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The size-quantization spectrum of free electrons in a heterostructure quantum is influenced by 
the longitudinal wave vector k. Depending on the well parameters, there can be three types of 
behavior when k is varied: a reduction in the number of subbands on increase in k including 
disappearance in the range k>k,  ; an increase in the number of subbands with k; absence of 
subbands at low values of k and their appearance for k>,k, .  In a certain range of values the lowest 
size-quantization level can be a boundary state. Discrete subbands n = 1,2,3, ... split off from the 
continuum of states with a continuous spectrum at branching points k2  = k :, k :, k :, ... , the 
vicinities of which make a considerable contribution to the tunneling. The dispersion law for 
electrons in the subbands can readily be written down in the vicinity of the branching points. The 
motion of electrons in a quantum well cannot be divided into longitudinal and transverse, which 
leads to the tunneling of electrons in a longitudinal electric field E from one subband to another or 
from a subband to states with a continuous spectrum. In a given field E the longitudinal tunneling 
probability depends nonmonotonically on the energy gap between the subbands and is high for 
transitions to shallow subbands, including the subbands which branch off on increase in k from 
the states with a continuous spectrum. In the latter case the contribution of the vicinities of the 
branching points is important; they also make the largest contribution to the tunneling from a 
discrete subband directly to states with a continuous spectrum. In this case the expressions for the 
tunneling probability in weak fields do not contain a characteristic exponential smallness. 

1. INTRODUCTION 

We shall consider an electron in a quantum well formed 
by two plane heterojunctions (abrupt or nonabrupt), where 
this electron is in free motion or is moving longitudinally, 
i.e., in an electric field parallel to the heterojunction planes, 
The heterojunctions establish a one-dimensional depen- 
dence of the potential energy of the electrons (bottom of the 
conduction band) U(z) (Fig. l a )  and associated one-di- 
mensional dependences of the band parameters. If the dis- 
persion law is parabolic inside and outside the well, this pa- 
rameter is the effective mass m (z) ,  which inside the well can 
be less ("light well," represented by curve 1 in Fig. Ib) or 
greater than ("heavy well," represented by curve 2 in Fig. 
l b )  than outside it. If we allow for the nonparabolicity in the 
two-band approximation, this parameter is the interband 
gap E, (2) when the Kane velocity s is constant. 

Free motion of an electron confined to a quantum well 
is described by wave functions of the type 

where r = ( x , y )  is a vector in the heterojunction plane; 
k = (k, ,k, ) is a two-dimensional wave vector; n is the num- 
ber of a bound state (subband) corresponding to an energy 
E,, (k ) ,  n = 1,2, ..., N(k) .  If the band parameters are indepen- 
dent of z, then in the parabolic case the function F,, (z,k) is 
independent of k and the energy E,,  ( k )  splits into two parts: 

E . ( ~ ) = E , ' + E  ( k ) ,  

In a longitudinal electric field E = - aV/dr,  where 
V = V(r), if the effective mass is independent of z, the wave 
function is 

4 n  (2, r) =Fn (z) (r) , ( 3  

where 

E,,=E,'+~E' ( 4 )  

@ ( r )  and E' are described by the solution of a two-dimen- 
sional problem with the potential V(r) and are independent 
of n, whereas F, (z) and E: remain the same as in the case 
V(r) = 0, i.e., the transverse and longitudinal motion is sep- 
arated completely. However, such a separation does not oc- 
cur in the case of a heterowell (when m and other band pa- 
rameters depend on z )  or in the general case of a 
nonparabolic well. Then, the problem in a field with the po- 
tential V(r) becomes essentially three-dimensional [or es- 
sentially two-dimensional, if the potential V varies one-di- 
mensionally or, for example, if it is of the form V(x)]; the 
initial classification of the states of free motion loses its 

where E: is independent of k, whereas ~ ( k )  = fi2k'/2m - - - - - - - - 
(m = const) is independent of n.  In the case of the depen- 
dences of the type shown in Fig. l b  the separation described 
by Eq. ( 2 )  is impossible and not only is the energy of each 

number of these states N(k) .  

y% 
discrete state dependent on k ,  but this is also true of the FIG. 1 .  Coordinate dependences o f  the potential energy of an electron (a )  

and its effective mass (b)  in a quantum heterowell. 
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meaning. Transitions between different subbands and emis- 
sion of electrons from discrete subbands to states with a con- 
tinuous spectrum then become possible. 

Earlier treatments have dealt with transitions between 
~ u b b a n d s ' , ~  as well as with thermal emission of electrons 
from a quantum well',4 due to electron scattering by phon- 
ons, crystal lattice defects, or inhomogeneities of the well 
itself. Field emission of electrons to the conduction or va- 
lence band from a quantum well under the influence of a 
transverse field E, (z)  has also been discu~sed. ' ,~ A special 
feature of the situation considered here is the absence of scat- 
tering mechanisms or of a transverse field outside the well. 
Transitions between subbands in a longitudinal field resem- 
ble the Zener tunneling between bands in a solid, whereas 
transfer to a continuous spectrum is an analog of the tunnel 
ionization process.' 

We shall classify the spectra of free motion of electrons 
in quantum wells in Secs. 2 and 3. We shall obtain expres- 
sions describing the positions of real and imaginary points 
where the discrete subbands split off from a continuum of 
states, and we shall write down the dispersion law of elec- 
trons in subbands near the branching points. Both are im- 
portant in the tunneling program. We shall use the one-band 
parabolic approximation to solve the problem of the Hous- 
ton probability of a tunneling transition between subbands 
in a homogeneous electric field (Sec. 4 ) .  The probability of a 
transition from a deep level to a shallower one varies non- 
monotonically on increase in the energy gap between the 
levels. Since it is exponentially small in weak fields, the prob- 
ability first decreases as the level moves away, but as the 
shallower level decreases in depth, the probability passes 
through a minimum and then rises, losing its exponential 
smallness when the level leaves the well. 

The main contribution to the total probability of the 
tunneling of electrons from a given subband to all the others 
comes from transitions to the shallowest of these subbands 
near its branching point; the probability of a transition to a 
shallow level near its branching point is also free of the expo- 
nential smallness in weak fields. An estimate of the tunneling 
probability from discrete subbands to states with a contin- 
uous spectrum shows that in this case too the contribution of 
the vicinities of the branching points predominates. A dis- 
cussion of the results is given in Sec. 5. 

2. BRANCHING POINTS OF DISCRETE SUBBANDS AND 
DISPERSION LAWS IN THE VICINITIES OF THESE POINTS. 
ONE-BAND MODEL 

We shall first consider the case of the parabolic disper- 
sion law inside and outside the well. A stationary state of an 
electron is described by the equation 

In  the case of free motion of an electron the wave function is 
described by Eq. ( 1) and F,, (z,k) obeys 

In the case of U(z) and m(z )  shown in Fig. 1 the bound 
states appear if 

AZk2 j U ( z )  dz  + --;-- j (m-I ( z )  -m,-') dz<O, (7 )  

wherem, = m(z-  a). 
In the case of a light heterowell [U(z)  <O and 

m (z)  < m , -see Figs. la, lb, and Eq. ( 1 ) ] the bound states 
exist if 

m, k2<ki'=Bm, J ~ ( z )  dz / h2 5 ( 1  - -) dz. 
m ( z )  

(8)  
- - -m 

If U(z) is selected in such a way that at k = 0, there are No 
= N ( 0 )  bound states, it is found that the number of the 

threshold values k f, (where n = 1, ... ,No ) is No and the in- 
equality k ;: < k ;: , is obeyed (Fig. 2a). These threshold 
values are the branching points of discrete levels from the 
continuous spectrum. In this case an increase in k 2  reduces 
the number of levels at  the branching points by unity. 

In a heavy heterowell-if U(z) < 0 and m (z) > m, - 
the bound states can exist for any value of k2 [see Eq. (7)  1. 
However, whereas when k ' = 0 there are No levels, an in- 
crease in k2 increases the depth of the effective potential well 

U,, , ( z )  = U ( Z )  f h2k2(m-I ( z )  -m , - i ) / 2  

and the number of bound states increases.' Their increase by 
unity occurs at branching points k f,, n = N,, + 1, No + 2, ... 
(Fig. 2b).  

If U(z) > 0 and m ( z )  < m,= (light quantum "hump") 
it follows from Eq. ( 7 )  that there may be no discrete states. 
However, if m (z)  < m ,  , a heavy quantum hump U(z) > 0 is 
transformed into an effective quantum well beginning from 
k ' > k :, and this quantum well contains bound states. A 
further increase in k2 causes these states to increase by one at 
the points k ;: > k _ , (Fig. 2c).  If U(z) = 0, i.e., if initially 
there is no well and no hump, then k :  = 0. 

In the case of a heavy well in Fig. 2b we show not only 
the real branching points k :, k :, etc., but also the imaginary 
branching points k :, k < 0 which play a role in the longitu- 
dinal tunneling probabilities (Sec. 4) .  

In the case of a rectangular well ( U = - U,,, m = m,,, 
I z I  < a ,  U = 0, m = m, , I z ~  > a )  we can readily obtain not 
only k:, but k f,, where n>2: 

The initial number of levels N, for U, > 0 is the integral part 
of the quantity (8a2U,,m,,/~'fi')'/'. Near the branching 
point the dispersion law for the nth level is similar to Eq. (2 ) :  

where E (  k )  = fi2k '/2m , and 

If n = 1, then a should be replaced with 2a in Eq. (10a); in 
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FIG. 2 Dependences of E,,  on k2  for S = 0: a )  U ( z )  <O, 
m ( z ) < m , ;  b) U(z)<O,  m ( z ) > m , ,  C )  u ( z )  > 0, 
m ( z ) > m , .  

this case we can also readily generalize the treatment to the 
case of arbitrary values of U(z) and m (z)  : 

Equations ( 10a) and ( 1 1 ) are valid for such values of kL for 
which there is an nth discrete level (Fig. 2 ) .  

3. MANY-BAND MODEL 

1. The effects considered here and later occur on the 
energy scale ~ ( k )  - I UoI and/or on the scale of the wave 
vectors -a- '  if the changes in the effective mass are not 
small, i.e., if they are of the order of the mass itself. In the 
case of narrow-gap semiconductors this requirement is 
equivalent to the condition of smallness of the change in the 
gap itself E, (z) .  The change in the gap is accompanied by a 
change in the potential energy of an electron U(z) and by a 
change in the energy at the top of the valence band 
U(z) - E, (z) .  The many-band approximation, which has to 
be used in this case, is normally based on one of several calcu- 
lation schemes.' By way of illustration, we shall give the 
results of the use of the Kane scheme with a 8x8 matrix 
Hamiltonian in the isotropic approximation. In the calcula- 
tions we shall ignore the influence of the distant energy 
bands (for which the mass of heavy holes is infinitely large) 
and assume that the Kane velocity s is constant, as in Ref. 10, 
i.e., we shall assume that it is independent ofz [fi2S" +P2,  
where P i s  a parameter used in Ref. 91. Heterojunctions not 
only alter the energy at the bottom of the conduction band 
U(z), but also give rise to specific and symbatic changes in 
the width of the band gap E, (z)  and in the separation A(z) 
from the spin-split band at the point k = 0. 

2. In the case of a rectangular heterowell [U(z)  = 0, 
E,(z) = E , ,  A(z) = A, if /zl >a;  U(z) = - U,,, 
E, (z) = E ~ ,  A(z) = A,, if / z (  < a ]  the problem reduces to the 
dispersion equation 

where 

If we ignore the spin-orbit splitting of the valence band 
at k = 0, we find that S = 0 and the condition for branching 
of discrete electron subbands becomes 

where U t  = + ( s h / a ) ' .  For the corresponding values k f, 
= k '(E,, ), we obtain 

kn2='I3~, ( E , + E ~ ) / S ~ ~ ~ .  (14) 

It is clear from Eq. (13) that there are two fundamentally 
different types of behavior: one similar to the behavior in a 
heavy well characterized by E,, < E,, + 2U,, and the other sim- 
ilar to the behavior in a light well characterized by 
E(, > E,, + 2U0 (Fig. 3) .  In the former case when U,, > 0 there 
is always at least one discrete level ( K :  < 0 ) ;  the smallest 
number of the subbands NO is equal to the integral part of 
[ U o ( ~ o  + Uo)/Ui ] "', where an increase in k2 increases the 
number of subbands: N ( k )  increases by unity at the branch- 
ing points found using Eqs. ( 13) and ( 14). Obviously, this 
includes a homostructure (i.e., electrostatic) well, where 

= E, if U, > 0, i.e., the gradual (on increase in k2)  in- 
crease in the mass of electrons increases the number of levels 
in a nonparabolic homostructure well. This behavior is 
equivalent to that shown in Fig. 2b. 

In the second case ( E ,  + 2Uo, U,, > 0)  the situa- 
tion is drastically different: the number of levels equal to No 
at k2 = 0 decreases on increase in k2, so that the last level 
disappears when E = E ,  = U( , (E~  + U,,)/(E, - E~ - 2U0); 
the situation is equivalent to that shown in Fig. 2a. As E, 

approaches E, + 2 U,, all the branching points move to infi- 
nite values of E and k2, so that the initial number of levels NO 
is conserved for all values of k2. 

In the case of a hump ( U, < 0)  if E,, + 2U0 > E, and 
E~ + Uo > 0, the situation is similar to that shown in Fig. 2c, 
i.e., at low values of k2 there are no discrete levels, but as k2  
increases, then beginning from k2 = k : an effective well ap- 
pears at the position of a hump and quantization also begins 
from this value. On further increase in K2 the number of 
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levels increases. If E() + 2U0 < E ,  and U, < 0, no discrete 
levels appear in the electron band. The dispersion law E, ( k )  
in a branching point now changes from the law given by Eq. 
(10) to 

where 

a(kZ-kn2) (e,+e,) (eo+2U,-em) 
~n (k) = , (10'a) 2 (en+eo+U,) (2en+e-) 

if n>2; in the case when n = 1, we have to replace a with 2a. 
3. In heterostructures based on compounds of the 

Cd, Hg, - ,Te type variation X(z )  is usually accompanied by 
a strong variation of the position of the bottom of the con- 
duction band U(z) and relatively weak variation of the posi- 
tion of the top of the valence bandi0-l2 (case 1' in Fig. 3 ) :  

In a wide range of values of X(z)  the spin-split-off band is 
separated by a large gap: A (z) >E,  (z) ,  I U(z) 1. This allows 
us to assume in all cases the values 

S ( 2 )  mO, m-i (z) =2s2/ (eg(z) +e-U (z) ) =const 

and reduce the situation under discussion to the one just 
considered if U t  = (sm5/2a)' and E,, + Uo = E _  . Hence, it 
follows that 

eo+2Uo=e,+Uo, 

i.e., the quantum well ( U, > 0 )  becomes enriched with dis- 
crete levels as k2 increases and in the case of a hump ( U, < 0 )  
there are no discrete states for any value ofk '. Thedispersion 
law for a quantum well near the branching points is identical 
with Eqs. ( lo ')  and ( 10'a) provided we replace (3/2)s2 with 
s2. Similar behavior of the quantum wells in the situation 
described here was mentioned in Ref. 8. 

4. A special feature of the general case which allows for 
a finite spin-orbit splitting and deviation of S from 0, is the 
influence of boundary states at an abrupt heterojunction on 
the position of the branching point of the n = 1 subband and 
on the dispersion law near this point (no such states, if 
S = 0) .  For the sake of simplicity, we shall consider this 
feature only in the special situation characterized by 

when we can always use the parabolic approximation of the 
z-dependent effective mass: m - ' (z)  = 2s2&, (z) . In the case 

FIG. 3.  Var~ants of heterowells corresponding to different types of behav- 
iorofthebranching laws: l ) ,  1' 1, I " )  E ,  < E , ,  + 2U,,; 2 )  E ,  > E , ,  + 2 U , , .  

of a rectangular well, we find that m, and m, are constants 
independent of E, and that S = 8 ( m ; ' - m; ' ) . 

We shall find the conditions for branching of discrete 
levels from a continuum. The branching point is defined by 
substituting y,, = 0 in Eq. (12), i.e., by assuming that k f, 
= 2m,&,,/fi2. We then readily obtain the equation 
an tan(a,  a )  = oo or a,  cot(a,, a )  = m, for the branching 
point, and this equation yields values of k described by Eq. 
( 9 )  with n = 2, 3, ... , but not for n = 1. These values do not 
contain S.  If n = 1, it follows from Eq. (12) that 
a; = - m i S %  k 2  or 

which differs by a factor 4m,/(3m, + mo) from the 
expression for k : that follows from Eq. ( 9 )  if we substitute 
n = 1; the notation k i2  is used to stress this difference. 

We shall consider qualitatively the dependences 
E,, ( k  '). If k2 = 0, we find that the values E,, (0 )  obtained 
from Eq. ( 12), are the same as those obtained for S = 0, i.e., 
i f S  #O, the dependences&,, (k2)  begin at the same point as in 
the case whenS = 0, and for n # 1 they go over to the contin- 
uous spectrum at the same branching points. Therefore, the 
qualitative nature ofall the curves in Fig. 2 is preserved when 
n #  1; the quantitative difference between them is deter- 
mined by the value of S. We shall now consider the curves 
corresponding to n = 1, for which there are qualitative dif- 
ferences. In a light well (m, > mo, Uo > 0 )  the branching 
point of Eq. ( 17) lies to the right of the point k : in Fig. 2a, 
i.e., the dependence E,  (k2)  intersects the curve E,, = fi'k '/ 
2m0 - U,, describing the change in the bottom of the well 
and the point of intersection is given by 

where ( A  = 1 - mO/m, ; k < k : < k i2. In the interval 
0 < k '  < k g  the level E ,  (k2)  is the "usual" state with a con- 
vex dependence of the electron density on z in the region 

I z I  < a .  At the point k2 = k this dependence becomes a con- 
stant and for k ;  < k ' < k ;' it is concave, i.e., at the point 
k2 = k the usual state changes to a boundary state and after 
surviving as the boundary state for k < k ' < k ;', it merges 
at a point K' = K i 2  with the continuous spectrum. We can 
show that if a boundary state appears in the conduc- 
tion band if E,, + 2U0 - E ,  < 0, whereas for the opposite in- 
equality when the discontinuity of the conduction band pre- 
dominates, a simiar boundary state appears in the valence 
band. 

Boundary states at heterojunctions and in heterowells 
were described by Suris," who derived them for a hole ener- 
gy band. We can show that a set of boundary states is more 
extensive and that states of this type can coexist in the va- 
lence and conduction bands. 

In the limit a -  ma boundary state in a heterowell 
changes to a surface state when there is only one heterojunc- 
tion and the dispersion law is 
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Such a state exists in an interval which begins at k i I,-, 
= k : ( l  - A ) / ( l  -:A) and terminatesat k i2 .  At thefor- 

mer point a boundary state splits off from the band 
~ , , ( k  ') = fi'k "2m,, - U,,, whereas in the latter case it 
merges with the band E, (k ' )  = fi2k'/2m, and contact 
takes place at both points. If a < a, then contact takes place 
at k : (and at all the other branching points), whereas an 
intersection occurs at the point k i. 

The dispersion laws E,, (k2) near the branching points 
are somewhat different from the corresponding laws ( 10) 
and ( 10a) obtained for S = 0. On the right-hand side of Eq. 
( 10a) we have to introduce now a correction factor 

whereas for rr = 1 we have to use 

1  [ ( l - ' / ~ h ) A ( k z - k ~ ' z )  
E: ( k )  =- - 

Zm, (I-h) k,' cth(hklfa)  

In the case of a heavy well ( Uo > 0, A < 0 )  there are no 
boundary electron states. The expressions for all the real 
branching points remain the same as before and the disper- 
sion laws to the right of these points are of the same kind as 
for a light well to the left of the branching points. As in the 
S = 0 case, the discrete states without real branching points 
have imaginary points (Fig. 2b) and one of them is described 
by Eq. (17). 

If U,, < 0 and A < 0, the state with n = 1 splits off from 
the continuous spectrum at the point k ' = k i 2  located to the 
left of the point k z =  k: (which is no longer a branching 
point if S f 0 ) .  Therefore, once again we obtain a boundary 
state which exists in the interval k ;' < k ' < k { and trans- 
forms into the usual state at k i  < k ' < a, where 
k ;'< k < k i. Figure 4 illustrates two of the three cases 
shown in Fig. 2 and it allows for the boundary states which 
appear when S f 0. 

4. TUNNELING BETWEEN SUBBANDS AND IONIZATION 
FROM A WELL IN A HOMOGENEOUS LONGITUDINAL 
ELECTRIC FIELD WHEN THE DISPERSION LAW IS 
PARABOLIC 

1. We shall now consider the motion of an electron in a 
quantum well in a homogeneous electric field directed along 
thex axis. As shown in Sec. I such motion does not conserve 
the number of the quantum subband in a heterowell and 
electrons then tunnel from one subband to another and to 

FIG. 4. Dependences of E, ,  on k' for S 50:  a )  U,, > 0, A >  0; b) U,, < 0, 
A  <o. 

states with a continuous spectrum. In the case of sufficiently 
weak fields we can use a method similar to that applied to the 
Zener tunneling between bands in a solid. I 4 * l 5  We shall begin 
with the Schrodinger equation 

h 

where H is the same Hamiltonian as in Eq. ( 5 ) ,  but with 
V(r)  = - eEx. The solution (21 ) is found in the form of an 
expansion 

= en (k.", k., t )  lpn (k.", k., 2, t )  

in terms of the Houston functions 

where F,, (z,k, ,k,, ) is the solution of the equation for free 
motion in a well described by Eq. (6 ) .  The number n applies 
not only to the discrete, but also to the continuous part of the 
spectrum of quantization along z. After substitution of Eq. 
(22) into Eq. (21), multiplication of Eq. (21) by 
I):, (k  iO,k;,z,t) and integration over the whole volume, we 
obtain an equation which describes c,, ( k  O, ,k, , t ) :  

where the normalization of the functions F,, (z,k) is allowed 
for: 

J Frn* (2, k )Fn  ( 2 ,  k )  dz=6rn%, 
- w 

the primes of k i 0  and k;  are omitted, 
k =  (k: +eEt/fi,k,), k, = k z  +eEt/fi, 

a rmn = j F; ( z ,  k)- F. ( z ,  k )  az 
-- arc, 

We shall solve Eq. (24) subject to the initial conditions 
c,, ( 0 )  = 1, c,,. (0 )  = 0, n ' f n ,  i.e., we shall assume that ini- 
tially an electron is in the nth subband with given values of 
k and k,, . Perturbation theory applied below involves re- 
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placement of c, (kz,k,,t) in the second term inside the 
bracesof Eq. (24) with c, ( k  :,k,,,O). Then, if m #n, we have 

We shall consider only the symmetric rectangular 
wells. For such symmetric wells the value of r,, differs 
from 0 if m and n have the same parity (or-allowing for the 
continuous spectrum-the states have the same sign of sym- 
metry). Therefore, only the subbands of the same parity as n 
become filled. In the case of a rectangular well and discrete 
values of m and n of the same parity, we find that 

where 

~.={1+a~.[1 +(lfilz)z]+%(k)l}-'. mourn m, urn (27a) 

We recall that not only E, and E, , but also y,, , y, , A m ,  and 
A,, depend on k, and k,, i.e., the quantities y, and a, are 
described respectively by Eqs. ( 12a) and ( 12b). In  the case 
of transitions from a discrete level n to states in the contin- 
uous spectrum we have to replace T,,,, in Eq. (26) by 

where 7(q) = tan [ a ( q ) a ]  for the states with an even func- 
tion F,,, r (q)  = - co t [a (q )a ]  for the states with an odd 
function F,, , 

( q )  =h"(q2+kY /2mm, 

Perturbation theory allows us to find the probabilities 
of an electron transition in a time interval t from the nth to 
the mth level, which is w z )  = Ic:) ( k  :,k,,t) l', as well as the 
total probability of transfer of an electron from the nth level 
to states in the continuous spectrum, which is 

0 

zdn) = dq 1 c(") (q; k:, k,, t )  I '. 
0 

It is assumed that the calculations of the probabilities are 
valid as long as w'"' + Z,, w, remains small. 

We begin by considering the case when the discrete sub- 
bands n and m exist for all values of k, which is not true of 
light wells, but which may be true of heavy wells in the case 
of levels with small values of n and m. In these calculations it 
is assumed that k - - CO, k, - CO,  i.e., the probability is 
found for a transition from one level to another level when an 
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electron is reflected by an infinitely high barrier having a 
constant slope. We shall then consider a transition from a 
discrete subband of level n, which exists for all values of k, , 
to a subband m, which branches off at the points +p,, , 
where p; = k - k:, from a band of continuum state. In 
one of the limits of Eq. (26) we have a finite result: k : = p, 
or k, = -pm. In the parabolic approximation adopted 
here the case of a heavy band is not typical. However, we 
recall that, firstly, in the qualitative sense it is the heavy 
bands that model typical structures with compounds of the 
Cd,Hg, _ ,Te type; moreover, all the nonparabolic 
homowells are similar and discussion of these wells is topical 
because of the development of the S-doping technology. In 
all these situations the nonparabolicity makes electrons in- 
side the well much heavier than outside it. Secondly, if the 
field E is sufficiently weak, it is found that the effective con- 
tribution to the tunnel integral comes from relatively narrow 
intervals of k, in the vicinity of the branching points +p,, . 
Naturally, the results in this interval no longer depend on 
what happens outside the interval and apply equally to 
heavy and light wells. 

The predominance of the contribution in the vicinities 
of the branching points observed in weak fields applies also 
to the case of transitions from a discrete subband in states 
with a continuous spectrum, but in this case the results are 
only qualitative. 

2. Bearing these points in mind, we shall consider the 
case when,!< 0, U, > 0, S = 0 (Fig. 2b) and assume that the 
existenceof No bound states at k ,  = 0, which corresponds to 
the same number of the imaginary branching points:k :, 
k : ,..., k i,,. If we assume that N, > 3, we find that transitions 
are possible between levels of the same parity, which we shall 
consider here. The problem reduces to calculation of the in- 
tegral 

We shall consider the specific case when the mth level 
lies above the nth level and, on going over to a complex plane 
k,, we shall transfer parallel to itself an integration contour 
with its real axis directed upward (Fig. 5)  over a distance 
igm(ky),whereg; = - k ;  + k i ; k k  <Oistheabscissaof 
the imaginary branching point in Fig. 2b. 

The quantity r,, ( k )  does not have singularities 
between the initial and transferred integration contours; 
only the new contour T,, passes through zero at the point 

FIG. 5. Integration contour in Eq. (30). 
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ig, . Near this point we have the following value on the con- 
tour: 

where y, (m) ,  A, (m) ,  E,  ( m )  and E, ( m )  represents the 
values of the corresponding quantities when k ' = k 2,; q, in 
Eq. (31) is understood to be the real part of k,. The argu- 
ment of the exponential function in Eq. (30) near k, = ig, 
can be written in the form 

where E,,, ( i l )  corresponds to the values k ' = - { ' (Fig. 
2b); S1 is a small positive quantity and its actual nature is 
unimportant. 

Subject to these simplifications, we find that the re- 
quired probability becomes 

( n ) -  ( n )  2 ,  
w m  - I cm I - I Qmn 1 'E3 exp (-Emn/E) , (33) 

where 
#m 

We can easily show that the use of the approximate expres- 
sions (31) and (32) in Eq. (30) is justified if Em, >E. Al- 
though Eq. (33) contains the parameters Em, and Q,,,, 
which are obtained only numerically, we can clearly see the 
structure of the field dependence and can estimate the order 
of magnitude of the probabilities. 

In particular, it is clear from Eq. (33a) that 
Em,, - (2gm /e) (E,,  - E ,  ) , where the bar denotes averag- 
ing in the integral, so that the tunnel probability to the shal- 
low mth level increases as the depth of the level decreases. As 
the mth level moves from the nth (lower) level, the tunnel- 
ing probability begins to fall due to an increase in E, - &, , 
and then it rises because of a reduction ing, . If the mth level 
becomes shallow, we can refine the calculation of c:'. Then, 
Eq. (30) reduces to 

where the argument 0 instead of m represents the fact that 
the level is shallow and A(k, ) is a "truncating" function 
which is close to unity in the relevant values of k, and which 
transforms the integrand to 0 in the limit k, - CC. We can 
easily show that apart from the dependence on the actual 
formofA(k,) [forexample,ifexp( -Sk,) ,exp( -S2k:), 

(1  + S2k:) -", n>2, 6-0; if S-a, the last expression ap- 
plies], the integral in Eq. (34) is 

where K, ( x )  is the Macdonald function. If the argument of 
this functiong, E,  (O)/eE) 1 is large, the use of an asympto- 
tic expression for this function gives Eq. (33) with 
Em, = 2g,&, (O)/e. If the argument of the Macdonald 
function is small, we obtain the limiting expression for w:': 

Equation (35) is valid on the assumption that its right-hand 
side is small compared with unity, i.e., it is essential that 

where k '"' = [ay, (0)/32A 2, (0 )  ] ' I h -  1. If a given level is 
sufficiently shallow, the range of fields defined by Eq. (36) is 
always attainable. We shall estimate the upper field limiting 
this range, such that the tunneling in this field is no longer a 
small correction. If we assume approximate values 
E, ( 0 )  = 0.1 eV, a = cm, and m ,  = O.lm (here, m is 
the mass of a free electron), we obtain E- lo5 V/cm. 

3. In calculations dealing with a tunnel transition from 
a level n, which exists for all values of k, , to a level m, which 
branches off at the points k, = f p, and exists if 1 k, I >pm , 
the integral in Eq. (26) can be calculated in the limit 
KO, = p,, k, = cc , whereas the expressions for E ,,(k) and 
r,, ( k )  can be obtained approximately using the dispersion 
law ( 10) near a branching point (which now, in contrast to 
the preceding case, is real). The relevant coefficient c:: + , is 
then described by [compare with Eq. (34) 1 : 

( n )  iAzAn ( m )  
C m ( + ) =  

m 

where the argument of m still denotes calculation of these 
quantities at the points k, = * p m ,  so that the function 
A (k, ) has the same meaning as in Eq. (34). Calculation of 
the integral on the right-hand side of Eq. (37) gives the fol- 
lowing expression: 

( , ,  intizAn ( m )  pm2eE 
Cm(+)= 

where H ;"(x) is a Hankel function of the first kind. 
We can similarly calculate the coefficient c : :  , corre- 

sponding to tunnelling in the interval k = - CC, 

k, = -p ,; it differs from c::+, by a factor governed by 
the behavior of an electron between the points - p,, andp,, . 
In the adopted approach this factor represents the phase 
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[exp(ip :')I, so that the total probability of a transition 
from the nth level to the level m branching at the points 
+ pm is described by 

Ifp,, -0 then also p jnn'-0, so that wj:' = 4lc:J:+, I*; Eq. 
(39) then transforms in a continuous manner to Eq. (35). If 
random dephasing occurs between the points - p,, andp, , 
we find that cos p = 0 and the probability wlJ' reduces to 
2/cg:+ , j2, i.e., tunnel transitions to the left-and right-hand 
branch are independent. 

Generalizing the results obtained in the subsections 2 
and 3 above, we reach the conclusion that an electron in the 
nth subband subject to a field E is characterized by an expon- 
entially small probability (33) of tunneling to the mth sub- 
band of the same parity. As the energy separation between 
the subbands increases, this probability begins to fall rapid- 
ly, as pointed out above. However, as the higher mth level 
becomes shallower, this probability passes through a mini- 
mum and begins to rise exponentially; further reduction in 
the depth of the level results in saturation (in a given field E )  
of the probability described by Eq. (35). This relatively high 
value of the probability is retained for small arguments of the 
Hankel function in Eq. (38) even when branching of the mth 
level occurs. When the branching point is sufficiently far 
from k, = 0, we obtain 

where / Q h, I is deduced from Eq. (33b) describing I Q,,, I if 
we replaceg, withp, . The exponentially small factor in Eq. 
(33) is replaced in Eq. (39) by a factor 2(1  + cosp;') 
which oscillates with the field. These oscillations are 
damped out if dephasing occurs between the points -p,, 
and p ,,. Therefore, the vicinities of the branching points 
make the greatest contribution to the tunneling from a dis- 
crete level to another discrete level. 

4. We shall now consider determination of Ic'"'(q) /', 
which is the density of the probability of tunneling from the 
nth level to states in the continuous spectrum. The results 
obtained below are purely qualitative, because the states in 
the continuous spectrum are essentially nonstationary in the 
presence of a field E. 

The integral of Eq. (26) contains a quantity T, (q)  de- 
scribed by Eq. (28) and in the present case this integral has 
an infinite number of pairs of zeros in the denominator 
which are separated by distances - a p '  on the plane of a 
complex wave number k,. If 

then each pair of zeros is located near a branching point, 
which is real or imaginary, and for the odd value of n (corre- 
sponding to an even function F,,) these zeros are located 
near odd branching points, whereas for even n they are locat- 
ed near even branching points. The zeros near imaginary 
branching points + ig, are located at 
(k"'= - g i  +2q/a( l -m, /m, , ) ,  where m # 1  (if 
m = 1, we have to replace a with 2a), i.e., the imaginary 
points are located at 

Near the real branching points + p,, we similarly have 

The positions of zeros of the denominator T, (q)  in the case 
of N(k, ) discrete subbands is plotted in Fig. 6 for k, = 0. 
The number N,, in this figure is identical with N(k,) if the 
parity of N(ky ) is the same as the parity of the number n of 
the level from which electrons are tunneling, but if n and 
N(ky ) have different parities, then N,, = N(k, ) - 1. 

We shall assume that at k, = 0 the highest level m = n, 
is shallow. Then, a considerable contribution to the integral 
of Eq. (30) comes from relatively small sections of the real 
axis k, near the point k, = 0 and near all the real branching 
points. The contribution near the branching pointp,, , where 
m = N, + 2, N,, + 4 ,..., is given approximately by the inte- 
gral 

c(.) ( q )  I m * ~ B m e * ' v ~  5 dg MS b.g (g2+rm2) -* 

where 

In the calculations based on Eq. (43) it is assumed that 
p,, r,, , b ,, ', in the opposite case we could not use the infi- 
nite limits in the integration procedure. One of these as- 
sumptions reduces to the condition q <a -  ' A  (p,, a )  ', which 
in fact refines the condition of Eq. (41),  whereas the other 
limits from above the electric field: 

If b,,r, % 1, we can see from Eq. (43) that c'"'(q) I ,$ is ex- 
ponentially small; in the opposite limit, we obtain 

FIG. 6. Distribution of zeros in the denominator of the function T , , ( q )  
[Eq. (28) ] in the plane of the complex wave number k. in the case when 
there are N(k,) discrete subbands. Here, N,, = N( k , )  or N(k,) - 1, 
where m> 1. 
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Consequently, in calculation of the total probability of the 
transfer to states in the continuous spectrum, based on Eq. 
( 2 9 ) ,  the main contribution comes-in accordance with 
Eqs. ( 4 3 )  and (45)-from the values bmrm 5 1 ,  i.e., it is 
necessary to satisfy quite well the condition of Eq. ( 4 4 ) .  

We shall consider the contribution of the vicinity of the 
point k,  = 0  in the simpler case when n < N,, . We then have 

where 

If we consider Z({,v) not only for real, but also for 
imaginary values of the argument 6, we can study both a 
shallow level N,, and a level split off from the states with the 
continuous spectrum in the vicinity of the point k ,  = 0 ,  i.e., 
we can consider the case when Ik,aj 4 1 .  In the latter case, 
we obtain g,,, = The approximate result of Eq. ( 4 6 )  is 
valid if P , , ~ ,  3 b  , ' ,rO, lg,,, 1 ,  and the predominance of 

p,,, + over Ig,,, / is implied already by the condition that the 
level N,, is shallow, whereas the other two conditions are 
equivalent to Eqs. (41 ) and ( 4 4 ) .  

5. The final result of these calculations is the total prob- 
ability of the transfer of an electron from the nth level to 
states in a continuous spectrum, represented by Eq. ( 2 9 ) .  As 
demonstrated above, if electric fields are sufficiently low 
(which corresponds to (eaE < U,)  and q  is sufficiently small 
[this condition corresponds to Eq. (41 ) 1 ,  the main contri- 
bution to c '" ' (q )  comes from the vicinity of the points k ,  
= 0  as well as the points k ,  = p , ,  

m =  + ( N ,  + 2 ) , +  (N, ,  + 4 )  ,..., sothat  

Here, a prime denotes a change in m  by 2  when the sum in the 
above expression is calculated. Substitution of Eq. ( 4 3 )  into 
Eq. ( 4 7 )  gives 

m 

c'"' ( q )  =c'"' (0 1 .+4i ' BmKo (b,rm) sin q~,,,. ( 4 8 )  
m-N,+2 

The quantity c'"' ( q )  becomes exponentially small well be- 
fore the condition ( 4 1 )  is violated, so that the expression 
( 4 8 )  is sufficient in calculation of the integral in Eq. ( 2 9 ) .  
Substitution of Eq. ( 4 7 )  gives 

w 

w ( n ) = w ( n )  ( 0 )  + 2 x  w(") ( m )  f 5'"). 

where 

and 5'"' is the sum of all the interference terms. The contri- 
bution of 5'"' in Eq. ( 4 9 )  applies only if the initially adopted 
hypothesis of collisionless transport of electrons between the 
branching points applies at distances of the order of 
a  ' 1  1 - m  m  ' I 2  along the k ,  axis, i.e., subject to the 
condition 

Uo>>eEa>fiB/~ I l -mm/mo I", ( 5 0 )  

where r is the mean free time. If / 1 - m ,  /m0l - 1 ,  this con- 
dition is satisfied if U,,r&fior U,r> 1 0 1 5  eV.s. If 7- 10 '' 
s and a -  5 x 1 0  ' cm, it follows from Eq. ( 5 0 )  that the field 
E has to exceed lo4 V/cm. It  is meaningless to calculate the 
total integral from Eq. ( 2 9 )  in weaker fields, because the 
reflection of an electron by a homogeneous field barrier re- 
sults in repeated dephasing. However, the partial probabili- 
ties ~ ' " ' ( 0 )  and w ' " ' ( m )  retain their meaning; they apply to 
short electron transit times when the momentum fik, of an 
electron changes in the vicinity of the branching points 
(which may be real or imaginary). Then, if the condition 
Uor %fi still applies, the probabilities ~ ' " ' ( 0 )  and w ' " ' ( m )  
are established in a time much shorter than r. 

In calculation of just the partial probabilities w C " ' ( m )  
we are in fact dropping the concept of collisionless transport 
over the full path - a < k,  < and, consequently, there is 
no need to limit the treatment to the case when m ,  < m ,  , as 
assumed at the beginning of the present section. The results 
obtained below for the partial probabilities are valid in the 
vicinity of any branching point irrespective of the sign of A. 
This applies also to the probability w:' = 2  1c::+ , 1' ob- 
tained from Eq. ( 3 9 )  for a transition to a discrete level near 
its branching point. 

Using Eq. ( 4 3 ) ,  we obtain 

w( , )  ( m )  = ( E I E ~ ) )  3, ( 5 1 )  

where 

E:)= [ yn ( m )  I "'Pmofi2 
e  ( h 1 p,m,' (16na) '"[A,  ( m )  1 Y, 

In  calculation of w'"' ( m )  we find that the main contribution 
to the integral with respect to q  comes from the range 

which ensures that the inequalities given above, particularly 
Eq. ( 4 1 ) ,  are satisfied. The field E:' in Eq. ( 5 1 )  is of the 
order of <( U,/ea) ,  where f -  1 applies to a relatively shallow 
level n and f 4 1 describes a deep level n. Hence, it follows 
that the probability w'"' ( m )  is low in the investigated range 
of fields, but it is not exponentially small in any field. A 
comparison of the probability w'"' ( m  ) of a transition from a 
level n to a state with the continuous spectrum near the mth 
branching point with the probability of a transition to the 
mth level itself WE' = 2/cjnn:+, 1 2 ,  where lc::,, 1' is calcu- 
lated from Eq. ( 4 0 ) ,  demonstrates that these probabilities 
agree apart from a factor of 2. 

5. DISCUSSION OF RESULTS 

A purely dynamic analysis of the transport of electrons 
in a homogeneous longitudinal field Ex = E  shows that an 
electron which initially moves in one of the size-quantization 
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subbands has a finite probability of transfer to other sub- 
bands, and also to states with a continuous spectrum. This 
intersubband tunneling in weak fields E is characterized by 
an exponential smallness over all parts of a path k ,  ( t )  in the 
plane of a two-dimensional wave vector (k,, ky ), with the 
exception of the vicinity of the points where this path inter- 
sects regions in the vicinity of the branching points 
k + k : = k 2,. If eEa < U,,, these regions are much smaller 
than the distances between neighboring branching regions. 
Near branching points the probability of a transition to the 
subband split off most and the total probability of a transi- 
tion to states in a continuous spectrum both increase with 
the field as E3, i.e., a typical tunnel exponential function no 
longer occurs in the expression for the probability. 

The dynamic approach adopted above is valid only in 
the range of fairly high fields described by Eq. ( 5 0 )  subject 
to the condition U,r%fi. In weaker fields an electron travels 
without collisions only within intervals Ak,, which are 
small compared with the separation between the branching 
regions, but is sufficiently large compared with the intervals 
that make the dominant contribution to the k,, -dependent 
partial tunneling probabilities w'"' ( 0 )  and w ' " I  ( m  ) in the 
vicinity of the branching regions. 

Since the motion of an electron in the latter case is of 
stochastic nature, it is described by a semiclassical kinetic 
equation 

where f, ( k )  is the distribution function in the nth subband; 
k = Ikl; St f  is the collision integral describing the scattering 
between states with different values of k  both within the sub- 
band n and between the subbands, i.e., dependent also on 
A,. ( k ' ) ,  nf#n.  The new term in the kinetic equation is last on 

the right-hand side where W r ' ( k y  ) = w'"'(m) + wr'  and 
it describes the loss from the nth subband to states with a 
continuous spectrum and to the subbands which branch off. 
Equation ( 5 2 )  does not contain terms describing the tunnel 
return from states with a continuous spectrum and from dis- 
crete bands, i.e., in a homogeneous situation this equation 
can describe only nonequilibrium decay of the electron den- 
sity in a well under the influence of heating and of the tunnel- 
ing in a longitudinal field E. In an inhomogeneous case this 
equation, supplemented by the diffusion term v,, (k )dfn /dr ,  
can describe the reduction in the electron density in the well 
and can be used to deal with similar problems. 

The authors are grateful to M. I. Dykman for valuable 
discussions. 
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