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A quasimolecule consisting of one negatively charged particle and three nuclei is analyzed. The 
diabatic potential-energy surfaces of the system are found when the distances between the 
particles are large and also in the limit of a bound molecule. The potential surfaces of the 
quasimolecule are compared. Correlation rules for the diabatic molecular orbitals are 
constructed. It is found that the potential-energy surfaces intersect, at a point when the particles 
are close together and on lines in the asymptotic region. 

INTRODUCTION 

~ersh te in  and Krivchenko' have denied the correlation 
rules for molecular orbitals (MOs) for the case of a single 
electron in the field of two fixed nuclei. The problem was 
solved through separation of variables in the Schrodinger 
equation in a prolate spheroidal coordinate system and keep- 
ing the number of zeros of the wave functions fixed as the 
distance between nuclei was varied. Correlation rules for the 
MOs of diatomic many-electron quasiparticles were derived 
in Refs. 2-6. 

For the case of a single electron in the field of three fixed - 
nuclei it is not possible to separate variables in the Schro- 
dinger equation. It is thus not possible to determine MO 
correlation rules by calculating the number of zeros of the 
wave functions. Dowek et a/.' have proposed an empirical 
method for determining the MO correlations of K-shell elec- 
trons of simple triatomic quasimolecules through the con- 
struction of "correlation cubes." 

In the present paper we analyze a quasimolecule con- 
sisting of one negatively charged particle and three nuclei, 
with charges Z, = Z, = 1 and Z, = Z = 1,2,3 ,... . Systems 
of this type arise, for example, when the molecular hydrogen 
ion H: collides with H+,  He++,  etc., ions or when a meso- 
molecular ion of a hydrogen isotope8 approaches the nuclei 
of various elements. This problem is also interesting in con- 
nectibn with research on the structure of triatomic mole- 
cules. 

After the nuclei of a quasimolecule have separated, the 
electron may be in the field of two protons or in the field of 
nucleus Z. The MOs can thus be divided into a group of 
orbitals which are found as the H; ion approaches nucleus 
Zand a group of orbitals which are found as a hydrogen-like 
ion A + ' 2 -  I '  approaches two protons. 

To take all types of interactions which occur in the colli- 
sions of atomic particles into account most completely, one 
determines the correlation among diabatic MOs.*-' Diabatic 
MOs differ from adiabatic MOs in that they are found in the 
approximation in which small terms are ignored in the com- 
plete Hamiltonian of the system. In the analysis below we 
ignore the coupling between MOs belonging to different 
atomic particles in the limit of separate nuclei. 

It is customary to select the following three coordinates 
for a description of the relative positions of the nuclei: R, the 
distance between the two protons; L, the distance from nu- 
cleus Z to the center of mass of the protons; and y, the angle 

between the R and L axes. For convenience in the calcula- 
tions, however, we will introduce the coordinate system 
which is the most natural one in each particular case. We will 
then rewrite the results in terms of L, R, y. 

Our problem is thus to determine the particular orbital 
of the bound molecule (L = 0) which each of the orbitals of 
the separate atomic particles (L = w ) becomes when the 
nuclei come extremely close together. This approach makes 
it possible to determine regions of a quasiintersection or 
close approach of the potential surfaces of the quasimole- 
cule, at which nonadiabatic transitions occur. 

CORRELATION OF ORBITALS IN THEZ+H: 
QUASIMOLECULE 

Let us consider the quasimolecule which is formed as 
the ion H,+ approaches nucleus Z. To describe the motion of 
the electron and the relative position of the nuclei, we intro- 
duce two prolate spheroidal coordinate systems with foci at 
the positions of the nuclei of the H; ion: 

where r, and r, are the distances from the electron to the 
foci, and R, and R, are the distances from nucleus Z to the 
foci. The coordinates 6, 77 and L, yare related by 

E =  [ (LZ-RL cos y+RZ/4) "+ (LZS RL cos y+R2/4) " ] / R ,  
q= [ (LZ-RL cos y+R2/4)'"- (LZ+RL cos y+RZ/4)"]/R.  

The wave function of the electron satisfies the Schro- 
dinger equation 

where H''' is the Hamiltonian for the H z  ion, the operator 
V = - Z / l  r, - R, I, represents the Coulomb interaction 
between the electron and the Z nucleus g i  = E, - W is the 
energy of the electron, W =  1/R + Z/R, + Z/R,  is the 
potential energy of the nuclei, and E, is the total energy of 
the quasimolecule. Here and below, we are using the atomic 
system of units. 

We expand the wave function 4, in wave functions of 
the discrete spectrum of the molecular hydrogen ion: - 
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where Elo,Z,yl, a.u. 

c p j ~  ( E l ,  q', (p', RJ = (2n) -'Xjlj ( E r r  R) Y j I j  (qr ,  R )  exp (ihjcpr) , 4 
-/.2- 

and XJLJ (6 ',R) and qA, (vl,R) are the quasiradial and qua- 
siangular wave functions for H,+ . Here 4 is the projection of 
the orbital angular momentum of the electron onto the mo- 
lecular axis R, and j represents the set of all other quantum 
 number^,^.'^ [we are assuming that the continuum functions 
contribute little to expansion (3)  even at large Z ,  since in 
this case the states of the ( Z  + H,+ ) quasimolecule become 
excited states of the bound molecule]. Substituting (3) into 
(2),  multiplying by q, z,, and integrating over the electron 
coordinates, we reduce Eq. (2) to an infinite system of cou- 
pled equations. To solve this system we need to diagonalize 
an infinite-dimensional energy matrix. 

To determine the matrix elements of the operator 
V = - Z / l  r, - R, I, we use a Neumann expansion": 

where E, = 2 - Sm0,P; and Q; are the associated Le- 
gendre polynomials of respectively the first and second 
kinds, and f, and f , mean the larger and smaller of f and 
6 '. After an integration over the angular variable we find 

m 

where 

Vun (9 ,  q, R)  =Pnm ( 9 )  [I?) (R)xd2' ( E ,  R )  -1i2' 

and m = Illi - 4 I [here and below, we are omitting the ar- 
gument R and the index 4 from the functions] XjA, (6 ',R) 

and ( v' ,R 1. 
Using (5)-(7), and diagonalizing the finite-dimension- 

a1 energy matrix, we can calculate the potential-energy sur- 
face of the quasimolecule for any configuration of the nuclei. 
To determine the MO correlation, however, it is sufficient to 
determine the potential surfaces in the two limiting cases 
L$  1 and L = 0. Figure 1 shows the energy terms 
lo(+) 2&) lr(+) , , and 3d+' of the ground and first three ex- 
cited states of the bound molecule according to calculations 
from (5)-(7) for Z = 3 and R = a, (the equilibrium dis- 

FIG. 1. Energy terms of the combined molecule according to calculations 
from (5 ) - (7 )  and ( 1 5 ) ,  (16) for Z =  3 and R =2a,,.  1-4: The 
( Z  + H: ) quasimolecule. I - lo'+'; 2 - 2&'; 3 - Id+'; 4 - 3dt'. 5- 
9: The (p +p + A + '=- ' )  ) quasimolecule. The dashed curves show 
terms found without consideration of the interaction between the m = 0 
and m = + 1 states. 

tance between the H,+ nuclei) (for Z = 1,2, the relative ar- 
rangement of the terms remains the same; the only change is 
a shift of the levels). As the basis functions we have adopted 
numerical wave functions of the first four states 
( l s ~ ' + ' , 2 ~ ~ ' - ~ , 2 p ~ ' + ' , 2 s ~ ~ + ) )  of the H,+ ion (the classifica- 
tion is based on the quantum numbers of the combined 
atom9.'O). In our notation, the + express the symmetry of 
the state under reflection in that plane which is perpendicu- 
lar to the molecular axis and which cuts it in half (the trans- 
formation v'+ - 1 7 ' ) .  

If the distance between nucleus Z  and the H: ion is 
sufficiently large, and the condition f z 2 L  /R $1 holds, the 
matrix elements in (5) can be expanded in inverse powers of 
f. Ignoring the exponentially small terms in (7) ,  and using 
the asymptotic representationI2 of the associated Legendre 
polynomials of the second kind, Q;((), we can write the 
following expression for V p ' :  

where 
m 

A::' ( R )  =I:" ( R )  J Xi ( I 1 )  Pnm ( E l )  Xj ( E l )  E,' ' dSf 
f 

m 

-1:' ( R )  J x i  ( l f )hm(5 ' )x j (E' )d5 ' .  ( 9 )  
I 

From the orthonormality of the H,+ wave functions follows 
A I;O'(R) = 8SU/R 3. 

Noting that the off-diagonal matrix element is 
A P' (R)  = 0, and transforming from f and 7 to L and y, we 
find the following expression for the potential-energy sur- 
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faces of the quasimolecule in second-order perturbation the- 
o r y ~ ~ :  

L ' - - [a:+' (R)  sin2 ~+4ai-' (R)  cos2 71, (10) 
2L' 

Here E~ ( R )  are the energy terms of the H: ,Qi ( R )  is the 
quadrupole moment of the H: ion, and a/! ( R )  = 4ai'- '(R) 
anda:(R ) = a , ' + ' ( ~ )  are the components of the H,f polar- 
izability tensor respectively parallel and perpendicular to 
the molecular axis. The summation in (12) is over the ma- 
trix elements between wave functions of identical symmetry 
(under the transformation ql+ - q ' )  for a j + ) ( R )  and 
between wave functions of opposite symmetry for a: - ' ( R  ). 
The prime on the summation sign means that the term with 
j = i must be omitted from the sum for a! + ' ( R  ). 

Expression ( 10) holds under the condition that the off- 
diagonal matrix element in ( 8 )  is small in comparison with 
the term difference E, ( R )  - E~ ( R ) .  Accordingly, in regions 
of the internuclear distance R in which the term zi ( R )  is 
crossed or merges with other H: terms, expression (10) 
cannot be used. Expression ( 10) is also inapplicable for H: 
states with a nonzero projection of the angular momentum 
of the electron, since terms with il # O  are doubly degener- 
ate.9 In these regions of R, and for states with anonvanishing 
angular-momentum projection, it is necessary to solve a sys- 
tem of coupled equations with matrix elements ( 8 ) .  If, for a 
state with A, +O, we restrict the expansion to two H> wave 
functions, one with a positive angular-momentum projec- 
tion and one with a negative projection, we find the following 
expression for the potential-energy surfaces of the quasimo- 
lecule: 

where k = U,. It follows from ( 1 3 )  that the splitting of the 
surfaces is important only for the n- terms of H: . In a linear 
configuration of the nuclei ( y  = 0, n-), and in the limit of the 
bound molecule, potential energy surfaces ( 1 3 )  again degen- 
erate. 

bsing the numerical wave functions for H: , along with 
( 1 1 ) and ( 12) we have calculated the quadrupole moments 
and the polarizability of the molecular hydrogen ion at the 
equilibrium internuclear distance, R = 2a,. For the ground 
state and the first three excited states of HZ we found 

Qo=0.939, Q,=4.614, Q2=0,402, Q3=1.864, 

a0"=5,071, aaL=1,766. 

The calculated values of the polarizability (npo'-' and 
npn-'+' wave functions with n<5 are involved in the expan- 

sion) agree well with the values found in Ref. 14 through an 
expansion of the two-center Coulomb Green's function in 
the complete system of Sturm functions of the purely dis- 
crete spectrum. l5 

Let us find the MO correlation rules. It follows from 
(5 ) - (7 )  that none of the off-diagonal matrix elements 
V,, ({,q,R) vanishes identically for a given value of the pa- 
rameter R and arbitrary values of f and q. Only with f = l  
or with q = + 1 and q = 0 are some of the matrix elements 
V,, ({,q,R) identically zero for arbitrary values of the two 
other parameters. These values of { and q correspond to 
configurations of nuclei with more symmetry, specifically, 
the linear configuration ( g  = 1 and q = + 1 ) and the con- 
figuration of an isosceles triangle ( q  = 0 ) .  For a configura- 
tion of nuclei with higher symmetry, only those H: orbitals 
which have the corresponding symmetry will contribute to 
MO expansion ( 3  ) . 

The wave functions for H: are classified as either sym- 
metric or antisymmetric, depending on whether the quasian- 
gular function Y, ( 7 ' )  changes sign when q' is replaced by 
- q' (Refs. 9 and 10). For the associated Legendre polyno- 

mials P ," ( q ' ) ,  the change in sign resulting from the replace- 
ment of q' by - q' depends on the parity of n - m (Ref. 12). 
Accordingly, for off-diagonal matrix elements taken 
between the wave functions of opposite symmetry in ( 5 )  
there are no Legendre polynomials with even n - m; i.e., the 
summation is carried out over those values of n for which the 
difference n - m is an odd number. The associated Legendre 
polynomials P r ( q )  with odd n - m contain the variable 77 
as a factor." The off-diagonal matrix elements taken 
between wave functions of opposite symmetry therefore van- 
ish in the case 7 = 0. As a result, the molecular orbitals ( 3 )  
reduce to symmetric and antisymmetric ones for the isos- 
cleles-triangle configuration. 

For the isosceles-triangle configuration, each MO ( 3 )  
thus has a definite symmetry under reflection, which is pre- 
served when we go from thelimit of separate atomic particles 
to the limit of the bound molecule. For each value of the 
parameter R, the correlation of MOs of the same symmetry 
occurs in accordance with the rule that terms do not cross. 
This conclusion follows from the fact that for given values of 
R and q a change in the parameter g alone cannot lead to the 
satisfaction of two term-crossing conditions.'' 

For a linear configuration of nuclei ({= 1 and 
77 = + 1 ), the off-diagonal matrix elements between states 
with different values ofil are zero [the Legendre polynomi- 
als are P r ( 5 ) - ( 1 2 -  1)"" and P r ( q ) - ( 1  -q2)m/2;  
Ref. 121. Each MO ( 3 )  is thus characterized by a definite 
value of the projection of the orbital angular momentum of 
the electron onto the molecular axis at all distances between 
the nuclei. In the case of a linear configuration of the nuclei, 
the MOs with identical A are thus correlated. For each value 
of the parameter R the correlation of the MOs with identical 
il is in accordance with the rule that terms of identical sym- 
metry do not cross. 

If the configuration of the nuclei does not have a higher 
symmetry, the correlation of all the MOs in ( 3 )  conforms to 
the term noncrossing rule. As the symmetry of the configu- 
ration of nuclei is lowered, the crossing energy terms thus 
move apart. 

The MO correlation rules which have been found 
[along with (10)-(13) and the terms of the bound mole- 
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cule] make it possible to determine the behavior of the po- 
tential-energy surfaces of the ( Z  + H; ) quasimolecule. 
For Z = 1,2,3 and R = 2a,, for example, we find that the 
potential surfaces of the first four states of the quasimolecule 
do not cross each other. The only effect in this direction is 
that some of the surfaces approach each other in configura- 
tions of nuclei with higher symmetry [see ( l o ) - (  13) 1. 

CORRELATION OF ORBITALS IN THE QUASIMOLECULE 
p+p+A+@-'I 

Let us examine the quasimolecule which is produced 
when a hydrogen-like ion A + ' = - I )  and two protons ap- 
proach each other. We place the center of the coordinate 
system at the position of the ion, and we run the polar axis 
along the L axis. We can then write the following expression 
for the operator which represents the interaction of the elec- 
tron with the two protons: 

X 

1 
Bl (z)''= R,, i t  ( r )  Rn , , ( r )  rl+' dr + z1 

0 

m = Jm, - m, 1 ,  and R,, ( r )  and a,, ( 8 )  are the radial and 
angular wave functions of the hydrogen-like ion. The upper 
sign in the exponential function in ( 1 5 )  is used in the case 
mi > m, and the lower in the case m, < mi. 

If the distances between the hydrogen-like ion and the 
protons are large ( R , ,  & 1, O<R < w ) , the potential-energy 
surfaces of the quasimolecule are conveniently determined 
in a basis of parabolic functions. In this case the first two 
terms of the interaction operator ( 14) are diagonal with re- 
spect to each group of mutually degenerate s t a t e ~ , ' ~  and the 
third term has nonzero off-diagonal matrix elements 

X Pl" (cos 0,) cos [m (cp, - (P)] 

X Plm (cos 0 ) .  ( 1 4 )  

Here E ,  = 2 - Smo;r,8,q, are the spherical coordinates of 
the electron; 8,  and 8,  are the angles between the polar axis 
and the vectors R, and R,; and pa,, = f n-/2 are the angles 
between the xz plane and the plane which passes through the 
nuclei. The upper terms in parentheses in ( 14) are used for 
r < R,,R,; the lower for r >  R , ,  R, .  The coordinates R, ,  R ,  
and 8, ,  8 ,  are related to L, R,  y by 

We expand the unknown MOs in wave functions of the 
discrete spectrum of the hydrogen-like ion, and we reduce 
the original Schrodinger equation to an infinite system of 
coupled equations. For matrix elements of the interaction 
operator ( 14) we find 

(1 - m) ! v:;~;! = - 
3 %  a f ( l + r n ) !  

[B1 (R,)  P l m  (cos Oa) e*'mn/2 
I = 0 

+- B~ (R,) plm (COS O b )  eTL711n/z] J I ,  ( 1 5 )  

where 

- 
nlTnf'rn. 3n (n  - 1)'/2 sin 0,  sin 0,  

Vn,n,miJ = - 42 (-~i;i--- R (,“ 

between states with parabolic quantum numbers 
n; =n,,(n,+ 11, andmi = m i  + 1. 

After diagonalizing the energy matrix for each group of 
degenerate states, we find the following expression for the 
gotential-energy surfaces of the quasimolecule'7: 

wheren = n ,  + n,+ Jml + 1 ,  A = n ,  - n,,andcristhean- 
gle between the vectors R,  and R,. For R,, z L & R  / 2 ,  the 
last expression becomes the known expression for the linear 
Stark effect. 

Incorporating the following terms of the expansion in 
( 1 4 )  results in a twofold splitting of the potential-energy 
surfaces with mi # O .  The MOs which correspond to the sur- 
faces in the case of an isosceles-triangle configuration have 
opposite symmetries under reflection in that plane perpen- 
dicular to the axis connecting the protons which cuts this 
axis in half (the transformation p- - p). If the configura- 
tion of nuclei is axisymmetric, the degeneracy in the direc- 
tion of the projection of the angular momentum of the elec- 
tron is not lifted. In this case we find the following 
expression for the potential-energy surfaces of the quasimo- 
lecule: 

( 1 8 )  
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faces should lead to the appearance of an oscillatory struc- 
ture in the total scattering cross s e c t i o r ~ ~ ~ . ' ~  when H,i ions 
oriented in a direction perpendicular to the velocity collide 

FIG. 2. Potential-energy surfaces H '(L,2,y) and J; :,,, '(L,2,y) of the 
( p  + p + A  + "- " ) quas~molecule according to calculations from ( 15) 
and ( 16) for Z = 3 and R = 2a,, In the crosslng reglon. 

The upper sign is used in ( 1 8 )  if the nucleus Z is not between 
the protons ( a  = 0 ) ,  and the lower sign is used if the nucleus 
is between the protons ( a  = n-). 

In the limit of the bound molecule, the degeneracy with 
respect to the direction of the projection of the angular mo- 
mentum of the electron is lifted for all values of the angle y 
except y = 0 and T .  Figure 1 shows the energy terms of the 
first five states of the bound molecule according to calcula- 
tions from ( 15  ) and ( 16) for Z = 3, R = 2a,,, and Og yg 
n-(The wave functions of the hydrogen-like ion with n<2 are 
used in the expansion of the MOs). The dashed lines show 
the terms found without consideration of the interaction be- 
tween the states with m, = 0 and m, = +_ 1. At y = 71/2, 
these terms correspond to states which are symmetric under 
reflection. An exceptional case is the first excited level, 
which corresponds to an antisymmetric state. At y = 0 and 
.rr, the second and third excited levels are T terms, and the 
others a terms. For Z = 1 ,  2, the relative positions of these 
terms remain the same. The positions of these terms with 
respect to the levels of the ( Z  + H,t ) molecule change. 

The correlation among the MOs in the 
( p  + p  + A + ' Z - l '  quasimolecule conforms to the rules de- 
rived in the preceding section of this paper. Let us use these 
rules to analyze the potential-energy surfaces with n = 2. It 
follows from the MO correlation rules that in the case of an 
isosceles-triangle configuration the antisymmetric term 

) ( L , 2 , ~ / 2 )  which is obtained after the splitting of the 
level with n ,  = 0, n, = 0,  and m, = 1 goes over into the first 
excited level of the bound molecule in the case L = 0,  while 
the symmetric term gh; (L,2,1~/2) ,  which is a lower-lying 
term in the case L $1,  becomes the second excited level of the 
bound molecule. These terms thus cross. For a linear config- 
uration of nuclei, the order of the terms at L > 1 and L = 0 is 
the same. Accordingly, the terms do not cross for y = 0,  n-. 
Figure 2 shows the potential-energy surfaces 8;; ' (L ,2 ,y )  
and g&,; )(L,2,y) calculated from ( 15) and ( 16 )  for Z = 3. 
We see that the potential-energy surfaces intersect at the 
point y = 71/2, L = 0.67~". The observed intersect of sur- 

with nuclei Z .  
At L > R  /2  we find from ( 17 )  

It thus also follows from ( 10) that the potential-energy sur- 
face %',,(L,R, y )  of the ground state of the ( Z  + H 2 ) quasi- 
molecule intersects the potential-energy surfaces of the 
( ( P + P + A  + ' Z 1 )  ) quasimolecule only if Z >  2. The in- 
tersections occur on lines for L > 1. This circumstance is re- 
sponsible for the low probability for charge exhange if the 
mesomolecular ions of hydrogen isotopes with the nuclei of 
helium and hydrogen atoms in the mesonic catalysis of nu- 
clear fusion reactions in a deuterium-tritium mixtures8 

This study shows that the potential-energy surfaces of 
the quasimolecule depend strongly on the angle y. The pro- 
babilities for inelastic processes during collisions of H,i with 
nuclei should therefore depend strongly on the orientation of 
the molecules. An experimental study of this question in the 
example of a system for which precise calculations are possi- 
ble would present the opportunity to test the theoretical 
ideas. We note in conclusion that the method proposed here 
might be used to determine the correlations of the MOs of 
triatomic quasimolecules with several electrons. 

I wish to thank 0. B. Firsov and M. I. Chibisov for a 
discussion of these results. 
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