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Normal electron-phonon and electron-electron collisions, if they occur considerably less 
frequently than electron-impurity scattering, have a qualitative effect on the mechanisms for 
momentum transfer from electrons to the surface of a metal. Under certain conditions, they give 
rise to a minimum on the temperature dependence of the electrical resistivity. The nature of these 
mechanisms depends substantially on the relation between the electron-impurity mean free path 
1, and the sample thickness d. In a thick sample (I, < d ) ,  a high degree of isotropy of the Fermi 
surface and of electron-impurity scattering will give rise to a minimum on the temperature 
dependence of the resistivity. In a thin wire with a cross section of arbitrary shape, this minimum 
is possible only if electron-phonon scattering outweighs electron-electron scattering. In a thin 
plate, such a minimum is not possible. All the expressions derived here differ substantially from 
previous theoretical results both in order of magnitude and in terms of the dependence on the 
kinetic parameters of the problem. The new results provide a qualitative explanation of the 
minimum in the resistivity of potassium. 

1. INTRODUCTION 

The observation of a minimum on the temperature de- 
pendence of the electrical resistivity of potassium' has re- 
cently heightened interest in a hydrodynamic mechanism 
for the electrical conductivity of metals.'," well-developed 
hydrodynamic situation is realized under the inequalities 

Here d is the thickness of the sample, I, is the mean free path 
with respect to normal electron-phonon or electron-electron 
collisions, and I, is the mean free path with respect to bulk 
collisions which do not conserve quasimomentum (umklapp 
processes or scattering by impurities). 

In the temperature interval defined by the inequalities 
( I ) ,  the conductivity has an inverse temperature depend- 
ence, du/dT> 0. This result has a simple physical meaning. 
An electron subjected to frequent normal collisions and 
moving in the manner of a Brownian particle traverses a 
distance -d '/I, before it collides with a boundary. Accord- 
ing to (1) this distance is small in comparison with the 
length I, , .  The loss of resultant momentum is thus deter- 
mined by surface scattering, and the conductivity 0 - d  '/Ilv, 
along with the frequency of N-processes increases with in- 
creasing temperature until umklapp processes impose the 
decrease in a (  T) which is typical of metals. As the tempera- 
ture is lowered, and the relationship I, =.d becomes satis- 
fied, the derivative du/dT also changes sign. This Knudsen 
minimum, well known in the kinetic theory of gases, stems 
from the circumstance that "grazing" electrons, moving at 
small angles from the axis of the sample, are important in the 
conductivity of thin samples: Normal collisions (or any 
collisions) remove electrons from the group of grazing elec- 
trons and thus promote a removal of momentum to the 
boundary. 

The hydrodynamic mechanism was first observed for a 
phonon gas by Mezhov-Deglin4 in a study of heat transfer in 
perfect 4He single crystals ( a  theory for hydrodynamic heat 
transfer in insulators has been derived by Sussman and Thel- 
lung5 and Gurzhi6). Mezhov-Deglin should also be credited 

with a calculation on and an experimental observation of a 
Knudsen minimum in a phonon gas.' 

In metals, it is considerably more difficult than in insu- 
lators to satisfy the basic condition for a fully developed hy- 
drodynamic situation, namely, the condition 1, 91,. In oth- 
er words, N-processes must outweigh collisions involving a 
loss of quasimomentum. There are two reasons. First, the 
large Fermi surface of most uncompensated metals means 
that the probability for umklapp processes in electron- 
phonon collisions remains substantial down to extremely 
low temperatures.' ( In  compensated metals, the general car- 
rier drift is not accompanied by an electric current, so hydro- 
dynamic effects are possible during heat t r a n ~ f e r . ~ )  Second, 
electrons are scattered much more intensely by impurities 
than are the long-wave phonons which are important at low 
temperatures. Specifically because of these factors, it was 
not until just recently that an exponential temperature de- 
pendence was observed for the conductivity of a metal, and 
then only as a small increment in the residual resistivity."'.' ' 
On the other hand, in metals one can observe some extreme- 
ly subtle features in relaxation mechanisms which lead to 
small effects in the temperature dependence. This would not 
be possible in insulators, against the background of the 
strong temperature dependence of the number of phonons. 
The temperature minimum which was observed in Ref. 1 is 
smaller by a factor of about 10"han the corresponding hy- 
drodynamic effects whch have been observed in the thermal 
conductivity of insulators by Mezhov-Deglin. 

An inverse temperature dependence of the resistivity of 
potassium' was observed at temperatures T= 1 K and in a 
region of kinetic parameters completely different from ( 1 ) 
1, $1, ,d. Here I, is the mean free path with respect to colli- 
sions with impurities; under the experimental conditions, 
these collisions are the primary mechanism for momentum 
relaxation in the interior of a sample. Our purpose in the 
present paper is to determine the role played by normal colli- 
sions in the mechanisms for momentum transfer from elec- 
trons to the boundaries of a sample under conditions such 
that electron-impurity scattering dominates (I, <I, ). The 
nature of these mechanisms and their contributions to the 
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resistivity turn out to be qualitatively different in "thick" 
samples (I, g d )  and "thin" samples (I, B d ) ;  furthermore, 
they depend on the nature of the N processes (electron- 
phonon or electron-electron collisions). Normal collisions, 
even if improbable, will give rise to an inverse temperature 
dependence of the resistivity under certain conditions. We 
believe that it is time for a study in this direction, since the 
theoretical papersk'-" which have appeared in the past four 
years following the observation of a minimum on the tem- 
perature dependence of the resistivity of potassium have 
been based on assumptions whose validity is difficult to dem- 
onstrate (more on this below). In  any case, our analysis, 
which is based on a systematic consideration of normal colli- 
sions by perturbation theory, leads to results which are very 
different from those of these other papers in all cases. 

Clearly pertinent here is Black's numerical calcula- 
tion," by the Monte Carlo method, of the conductivity of a 
wire with normal electron-electron collisions and scattering 
by impurities. Black showed in particular that a slight in- 
verse temperature dependence would be retained outside the 
scope of the hydrodynamic approach under certain condi- 
tions. Unfortunately, the numerical data reported in Ref. 17 
do not span the region corresponding to the experiments of 
Ref. 1 or the limiting cases which we have studied, in which 
qualitatively new mechanisms for the effect of normal colli- 
sions are manifested. 

2. PERTURBATION THEORY 

If electron-impurity collisions are considerably more 
frequent than electron-phonon and electron-electron colli- 
sions, the contribution of the latter can be found by perturba- 
tion theory. We begin by writing a kinetic equation for the 
nonequilibrium increment - in the electron distri- 
bution function: 

h 

where n = vlvj is a unit vector along the velocity, I is an 
operator representing electron-phonon and electron-elec- 
tron collisions (after multiplication by u p '  and an integra- 
tion of the enegy), andA,(&) is the Fermi dist~ibution. 

The increment of first order in the term Ix in the cur- 
rent, averaged over the cross section of the sample, can be 
written as Sj = ESa, where 

h 

Here Ipp, is the kernel of collision operator I, n, = En/E, s' 
is the path length traversed by an electron with p' from the 
surface to the point of the collision described by the operator 
h 

I, S is the path traversed by an electron with a momentum p 
from the point of the collision to the surface (s and 3. depend 
on the momentum of the electron and on the position of the 
collision point in the cross section of the sample), d Z  is an 
area element of the cross section, and dSp is an area element 
of the Fermi surface. We are assuming that the reflection 
from the surface of the sample is diffuse: x = 0 for s = 0. 

If the sample is a plate, the quantity Kpp, can easily be 

calculated completely: 

sh(t-t') 
K,,,=K,+K,, K,=exp(- [ t l -  1 t' 1 )  t-t' ' 

where t = d /I, n,, 2d is the thickness of the plate, and the z 
axis runs perpendicular to the surface of the plate. 

In  a macroscopically homogeneous bulk sample, the 
additional incorporation of any scattering processes leads to 
an increase in the resistivity. This is a direct consequence of 
the variational principle (or  of the positivity of entropy pro- 
duction). Normal collisions constitute an exceptional case. 
Incorporating normal collisions does not affect the bulk re- 
sistivity under the condition that other scattering mecha- 
nisms themselves lead to a drift distribution function for the 
electrons in an external electric field: 

where u is the velocity of the overall carrier drift. This is the 
situation when the energy spectrum and the electron scatter- 
ing mechanisms are isotropic. Numerous results suggest 
that these conditions are satisfied better in potassium. In 
particular, the data of Refs. 10 and 11 reveal an exponential 
temperature dependence of the electron-phonon component 
of the resistivity of bulk metals in the dirty limit. (Umklapp 
processes during electron-electron collisions, whose contri- 
bution would be proportional to T2, are not manifested in 
this temperature range, apparently because the pseudopo- 
tential is small.) If either the energy spectrum or the interac- 
tion with impurities were anisotropic, the asymptotic behav- 
ior of the small increment in the residual resistivity would be 
a power law3: 6p- T 5  as a result of electron-phonon pro- 
cesses or Sp - T' as a result of electron-electron N processes. 

An inverse temperature dependence of the conductivity 
could arise as a result of normal collisions in a thin boundary 
layer with a thickness on the order of I, (or  near any macro- 
scopic distortions which scatter electrons e.g., dislocations). 
In accordance with the discussion above, we will restrict the 
discussion to the isotropic model, and we will ignore umk- 
lapp processes. The basic component of Su, which results 
from the violation of this appro~ imat ion~ i s  incorporated in 
( 17). For the normal-collision operator I we have 

I t  follows that the only nonvanishing component in (3)  
comes from those terms K,,, , which depend simultaneously 

rc 

on p and p'. Omitting the exponentially small terms of order 
exp( - d /Ii ), we find, after some simple calculations, 

2e2~i3 L n n '  &=- dSpdS ,n,n,' - ZPr .  ( 6 )  
hS .Z n,>o nZ - n, 

where Z is the cross-sectional area of the sample, and L is the 
perimeter of the cross section. Expression (6 )  holds for a 
sample with a cross section of any shape, provided only that 
its dimensions are considerably greater than I,. 

It is a simple matter to find from (6)  an estimate of the 
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temperature-dependent increment in the average conductiv- 
ity (through the use of the definition J dS; Ipp, =:IN - I  ). For 
a wire of diameter d, for example, we have 

where n =: ( ~ , / h ) ~  is the density of electrons. To  derive the 
latter expression it is sufficient to assume that N collisions 
are manifested only in a boundary layer of thickness - li,  
where the conductivity is 

while outside this layer we have a-I, . An incorrect result 

G~=ne'p,-~ E,'/dal, 

was obtained in Refs. 16. In those studies, where the 
Callaway method INX = (x, -  up)^, - '  was used, it was 
assumed that the carrier drift velocity u does not change near 
the surface. I t  is easy to verify that incorporating spatial 
variation in the velocity u will eliminate this discrepancy (as 
well as several other puzzling results of Refs. 16). The sign of 
60, however, as we now see, depends on the structural details 
of the collision operator, which are impossible in principle to 
deal with in the Callaway method. 

We will begin with some physical arguments in favor of 
a "hydrodynamic" role of normal collisions in a thin layer of 
thickness li near a surface. Without altering the sum of the 
electron velocities (by virtue of p = mv) in the isotropic ap- 
proximation, normal collisions do affect the current, causing 
a redistribution of nonequilibrium momentum between elec- 
trons which are incident on the surface and electrons which 
are reflected from it [it is no coincidence that only transi- 
tions in which the sign of n, changes are involved in (6 )  1. 
The longitudinal momentum 9, is transferred primarily 
from the incident electrons to the reflected electrons, since 
the former are obviously further from equilibrium. Normal 
collisions, by hindering the transport of nonequilibrium mo- 
mentum to the surface, thus increase the conductivity. The 
most graphic case in this regard is that of collisions involving 
a small change in the x projection of the electron velocity, 
indicated by the vertical arrows in Fig. 1. As a result of tran- 
sitions of type (a)  a certain fraction of the nonequilibrium 
electrons which make a positive contribution to the current 
(n, > 0)  avoids collisions with the surface. On the other 

FIG. 1. Electron distribution function at a boundary. The incident elec- 
trons drift along thexaxis, while the reflected electrons are at equilibrium 
( in  the case of diffuse scattering). The dashed line is the Fermi surface. 

hand, for the electrons which make a negative contribution 
to the current (n, <O) transitions of type (b )  cause the 
number of collisions with the surface to obviously increase. 
Consequently, normal collisions have the consequence that a 
certain fraction of the momentum 9, will be transferred 
from the incident electrons to the outgoing electrons and will 
thus not be absorbed at the surface. 

It should be noted, however, that these arguments are 
based on the intuitive assumption that in acting to bring the 
system to a state of internal equilibrium normal collisions 
lead to equalization of the average quasimomentum of the 
incident and reflected electrons. This is indeed always the 
case under conditions such that normal collisions outweigh 
impurity collisions (1, gli ), but it is not necessarily the case 
in the opposite limit of arbitrarily infrequent normal colli- 
sions, which are acting on electrons whose distribution func- 
tion is determined entirely by the interaction between im- 
purities and the surface. I t  is easy to see that collisions with a 
relatively large momentum transfer, for which there is a 
change in the sign of not only n, but also n,, increase the 
differences between the x components of the incident and 
reflected electrons [correspondingly, under the conditon 
n,n: < 0 we find SO < 0 from (6 )  if Ipp, > 01. I t  is clear from 
this discussion that we have S a >  0 if transitions through 
small angles dominate, 

where a is the angle between the vectors p and p', and Ipp, is a 
matrix element of the transition between states p and p': 

It is not difficult to show that inequality ( 7 )  is a sufficient 
(but by no means necessary) condition for the positivity of 
expression ( 6 )  for the quantity 60. Specifically, by virtue of 
the isotropy we have ( p ,  .p ' are the aximuthal angles of the 
unit vectors n,n' in the xy plane) 

and the integral in this expression is positive, since the angle 
a increases monotonically with .p - p ' between 0 and 7 ~ .  

In the case of electron-electron collisions the kernel of 
the collision operators can be written 

where T i s  the temperature. 
Describing the screened electron-electron interactim 

in the standard approximation 

where fix- ' is the screening radius, we find from ( 8)  
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- 1+6/2 
y2 sin a (1-l-6)" cos a / 2  

- 1 + 1 
( l+y) '"(1+6)sin a / 2  (2+6) (1+6)'" cos a / 2  

In the case of extremely strong screening, x%p,, with 

Pe ( a )  -2 ( s in  a /2 ) - ' -  (cos a / 2 )  -', 

condition (7 )  obviously holds, and we have S o >  0. In order 
of magnitude here we have 

where 

and I,, - T p 2  is the Landau-Pomeranchuk electron-electron 
mean free path. In the opposite case, of weak screening, 
x & p F ,  the behavior (a)  is extremely complicated. Con- 
dition (7 )  does not hold over the greater part of the interval 
0 < a  < n-. Calculations show that we have S o >  0, although a 
nonzero result arises only in the cubic approximation in the 
small parameter x /pF  : 

Numerical calculations based on (6 )  and (9 )  show that S u  
changes sign at x /p ,  =: 1/4, and condition (7 )  is eventually 
violated as x decreases, at x /pF  -- 1. Using the relation 

and the known values of the state density N ( E ~ ) ,  we find x /  
p, -- 1.7 for potassium. This value is considerably higher 
than the critical value x /p ,  =. 1/4. Because of the large mar- 
gin involved here, the errors introduced by our approxima- 
tions are probably inconsequential, and we can assert that 
infrequent electron-electron collisions in a thick sample lead 
to an inverse temperature dependence in potassium: S u >  0 
under the conditions d $1, and I,, $ I t .  

Small-angle electron-phonon scattering is described by 
an integrodifferential operator, which can be written in the 
isotropic case as" 

P P X = - B A ~ ~  + - J ctg aAx. dS,,. 
"'pa 

(10) 

Here 9 --pF2Iep - I is the electron diffusion coefficient over 
the Fermi surface, I,, - T -' is the electron-phonon trans- 
port mean free path, and A is the two-dimensional Laplacian 
acting in the plane tangent to the Fermi surface. The second 
term in ( 10) incorporates the nonequilibrium nature (the 
drag) of the phonons. Examining the corresponding part of 
the exact collision integral, we can show that this part does 
not satisfy condition ( 7 )  (an exchange of phonons is possi- 
ble between any electron states on the Fermi surface and 
therefore corresponds to large-angle scattering). Neverthe- 
less, we have an increment S a >  0 even in the case of elec- 
tron-phonon collisions. In the calculation of S a  we need to 

recall that the diffusion approximation breaks down in a 
small region near n, = n: = 0: The substitution of ( 10) into 
(6 )  leads to some poorly defined functions (because of the 
rapid variation in the electron distribution at small In, 1 ;  Fig. 
1) .  In order to resolve this uncertainty for the first term in 
( 10) we should go back to our original integral expression 

where the kernel W falls off exponentially at J p  - p'l $q. 
Also using 

(2h3)  - 1  1 W. ..+.l: d Z q = a ,  

we find 

where the number t,b> 0 is the contribution from the second 
term in ( l o ) ,  i.e., from the nonequilibrium nature of the 
phonons. A numerical calculation reveals n-/2 - t,b > 0.2. 

We know that "grazing" electrons, which are moving at 
a small angle with respect to the axis of the sample, play an 
important role in the electrical conductivity of thin samples. 
In the relaxation-time approximation, which is fairly suc- 
cessful in describing large-angle scattering, the electrical 
conductivity of a sheet is a - d  In I / d ,  and that of a wire is 
a - d  - d '1 ' ln(1 / d )  ,d & I.Grazinge1ectronsdominatethe 
conductivity of a sheet and determine an increment in the 
conductivity of a wire which depends on bulk collisions. In 
each case we naturally have d a / d T  < 0, since large-angle 
scattering removes an electron from the group of grazing 
electrons and thus promotes momentum relaxation. The lat- 
ter assertion is always true for electron-impurity and elec- 
tron-electron collisions. I t  is also true for scattering by phon- 
ons in the "dirty" limit, provided that the scattering angle 
S6--g/pF is much larger than the characteristic angle of the 
dispersal of the grazing electrons, d /I , .  In the clean limit 
(Ii - cc ) the mechanisms for electron-phonon relaxation in 
thin samples are much more complicated, but an inverse 
temperature dependence does not arise. '93"' We are left with 
only a single possibility, which is the subject of the discus- 
sion below. This is the case in which electron-phonon colli- 
sions in the dirty limit are manifested as a small-angle pro- 
cess: 

Here I:: = I,, ( d  /I,  )' is the mean free path with respect to 
the removal of an electron from a grazing positon as a result 
of diffusion. As the temperature is lowered, inequality (12) 
unavoidably becomes satisfied (if d < I ,  ) . 

Kaveh and Wiser1* have predicted an inverse tempera- 
ture dependence of the conductivity, specifically for the case 
described by the inequalities ( 12). Their arguments run as 
follows: As a result of a collision with a phonon, the angle 9 
betwen the electron velocity and the surface of the sample 
can decrease or increase, with equal probabilities, by an 
amount on the order of S S  = q/p,. However, the elongation 
of the path traversed by an electron before relaxation at  the 
surface is greater in the first case than the shortening of this 
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FIG. 2. The elongation of a path of type 1 is greater than the shortening of 
a path of type 2. 

path in the second (Fig. 2 ) . The lengths are on the order of 
d(S9)'S-", so there is an increase in the conductivity aver- 
aged over the cross section of the wire, by an amount 

In the case of a sheet, a result greater by a factor of l i /d is 
found, as is easily verified. These arguments are incorrect, 
however, since they ignore the fact that the grazing electrons 
( 9 z d  /Ii ) dominate the value of SD. For these electrons, an 
elongation of the path is not possible (the mean free path 
cannot exceed Ii ), and the substantial shortening of the path 
of these electrons is the dominant effects, as we will see be- 
low. In other words, if, following Ref. 12, we restrict the 
discussion to electron-phonon scattering accompanied by a 
change in the angle 9 alone, then the increment in the con- 
ductivity turns out to be negative. 

In case ( 12 ), of small-angle electron-phonon scatter- 
ing, it is convenient to rewrite expression ( 3 )  in a form corre- 
sponding to the diffusion approximation, ( 10) : 

The term Sad, here stems from the second term in (10).  
Expression ( 13 ) holds only under the condition St?< d /Ii, of 
course; in the opposite limit, the relaxation-time approxima- 
tion, with a characteristic mean free path I,, (SS)', holds. If 
the sample is a sheet, then only the "fast" dependence of s 
and S on the angle 9 need be taken into account in the differ- 
entiation in ( 13 ), in the leading approximation in the small 
parameter d /I, : 

s=s,/sin 6, did6 exp (-sll,) --s6-'Ii-' exp ( -s / l i )  

under the conditon 99 1 (s, is the distance from the point at 
which the collision occurred to the surface of the sheet). We 
have thus shown that the first term in (13) is negative (by 
definition, s,S > 0) ,  so the conclusion of Ref. 12 is incorrect. 

There are, on the other hand, some processes which are 
ignored both in ( 13) and in Ref. 12, although their contribu- 
tions are on the same order of magnitude as those which have 
been considered. These are transitions in a small neighbor- 
hood (of width -8.9) of the point 9 = 0, in which the diffu- 
sion approximation breaks down (see the preceding section 
of this paper). Their positive contribution to S a  is, by virtue 
of the inequality St9 < d  /I,, the same as in a thick sample and 
is thus described by the first term in ( 1 1 ). The contribution 
from the drag, Sad,, on the other hand, is small, in propor- 
tion to the parameterd / I , ,  since as the nonequilibrium phon- 
ons are reabsorbed most of their momentum is transferred to 
nongrazing electrons and quickly undergoes relaxation at 

the surface. As a result of simple calculations we find the 
following result for a sheet, under the inequalities (12) : 

The situation in a wire is more complicated since a sub- 
stantial change in the path of the grazing electrons results 
from changes in two angles during electron-phonon colli- 
sions: the angle 9 ,  between the velocity of the electron and 
the wire axis, and the azimuthal angle p. As in the case of a 
sheet, a change in the angle 9 leads to a net shortening of the 
path, while a change in q, increases the path, on the average, 
regardless of the cross-sectional shape of the wire. Specifical- 
ly, let us look at the scalar product which figures in ( 13 ) in a 
spherical coordinate system s, = s sin 9 ,  b = s, + S ,  , 99 1: 

ppZV exp (-sli-') V exp ( -Xi- ' )  = f i -b[~131  
4- (as,/acp) (83,/drq) ]esp (-bli-16-1).  

The first term in square brackets, which corresponds to a 
change in 9 ,  is positive. The second term, in contrast, is neg- 
ative if the angles 0 and 6 in Fig. 3 are either both acute or 
both obtuse (this is always the case for a circular cross sec- 
tion) : 

(as,/acp) (aF,/acp) =-slFL ctg $ ctg 13. 
It is convenient to carry out the integration in ( 13) by trans- 
forming from the variables 9 , 0 ,  r to if, 0 ,  2, sI , where r is 
the coordinate of the point of the electron-phonon collision 
in the cross section, and d Y  is an element oflength along the 
perimeter. The Jacobian of this transformation is sin 0. We 
have (0 < 0 < n )  

60 - -J d 6  d$ dsL d 9  fi-3s1(b-~,)e-b~"C(i - ctg $ ctg B)sin $. 

After integration overs, and 9 ( b  and 9 depend on 9 and 
O), we find 

60 - - d9' dB b (1- etg $ ctg B) sin B=O. 

It is straightforward to verify the latter equality, by integrat- 
ing by parts in the integral corresponding to the second term 
in parentheses and by using the relation 

b ctg (3=db/d$. 

Accordingly, to first order in the small parameter dm,, /I, 
(d,,, is the largest of the dimensions of the wire cross sec- 
tion), the corrections to the conductivity which result from 
the changes in the angles 9 and p cancel each other out. In 

FIG. 3. Projection of an electron path onto the plane perpendicular to the 
wire axis. 
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other words, there is no contribution ISa( - I ;/I,, in a wire 
with a cross section of any shape. It is not difficult to show 
that a nonzero result arises in the first term in expression 
( 13) only when terms - ( d  /Ii )', i.e., Sa-d 2/1,,, are taken 
into account. Consequently, in a wire, in contrast with a 
sheet, drag plays the leading role in (13), and it leads to a 
nonzero result in the first approximation in d /Ii. The sign of 
6ud, becomes obvious when we write it in the form [see (3) ,  
(4),  (10)) 

Here we have used 

pp2A ctg a = ~ i n - ~  a cos a, s (-p,. r) =S (p, r) , 

j A ctg  a = j A ctg  a dsP=o, 
and the circumstance that the integrand falls off quite rapid- 
ly under the conditons I9,9 ' > d /Ii. 

Finally, we need to take into account the transitions 
near the point I9 = 0, which are not described in the diffusion 
approximation. Their contribution is also positive, of course, 
and it is given in order of magnitude by 

For a wire of arbitrary cross-sectional shape (but with 
dm,, < li ), we thus have an inverse temperature dependence 
of the conductivity. At temperatures S a g  ( d  /Ii )' ( S S z  T /  
O, where O is the Debye temperature), we have Sa- Ts  ac- 
cording to ( 15 ), while in the region (d  /Ii ) 2  <SS<d /I, we 
have Su- T h  according to ( 16). 

5. CONCLUSION 

Let us formulate the condition under which a minimum 
exists on the temperature dependence of the electrical resis- 
tivity in the dirty limit (IN >I, ), i.e., in which the situation 
which we have called "weak hydrodynamics" prevails. 

In thick samples, with li <d, for an arbitrary relation 
between I, and d, we have the following expression for the 
temperature-dependent increment in the conductivity (we 
are omitting a common factor of ne2p, ' and numerical coef- 
ficients - 1 ) : 

Here d is the radius of the wire or the thickness of the sheet 
(more precisely, the ratio of the cross-sectional area of the 
sample to its perimeter). The coefficient a is a measure of the 
anisotropy of the Fermi surface or of the scattering by im- 
purities (if the deviation from isotropy is slight, a is propor- 
tional to the square of the deviation). The lengths I, and I, 
can refer to either electron-phonon or electron-electron 
collisions. 

In thin samples, an inverse temperature dependence is 
possible in a wire with a cross section of arbitrary shape 
(provided that the maximum transverse dimension satisfies 
dm,, <I, ), under the condition that small-angle electron- 

FIG. 4. Regions in which normal collisions act on the electrical conduc- 
tivity by different mechanisms. 

phonon scattering outweighs electron-electron scattering 
1 $ < I,, , and under the condition that the scattering angle 
819 = q / p ,  is small in comparison with dm,, /I, (see inequal- 
ity ( 12) 1. According to ( 15) and ( 16), we have 

in this case. The last term here describes the contribution of 
electron-electron collisions. Expression ( 18) is based on re- 
sults derived for an isotropic model. It is easy to see, how- 
ever, that a sufficient condition for its applicability is that the 
axis of the wire coincide with a fourfold symmetry axis of a 
crystal or that the cross section of the wire have the given 
symmetry. Otherwise, the leading contribution to Su will 
not cancel out, 

and the sign of the effect will depend on the relative orienta- 
tion of the anisotropy axes of the crystal and of the wire cross 
section. 

Figure 4 shows schematically the regions in the (I, ,IN ) 
plane in which normal collisions act on the electrical con- 
ductivity by different mechanisms. It is assumed here that 
umklapp processes are considerably less frequent than elec- 
tron-impurity and normal collisions. Region I corresponds 
to a fully developed hydrodynamic situation; in this region 
we have S u z u - d  '/IN. The boundary of the region on the 
left is the hyperbola d '/IN = li . A Knudsen minimum oc- 
curs along the right boundary. In region I1 the hydrodynam- 
ic situation persists in a surface layer with a thickness on the 
order of (Ii 1, ) ' I 2 :  

where the second term is the bulk contribution of normal 
collisions which stems from the anisotropy [a is on the order 
of the corresponding coefficient in ( 17) 1.  Region I11 corre- 
sponds to a weak hydrodynamic situation in thin samples; 
here So  is given by ( 17). Region IV has the same meaning in 
the case of a thin wire; here 6 0  is given by ( 18). In region I 
we have da/dT> 0, of course. In regions I1 and I11 this in- 
equality holds for a = 0, but for 1 > a > 0 we have du/dT< 0 
in a certain part of the regions (hatched in Fig. 4), as can be 
seen from ( 17) and ( 19). We see from ( 18) that in region IV 
we have du/dT> 0 under a relatively lenient requirement on 
the probability for electron-electron collisions, 
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and under the restrictions on the symmetry of the sample 
which we listed above. 

In the experiments of Ref. 1 and also in a subsequent 
study," a minimum on the temperature dependence of the 
resistance was apparently observed at a value of d compara- 
ble to li (the boundary between regions I11 and IV in Fig. 4).  
The behaviorSp,, -d  - ', which holds approximately for the 
anomalous part of the resistivity in Ref. 21, corresponds to 
our results both in the case d>l ,  [expression ( 17) 1 and in 
the case d <I, [expression ( 18) 1.  (The results of Ref. 12 at 
d < I, and of Ref. 16 at d > li lead to Sp,, - d -2 .  ) A compari- 
son with experimental data for liquid-helium temperatures 
shows that the mean free paths with respect to normal elec- 
tron-phonon and electron-electron collisions in potassium at 
T-  1 K are not substantially different and correspond in 
order of magnitude to the observed values at the minimum 
Su/u- lo-' - 10W4. In the region of the inverse tempera- 
ture dependence we could expect a temperature dependence 
of either ISp/ - T or ISp I - T under the conditiond > I, and 
ISpI - T5 under the condition d <  I,. The experiments of Ref. 
21 yield 16pl- T"'. It is possible that the temperature de- 
pendence will approach ISp I - T' with decreasing thickness. 
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