ) p A ( p ) p d p =  j I D ~ ( ~ ) + D ~ ( ~ ) I ~ - ~ ~ ~ T ,  
(10 o ( 4 2 )  

Di ( 7 )  ~ h o  (T)+P (d~p*/dp)p-acz)r D z ( T )  = - ~ P ( P A ( P )  Ip=a(<). 

(43) 
4dopting static solution ( 17) as an initial condition, we 

have L h  (p,O) = 0. Using identity ( 2 8 )  and the replacement 
u -+ h  (p,O), we can then show that we have 

j h ( p .  O ) c p ~ ( p ) p  @=--Dl ( O ) / i  ( 4 4 )  

0 0  
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Now (33 ) takes the form 
w 

A fuither simplification results from the use of the time de- 
rivative of Eq. (24) at p = a ( r ) .  We then finally find the 
following nonlinear integrodifferential equation for a ( r )  
(Ref. 2): 

m 

- cpA [a ( t )  ] e-" dt=F (A), 

F (A) = - 1 ho ('6) e-&? dt, (47) 
0 

where F ( A )  is the Laplace transform of the known function 
ho(r),  and g , ~  is given by (26) withp = a ( r ) .  

5. LINEAR RESPONSE OFTHE N/IBOUNDARY 

From Eq. (46) we easily find explicit expressions for 
the displacements of the N /I boundary in response to small 
oscillations or a jump in the transport current. Setting 
a ( r )  =ao  + a , ( r ) ,  where a14a0,  in (46), we find a linear 
equation for a, : 

The problem of determining a ,  (7) thus reduces to one of 
taking inverse Laplace transforms. 

We first consider steady-state current oscillations 
i ( r )  = i, + i, exp( - iflr). In this case we have 
F(A) = ifli,/(ifl+ A )  and 

It can be shown that all the zeros of the function qA (a,) in 
(49) are on the negative part of the real axis, at points 
A, r < < 0, where 6, are simple zeros of the function 

cpr(a)=Ji (Ca) Yt (%) -1, (5) Yt (Ca). 
Accordingly, since we are interested in the asymptotic 

behavior of a, as r+ oo (the steady state), it is sufficient to 
consider only the contribution from the pole A =  - ifl to 
the integral in (49). We thus find 

a, ( t )  =-i,a,e-io'lcp-iQ (a,). (50) 

Let us analyze the dynamics of the N /I boundary in the 
limits of high and low frequencies, which correspond to 
strong and weak skin effects in a normal cylinder.' In the 
low-frequency limit ( f l  ( 1 ), we will use the asymptotic ex- 
pressions for the modified Bessel functions at small values of 
their argument in evaluating g, - , (a,). Retaining the com- 
ponent which is linear in frequency, we find 

The first term describes the adiabatic tracking of the instan- 
taneous value of the current by the N / I  boundary. The sec- 
ond is a nonadiabatic correction for the delay of the oscilla- 
tions of the magnetic field near the N / I  boundary with 
respect to the current oscillations. 

At high frequencies the relationship between the thick- 
ness of the layer of normal metal covering the region of inter- 
mediate state, on the one hand, and the thickness of the skin 
layer in the normal cylinder, on the other, is important. If the 
N /Iboundary is outside the skin layer ( 1 - a,) fl-'I2), the 
amplitude of its oscillations is exponentially small: 

In the opposite limit, of a thin N layer (1 - ao(fl-"2( I ) ,  
we find 

a, ( t )  =-he -ior[l+f18i!2(l-ao)al/(l-a~), (53 

which is the same as the result in the limit a,+ 1 in (51), 
which describes a nearly adiabatic situation. The reason for 
this agreement is that in each case the thickness of the skin 
layer is significantly greater than that of the normal layer; 
i.e., the magnetic field near the N / I  boundary differs only 
slightly from the field at the surface. 

It can be shown that the condition for the applicability 
of the linear-response expressions in (50)-(53) is the satis- 
faction of the inequalities a ,  (a, for a, 5 1 and a, ( 1 - a, for 
a,= 1. The latter inequality holds if i, ( ( 1 - a,)*. 

By analyzing the linear response of the N /Iboundary to 
a jump in the current we can determine both the nature and 
the duration of the transients which arise in the system after 
an abrupt change in the transport current. If the current 
changes abruptly by an amount i, (i, at the time r = 0, the 
displacement of the N/Iboundary can be written in the form 

OD 

where& are the roots of the function q, (a,). The duration 
of the transients is thus on the order of IA, I -' and is the time 
scale for the diffusion of the magnetic field over the thickness 
of the N layer. 

An explicit expression for a ,  (7) can be found when the 
N layer is thin ( 1 - a, < 1 ), and the curvature of the layer is 
inconsequential. In this case we have 

Substitution of these expressions into (54) yields 
0. 

where 8,(9,x) is the theta function.' 
The series in (56) converges poorly at small values 

r( (1 - To find an asymptotic expression for a ,  (7) to 
describe the initial stage of the transients, we make use of a 
known formula from the theory of the theta functions7: 

8,(6/xi, 11%) = K ' ~  exp (nfi2/x) 03(6, x) .  (57) 

Retaining the first two terms in the series expansion of the 
function 8,(9/xi,l /x),  we find the following result for 
r( (1 - a0l2: 

a, ( t )  =-2ii (nt)-Ih exp[- ( l -a , )2/4~l .  (58) 
Expression (58) also holds when the change in the current 
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occurs over a finite time ( to) .  In this case, the range of appli- 
cability of this expression is limited by the inequalities 
t,<r< (1 - a0l2. 

We might add that in the case of rapid changes in the 
current the condition for stability of the motion of the N / I  
boundary [condition ( 1 1 ) ] may be violated. In this sense, 
the case of a thin N layer (in which the current J, is close to 
the critical value) is a dangerous one. Analysis shows that 
the motion of the N / I  boundary will definitely be stable un- 
der the inequality i, < (1 - which is more stringent 
than the condition for the applicability of the linear re- 
sponse, i, < ( 1 - a,)2. 

6. NONLINEAR ELECTROMAGNETIC RESPONSE OF A 
CYLINDER IN THE INTERMEDIATE STATE TO A CHANGE IN 
CURRENT 

As applications of the approach developed above for 
describing the dynamics of the N / I  boundary, we will dis- 
cuss in this section of the paper two problems involving the 
nonlinear electromagnetic response of a cylinder in the inter- 
mediate state: ( 1 ) the response to small-amplitude sinusoi- 
dal oscillations of the current; (2)  the response to a slight 
jump in the transport current. 

Calculating the response of a given order requires a sys- 
tematic calculation of the responses of lower orders, as we 
know. We will accordingly restrict the discussion to the re- 
sponse of second order, first analyzing the linear response, 
although the linear response (in contrast with the subse- 
quent responses) does not involve the dynamics of the N / I  
boundary. 

Let us examine the case in which the current which is 
flowing, i ( r ) ,  contains both a direct component i, and a 
small alternating component 

i ,  ( 7 )  =it  exp (-i9.t) ( i i K i o ) .  
The equation for the alternating component of the magnetic 
field in the N phase (h, a i, ) has the form of diffusion equa- 
tion (4)  with the boundary conditions 

h, ( I ,  7 )  = i l e c i n r ,  hi (ao,  7) =O. 

This situation corresponds to the problem of the skin effect 
in a hollow cylinder with an inner radius a, (Ref. 2 ) .  The 
solution of the problem is expressed in terms of modified 
Bessel functions: 

hi ( p ,  7 )  =ile-"7 K l  (xu,)  I ,  ( x p )  
-11 (xao)Ki ( x p )  1 1 9 - i n  (a , )  , (59) 

where x = ( - iR)'I2. The dynamic impedance per unit 
length of the cylinder, normalized to the resistance of a nor- 
mal cylinder, is 

Z=-iQ9e/4L+'/z  { I + x [ K , ( x a , )  I,' ( x )  
- I , ( x a o )  K i l ( x )  119-ia(ao)). (60) 

In the limit of a weak skin effect ( R  & 1 ) we have 

As a,+l, the real part of the impedance increases without 
bound, while the contribution of the internal inductance to 
the imaginary part of Z tends toward zero along with the 
volume of the N layer. 

In the high-frequency case ( R  > 1 ) , two limiting situa- 
tions are possible. If the skin thickness is small in compari- 
son with the thickness of the Nregion (R-'I2 < 1 - a,), we 

have the familiar situation of a strong skin effect, and the 
expression for the impedance is that given in Ref. 1. In the 
opposite limit, the length scale of the variation in the mag- 
netic field due to the skin effect is far greater than the thick- 
ness of the N layer, so we go back to expression (61) with 
a , z  1. 

We turn now to a calculation of the second-order re- 
sponse. The magnetic field h2(p,r), which is proportional to 
i:, satisfies Eq. (4) .  A nontrivial boundary condition (at 
p =a,) can be found by expanding the first of equations 
( 16) in the small amplitude of the alternating current, i,. 
The result is h2(a,,r) = a: ( r) /2ai .  The second boundary 
condition is the trivial condition h,( 1 , ~ )  = 0. It follows 
from the formulation of the problem of the second-order 
response that the field h2(p,r) can be written as the sum of 
constant and alternating components: 

hz ( p ,  7 )  =7i2 ( p )  + R e [ h 2 ( p )  e-2'"'l. 
A boundary-value problem can be formulated for each of the 
components. We omit the calculations and proceed immedi- 
ately to the results. For the amplitude of the alternating 
component of the magnetic field we have 

h, ( p )  = ( i i 2 / 4 )  [ K ,  (2"'xp) 1% ( 2 % ~ )  -I ,  (2'hxp) K ,  (2Ihx) ] / 

From (5)  and (62) we find an expression for the second 
harmonic of the electric field at the surface of the cylinder: 

At low frequencies ( R  < 1 ), this expression has the asympto- 
tic form 

Analysis of e, (p,r) shows that the amplitude of the alternat- 
ing component of the electric field reaches a maximum at 
p = a,, and it decreases in the direction toward the surface of 
the cylinder because of the skin effect. In the high-frequency 
case (R, 1 ), under the condition R ( 1 - a,)'> 1, the quan- 
tity e,( 1,r) thus turns out to be exponentially small: 

e,( 1 , ~ )  cc e x p [ -  (2'"+1) 52'" (1-ao)  1. 
If, on the other hand, the condition a( 1 - a,)'& 1 

holds at high frequencies, we find 

For the problem with a constant component of the mag- 
netic field, the equation for L2@) is the same as (4)  with 
ax2/d, = 0. The nontrivial boundary condition ( a tp  = a,) 
is written in the form 

E2 ( a o )  =ii2/41rp-,Q (ao) 1 ' ,  
while at the surface of the cylinder we have h2( 1 ) = 0. The 
solution of this problem allows us to renormalize the con- 
stant electric field at the surface of the cylinder: 

Let us examine the specific frequency dependence of 
- 
e, ( 1 ). At R & 1, it takes the form of a correction which is 
quadratic in the frequency: 
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+ ( a )  I }  - In the case of a thin N layer, this increment can be expressed 
e 2 ( l ) =  -- 

( I -ao2)  48 in terms of the function 0,: 
(67) 

The expression in square brackets in (67) is a monotonically 
decreasing function of a,. An increase in the frequency re- 
sults in a sharp decrease in Z2( 1 ) at R - ( 1 - a,) -', while at 
frequencies R ) ( 1 - a,) -' the renormalization becomes 
exponentially small: 

a e x p [ - ( 2 8 ) " ( 1 - a , ) ] .  
As the frequency is increased, one can work from the sharp 
decrease in both Z2 ( 1 ) and the amplitude of the second har- 
monic, e, ( l , ~ ) ,  to experimentally determine the thickness of 
the normal layer covering the region of the intermediate 
state. 

We turn now to the last question, of the electromagnetic 
response of this system to a jump in the current: 

i ( T )  =io+itO ( z )  , i lKio.  
The increment in the magnetic field which is linear in i, satis- 
fies Eq. (4)  with the boundary conditions 

hi I i t  ( z )  ht (a,,  z )  =O 
and the initial condition h, ( p , ~  = 0) = 0. It is a straightfor- 
ward matter to derive a solution h, (p,r) by means of La- 
place time transforms: 

r + t m  

The singularities of the integrand in (68) are poles at R = 0 
and A = A,, where R, are the roots of the function p, (a,), 
A, < 0. The contribution from the R = 0 pole gives us the 
limiting value h, (p, oo ), which is reached at the end of the 
transients. The duration of the transients is on the order of 
~R,~-l .InthecaseofathinN layer (1 - aO( l )  wecanuse 
the properties of the theta functions and write h, (p,r) as a 
series which converges well under the condition 74 \A ,  1 - I .  

We see from this series that the transients constitute a diffu- 
sion of the magnetic field from the surface of the cylinder 
into the interior of the N layer. 

From (5) and (68) we find the increment in the electric 
field which is linear in i,: 

x + i m  

The experimental electric field at the surface of a cylin- 
der under the condition ~4 ( 1 - a0l2 has a square-root sin- 
gularity, e, ( 1,r) = i1/2(m-) 'I2, since early in the process 
the current i, is concentrated in a narrow layer of thickness 
-r1I2 near the surface of the cylinder. Under the condition 
r) (1 - aO)', the electric field e , ( l , r )  differs from its 
steady-state value by an exponentially small amount. 

We note in conclusion that an analysis of the quadratic 
increment in the magnetic field shows that the duration of 
the transients is the same as that for the linear increment. 

We are indebted to A. F. Andreev for a useful discus- 
sion of these results. 

"This macroscopic description of the intermediate state, in which thermo- 
dynamic considerations are not invoked, makes no distinction between 
possible microscopic realizations of the structure of the intermediate 
state: a London (static) structure, a Gorter (dynamic) structure, or 
structures of the more general type found by A n d r e e ~ . ~  
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