
Modification of the distribution of spin waves under parametric resonance 
conditions in ferrites 

V. V. Zautkin, V. S. L'vov, and E. V. Podivilov 

Institute ofAutomation and Electrometry, Siberian Branch of the AcademyofSciencesof the USSR, 
Novosibirsk 
(Submitted 10 January 1989) 
Zh. Eksp. Teor. Fiz. 96,3 14-329 (July 1989) 

A detailed analysis is made of the evolution of the distribution function of parametric magnons in 
ferrites on increase in a supercriticality parameter 6. It is shown that, instead of creation of a 
second group of pairs with a singular angular distribution, a completely different modification 
may take place. In fact, at some value of 6 = 6, a regular part may appear inn (k )  near the 
equator: n ( k )  # O  applies in a certain range ofpolar angles 8 (k )  [8(k)  - n-/2I (S] and the width 
of this distribution 6 vanishes at 6 = 6 and then increases with the supercriticality parameter. A 
theory of this effect is developed using the self-consistent-field approximation: the value of 6, is 
determined, the distribution function n (k )  is found in the range 6 > g, ,  and calculations are made 
of the nonlinear susceptibilitiesx' andx" of a system of parametric magnons. An experimental 
study is reported of the behavior of parametric spin waves in yttrium iron garnet at high parallel 
pumping powers. Determination was made of the threshold of formation of a packet localized far 
from the equator ofthe resonance surface in the k space. It is shown that both types of 
modification of the distribution function of parametric magnons occur in yttrium iron garnet, 
depending on the region of excitation of spin waves in k space. 

It is well known that under conditions of a parametric 
instability of spin waves induced by an external microwave 
magnetic field (pump) a steady state is established as a re- 
sult of the action of spin waves on the pump: the damping 
constant of the waves y (k )  increases on increase in their 
number or because of a "phase"1imitation mechanism asso- 
ciated with the interaction of wave pairs. If this limitation 
mechanism predominates, the dependences of the principal 
characteristics of parametric waves on the amplitude of the 
pump field h are universal for a small excess of h above the 
parametric instability threshold h , .  This is due to a fact, es- 
tablished within the framework of theS theory,'.' that in the 
case of small values of the supercriticality parameter the dis- 
tribution of parametric waves n (k )  along the directions k is 
singular: n (k)  # O  is true only on a resonance surface and 
only for those directions of k for which the ratio of the coeffi- 
cient representing coupling with the pump to the damping is 
maximal. In the case of a spherically symmetric problem 
which provides a good description of antiferromagnets, pa- 
rametric spin waves are excited over the whole resonance 
surface. Under axial symmetry conditions typical of ferrites, 
parametric spin waves are excited on one or two circles of the 
resonance surface. In the absence of symmetry, just one pair 
of parametric spin waves is excited. It therefore follows that 
in all cases when the supercriticality parameter is small, only 
one singular group of pairs is excited and the pairs in the 
group are coupled in the same way to the pump. 

The dependences of the number of parametric waves 
and of the nonlinear susceptibilities on the pump power, uni- 
versal in the S theory, are supported well by experiments on 
ferrites3s4 and antiferromagnets5 when the supercriticality 
parameter is small. Much less work has been done on the 
problem of evolution of the distribution function of paramet- 
ric waves on increase in the supercriticality parameter. In 
accordance with the concept of multistage excitation of pa- 
rametric waves, it is usual to assume' that on increase in h in 
a certain range h = h, > h ,  a second singular group of para- 

metric waves is created, then a third singular group of pairs 
is formed for h = h, > h,, and so on. 

We shall analyze in more detail than hitherto the evolu- 
tion of the distribution function of parametric spin waves in 
ferrites on increase in h and show that, instead of creation of 
a second group of pairs with a singular angular distribution, 
the modification may be quite different. In fact, at some val- 
ue of h = h,  a regular part appears in n ( k )  near the equator: 
n (k )  # O  in the range of polar angles 6(k)  defined by the 
inequality / 8 (k )  - n-/2<6, and the width of this distribu- 
tion S vanishes at h = h, and then increases on increase in 
the supercriticality parameter. This behavior of the distribu- 
tion function is related to a large nonanalytic contribution of 
the long-range magnetic-dipole interaction to the matrix ele- 
ment S(k,  k') representing the scattering of parametric spin 
waves by one another. 

We shall develop a theory of this effect using the self- 
consistent field approximation: we shall determine h,, find 
the distribution function n ( k )  in the range h > h,, and also 
calculate the nonlinear susceptibilitiesx' and X" of a system 
of parametric spin waves. 

We shall report an experimental investigation of the be- 
havior of parametric spin waves in yttrium iron garnet 
(YIG) as a function of the intensity of a static magnetic field 
H a t  high parallel pumping powers. We shall determine the 
threshold of creation of a packet of parametric spin waves 
h, ,  localized far from the equator of the resonance surface in 
the k space. We shall show that at low values of Ik/, when H 
is close to the critical value H,  corresponding to k = 0, a 
second group of parametric spin waves is generated close to 
the equator of the resonance surface, but it is not detectable 
experimentally. Therefore, h,  is the threshold of creation of 
a third group of parametric spin waves. However, if 
H, - H>300 Oe (i.e., if Ik( is sufficiently large), the second 
group of parametric spin waves is created far from the equa- 
tor. A qualitative picture of the modification of the distribu- 
tion function of parametric spin waves in ferrites formulated 
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below enabled us to carry out quantitative computer calcula- 
tions of the threshold powers h f of creation of parametric 
spin waves localized far from the equator and observed in 
YIG. We found that the experimental and theoretical depen- 
dences of h f on H agreed for YIG. 

1. EQUATIONS OF MOTION FOR PARAMETRIC SPlN WAVES 
IN CUBIC FERROMAGNETS 

1.1. Initial equations. In the axial symmetry case, 
which is encountered in isotropic and cubic ferromagnets, 
the steady-state equations of the S theory [Eqs. ( 18.17) and 
(18.20) in Ref. 21 describing the distribution of parametric 
spin waves in the k space can be simplified by replacing the 
variables R = 8, p -x, f in accordance with the expressions 

x=cos O ( k ) .  f (52) = ( I - x 2 ) e x p  2icp ( k ) ,  

where 0(k)  and 4 (k )  are the polar and azimuthal angles in a 
coordinate system oriented along the magnetization M; k is 
the wave vector of parametric spin waves lying on the reso- 
nance surface w, = w,/2. After this substitution the coeffi- 
cient Vrepresenting coupling with the pump becomes a con- 
stant and only the dependence on x remains in the equations 
obtained from the S theory: 

\ P ( X ) I < Y ( X ) .  if n ( x ) = O ,  (1.2) 
1 

r 
P ( x )  =hV+ dx'So ( x ,  x') n  ( x ' )  exp  (ig (2') ) . 

- 1  

Here, P (R)  = P(x )  f (R)  is the renormalized pump; 
V(R) = Vf(R) is the coefficient representing the coupling 
of parametric spin waves to the pump h; 
So (R,R1) = So(x,x' ) f (R)  f * (a') isthezerothaxialFourier 
harmonic of the four-wave interaction of pairs of parametric 
spin waves: 

1  
Sm ( x ,  x l )  = - 1 d  (9-cp') s ( x .  x f ;  9-rpr) exp  {irn(rp-9') ). 

2n 

where n (a) = n (x)  f (R)  is the amplitude of parametric 
spin waves; finally, r ( R )  = y(x)  If(x) I is the damping of 
spin waves. The dependence of T ( R )  on the polar angle was 
calculated for YIG in Ref. 6. In the case of y(x) the follow- 
ing expression was obtained, which is accurate to within 
10 5%: 

where y (0)  is the damping of parametric spin waves charac- 
terized by 19, = ~ / 2 ,  y, -- y(O), d = 5.2k/k0 + 1)/(0.4k/ 
k,+ l ) ,k /k , ,=  [ H - H , ) / 1 0 0 0 e ] ~ ~ ~ .  

1.2. Properties of the function S(x, x') for ferromag- 
nets. The explicit form of the Hamiltonian describing the 
interaction of pairs yields the symmetry properties of the 
function S(k, k') : 

S ( k ,  k ' )  = S ( - k ,  k t )  = S ' ( k l ,  k). (1.5) 

Hence, and from the definition ( 1.3 ),.it follows that SO(x, 
x') should be an even function of each argument: 

So ( x ,  x ' )  =So ( - x , x ' )  =So ( 2 ,  - X I ) ,  (1.6) 

whereas its real part Re S(x, x') is symmetric under the 
transposition of x and x'. Specific calculations demonstrate 
that in the case of ferromagnets we have Im SO(x,  x ' )  = 0. 
Therefore, 

S O ( x ,  x ' )  = R e  S " ( x ,  x ' )  =So  (x ' ,  x ) .  (1.7) 

We shall identify the asymptotes S(x, x' ) for x and x' close to 
1 and 0. It follows from the axial symmetry of the problem 
(invariance under rotations about the direction of the mag- 
netization) thatS(8,O ', p - q, ') isindependent ofp - p 'if8 
or 8'  vanishes. Therefore, the integral in Eq. (3)  for m = 0 
remains finite in the limit x,xl - 1 in spite of the presence of a 
singular factor ( 1-x2) - '  ( 1 - x") - I .  It therefore follows 
that 

is finite. 
In identifying the behavior ofS(x, x') at low values ofx 

and x' we shall use the explicit form of Eqs. (6.26)-(6.30) 
from Ref. 2 for S(k, k') . These equations contain terms pro- 
portional to cos2 8(k  + k t )  and cos2 0(k - k'). After inte- 
gration with respect top,  we find from Eq. ( 1.3) that each of 
these terms makes a nonanalytic contribution to S "(x, x'), 
proportional to the powers of Ix x' I. 

Therefore, the expansion ofSO(x, x'), accurate to with- 
in terms -x3, is 

+ x ' ~ )  ( I x+xf I + 1 x-x' ( ) +c2xxr ( I x+xl  I - I x-x' I ) 1.  
(1.9) 

This expansion satisfies all the necessary requirements: it is 
even in respect of each argument [Eq. ( 1.6) 1,  is symmetric 
[Eq. (1.7)], and is finite in the limit x +  1 [Eq. (1.8)]. We 
can therefore expect that a suitable selection of the coeffi- 
cients a, 6,  c,, and c, should ensure a good description of the 
behavior of SO(x,  x') throughout the full range of x and x' 
1x1, Ixl<f. 

Using Eqs. (6.26)-(6.30) from Ref. 2, we carried out 
computer calculations of the function SO(x ,  x') for different 
values of the magnetic field typical of those used in experi- 
ments on YIG ferrite samples. This function was then ap- 
proximated by model dependences of Eq. ( 1.9). The coeffi- 
cients a, 6 ,  c , ,  and c, were found by minimizing the 
mean-square value of the discrepancy in the interval - 1/ 
2(x(1/2. The results obtained are listed in Table I for 
T =  300 K, w,/2a= 10" s-', and M11(100). Here, 
H,  = 1680 Oe is the critical value of the field at which the 
wave vector k of a spin wave with a frequency w,/2 and with 
k lM vanishes, and A,  and A, at the maximum deviations of 
the computer-calculated functions S:, and S:,, from the 
approximation described by Eq. ( 1.9) with a set of coeffi- 
cients given in the interval 1x1, Ixf/<& Clearly, the coeffi- 
cients a, c, and c ,  describing nonanalytic contributions to 
SO(x,  x') are fairly large and the coefficient b for the analytic 
part of the dependence SO(x ,  x') shows the reversal of the 
sign on increase in the magnetic field. 

2. MULTISTAGE EXCITATION OF PARAMETRIC SPlN WAVES 

The solution of Eqs. ( 1.1 ) and ( 1.2) beyond the para- 
metric instability threshold, i.e., when h>h,  = min(y(x)/ 
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TABLE I. Dependence of the coefficients of the model function S0(x ,  x ' )  of Eq. (1.9) on the 
magnetic field applied to a spherical sample of yttrium iron garnet. 

H 1 I I 1 I I ; 'C a I " I, I C ,  I A, .  % I A:, O O  

- H , o ~ ]  

V), is 

n(x)=N,G(x) ,  Ni=(lhV12-y2(0))'"/S"0, 0 ) ,  

sin $ ( 0 )  = y  ( 0 )  /hV,  ( 2 . 1 )  
IP ( x )  12=y2 ( 0 )  +Ni2 ( S o  ( ~ ~ 0 )  -So (0,O) )'. ( 2 . 2 )  

Clearly this state is stable if I P ( x )  ( < y ( x )  for all values x f O  
[condition of Eq. ( 1 . 2 ) ] .  We shall introduce a function 
g ( x )  = ( h ( x ) / h ,  )',where h ( x )  is the value of the pump at 
which 1 P ( x )  ( = y ( x ) .  Obviously, the second threshold 
g2 = (h2 /h1) '  corresponds to the minimum value of this 
function, which appears at a certain point x  = x,. The value 
of c2 is found from the condition {' = min{ (x )  where 

E ( ~ ) = 1 +  ( y 2  ( 2 )  -y2  ( 0 )  ) SO2 (0,O) / y 2  (0 ) (So  ( x ,  0 )  -So (0,O) ) :. 
(2.31 

This condition had been studied earlier, on the assumption 
of analyticity of the function S O ( x ,  x ' )  selected to be the 
dependence ( 1 . 9 )  with a  = c ,  = c, = 0 .  If we additionally 
require that r ( R )  = const [i.e., y ( x )  = y ( 0 ) / ( 1  - x 2 ) ] ,  a 
minimum of & ( x )  occurs at x  = x,, where 

We can see from Table I and Eq. ( 1.9)  that the assumption 
that S O ( x ,  x ' )  for YIG is analytic is far from reality. We shall 
therefore consider the question of the threshold of creation 
of the second group of pairs 6, and the point of generation of 
such a group assuming a more realistic form of the amplitude 
S O ( x  x ' ) .  We shall expand & ( x )  as a series in x :  

f" = 3y" (0)'+y ( 0 )  y"" ( 0 )  2y"(O) (b2+2aci) - 
6a2y2 ( 0 )  ( 0 )  a‘ 

Here, y" ( 0 )  and y"" ( 0 )  are the second and fourth deriva- 
tives of y ( x )  at x  = 0 .  We can see that nonanalyticity of the 
function S o ( x ,  x i )  ( a#  0 )  makes { ( O )  finite. 

We shall first consider the case when a maximum of the 
function { ( x )  occurs at x  = 0 and we shall assume that the 
nonanalyticity of S O ( x ,  x ' )  is strong, i.e., that Ib /'<ac. It is 
clear from Table I that this case is realized in YIG in the 
range of fields H,  - H 2 150 Oe. Let us assume that { " .0. 
It then follows readily from Eq. ( 2 . 5 )  that 

However, if { " < 0 ,  a minimum of { ( x )  occurs at high 
values of x2 and we cannot use the expansion described by 
Eq. ( 2 .5 ) .  We shall find the minimum of { ( x )  defined by Eq. 

( 2 . 3 )  in the simplest case when b = 0  and T(R) = const. 
We then have y ( x )  = y ( O ) / (  1 - x ' )  and it follows from 
Eqs. ( 2 . 3 )  and ( 2 . 5 )  that 

Hence, it is clear that x2 is small for low values of I{ " I and 
that g2 is close to g ( 0 ) .  An increase in I {  " / increases the 
value of lxzl and for c , ) a  it reaches 0.735. We then have 
g z z 1  f 24/cI2. 

In traditional experiments it is usual to investigate the 
integral characteristics of parametric spin waves, so that de- 
termination of the creation threshold of the second group of 
pairs is difficult if it does appear close to the first, i.e., at low 
values of Ixzl. In this case it is interesting to consider the 
threshold of creation of the third group of pairs localized far 
from the equator. At low values of / x z  1 we can obtain simple 
expressions for the integrated amplitude of the second pair 
and for the pump power when the third threshold field h, is 
reached: 

So (x, x ' )  %So (0 ,  y) , y=max{x, x') , ( 2 . 8 )  

which follows from Eq. ( 1 . 9 )  if we retain only the terms 
linear in x  and x' .  Substituting the distribution function of 
parametric spin waves into Eq. ( 1.1)  beyond the second 
threshold and using the approximation described by Eq. 
(2.8 ) , we obtain the following expressions for N, and N2 in 
the limit h>h,: 

In the approximation described by Eq. ( 2 . 8 )  the angle 
of localization of the second group of parametric spin waves 
and the amplitude of the first group of such waves are inde- 
pendent of the pump power h  '. Equations ( 1.1 ) and ( 1.2)  
and the dependences given in the system ( 2 . 9 )  allow us to 
obtain the following expression for the power at the third 
threshold: 

The behavior of parametric spin waves beyond the third 
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FIG. 1. a )  Experimental values of the pump power at the threshold of 
excitation of parametric spin waves characterized by B ( k )  # r / 2  (0);  
theoretical values of the pump power at the second threshold (0) ;  theo- 
retical values of the pump power at the third threshold ( A ) .  b) Theoreti- 
cal values of the angle of creation of parametric spin waves: 0 )  second 
group of parametric spin waves; A )  third group of parametric spin waves. 

threshold is analogous to the behavior beyond the second 
threshold. The amplitude of the second group is frozen at the 
level 

We can ignore here the difference between 8, and 7 ~ / 2  and we 
then have 

We shall conclude this section by presenting (Fig. 1 )  the 
computer-calculated dependences of (,, x,, (,, and x ,  on the 
magnetic field (apart from the values of l ,  and x ,  in a field 
H = H, - 100 Oe) for the values of the coefficients S O ( x ,  
x ' )  and y ( x )  applicable to YIG. 

3. NEW TYPES OF MODIFICATION OF THE DISTRIBUTION 
FUNCTION OF PARAMETRIC SPIN WAVES 

In the preceding section we considered the case for the 
function ( ( x )  of Eq. ( 2 . 3 )  as a maximum at x  = 0 .  Then, an 
increase in the pump power results in multistage excitation 
of groups of parametric spin waves with a distribution func- 
tion n (x)  singular in terms of x  = cos 8. However, if c ( x )  is 
minimal at x = 0 ,  it is natural to assume that n ( x )  differs 
from zero in a certain range 1x1 <S and we then face the 
problem of investigation of nonlinear behavior of parametric 
spin waves as a result of such modification of n  ( x )  . 

3.1. Nonlinear equations for the regular part of the dis- 
tribution function n(x) and the phase +(x). We shall first 
calculate P ( x )  using Eqs. ( 1 . 2 )  and (1.9). If O(x<S, we 
find that 

P ( x )  = A + B X ' + ~ S  { x  (a+e lx2 )  J o  ( X I )  dx' 
0 

a 

8, =, J x20 ( x )  d x ,  o  ( x )  =n ( x )  e x p - i ~  ( x )  , 
-0 

If x>S,  then 

In combination with Eq. ( 1 . 1  ), this gives a complete system 
of integral equations for the characteristics n  ( x )  and $ ( x )  of 
parametric spin waves. We shall derive from the above re- 
sults more convenient integral differential equations for 
these quantities. It follows from Eqs. (3 .1  ) - ( 3 . 3 )  that the 
functions P ( x )  and P f ( x )  are continuous at x  = S and also 
that 

Differentiating again, we obtain 

P" ( x )  =2SZo ( b + 3 c l x ) ,  X> 6, ( 3 . 5 )  

and in the range 0  < x  < S ,  we have 

P" ( x )  =2bSXo+6clx 1 (5 ( 2 ' )  dx' 
-x  

6 

+ 2 S o ( x )  ( a + 2 4  ( e l - c , ) )  +45'(e,+2c2) 5 x r o ( x ' )  dx' ,  ( 3 . 6 )  

If 1x1 < S  the S theory equations [Eq. ( 1 . 1  ) ] together 
with Eq. ( 3 . 7 )  yield the required integral differential equa- 
tion for n ( x )  and $ ( x ) ,  in which-in contrast to Eq. ( 3 .  l  )- 
the limits of integration are independent of x .  However, we 
shall be satisfied with a much simpler though approximate 
equation which can be derived from Eqs. ( 1 . 1  ) , ( 1.2) ,  and 
( 1 . 3 )  replacing x  in Eq. ( 3 . 6 )  with S within the integration 
limits: a 

2S  (o+2x2 (c l - e , )  ) n (r)  = - 2 s  ( b + 3 e l x )  1 n (2')  
-6 

~ e x p [ - - i ( $ ( x ' )  --$ ( x )  ) Idx ' f  ( y  ( x )  11" ( x )  +y'  ( x )  $' ( x )  ) 
+ i ( f f ( x )  - y  ( J ' ) I ~ I ' ~ ( x ) ) .  ( 3 . 8 )  

The criterion of validity of these equations will be formulat- 
ed later. 

3.2. Simple solutions of the main equations (3.8) for the 
distribution function. It is easiest to obtain the solution of 
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the system (3.8) when b  = c ,  = 0  and there is no integral 
term: 

n ( x )  =N16 ( s )  +N2 ( x )  , Ni=N,*-- [ y ( x )  y" ( x )  ] ' " /as ,  

1)' ( x )  = [ y" ( x )  l y  ( x )  ]">sign ( x )  , (3 .9)  

1V2(x)=(y" ' (x )y(~)+y"( .~)  y ' ( x ) ) l  

4s (a-2c2x2) [ y" (x) y (x)] '". 

This solution is obtained for ( > < ( O ) .  If ( < ( (O) ,  we have 
the usual singular solution from the S  theory [Eq. (2.1 ) 1. 
Substituting in this solution the value < = ( ( 0 )  fiom Eq. 
(2.5),  we can readily see that N({ (O) )  = NT. Therefore, 
the number of parametric spin waves in the singular part of 
the distribution function increases when ( < ( ( 0 )  in accor- 
dance with Eq. (2.1 ), whereas for (> { ( O ) ,  this number is 
frozen at the threshold level N 7 .  The regular part of the 
distribution N,(x)  is proportional to 1x1 at  low values of the 
argument: 

Using the model dependence y ( x )  described by Eq. ( 1.4), 
we readily find from Eq. (3 .9)  that at low values c?.f 1x1, we 
have 

N .  ( x )  = 1 X I  (12/2Sa ( 2 d )  (3.11) 

I t  is clear from the system (3.8) that if c ,  #0 ,  the property of 
the solution described by N 2 ( x )  rn 1x1 is retained. 

We shall first investigate the case when b # 0  assuming, 
forthesakeofsimplicity, thatc, = c, = 0. I f b  +O, Eq. (3.8) 
becomes strongly nonlinear and it is difficult to analyze. 
However, in the case of small values of the supercriticality 
parameter ( - { ( O )  4 1, when the width S  of a packet of pa- 
rametric spin waves is small, Eq. (3.8) can be investigated 
using perturbation theory in terms of 6. 
Then, instead of Eq. (3 .9 ) ,  we obtain 

$ ' ( x )  = s i g n ( x )  ( ~ " ( x ) / y  (~))'~(l+b'(261xl-6~)/a~), 

1V~=N,*(1-6 'b~ /a ' ) ,  (3.12) 

N. ( x )  =.Z',+!V,' I x 1 .  N2=NI' (-b/a+ 36b2/a2) 

This solution has two important special features:. first- 
ly, the singular part of the distribution N, decreases on in- 
crease in the supercriticality parameter and, obviously, at 
high values of < it should vanish; secondly, the regular part 
of the distribution at x = 0  differs from zero (N,#O) and 
increases on increase in (. 

3.3. Equations for the width 6 of the distribution and for 
the nonlinear susceptibilities X' and x". We shall determine 
S  using 

Substituting in the system (3.13) the expressions for 
P(S )  ? ' ( a ) ,  and P " ( S )  from Eqs. (3 .4)  and (3 .5 ) ,  we find 
that simple transformations lead to 

Here, 

X=ISZo12, Y=hV Re SZo ,  f ( x )  =So(O, x ) / S O ( O ,  0 ) ,  

j ,=d f (x ) /dx ,  f2='/2d'f(x)ldx'. 

The values of the functions -J; f,, f,, y, y', and y"-are 
taken at  the point x  = 6. In  these equations we are ignoring 
the terms b2,, c,C,, and c,Z, compared with 2,. Using the 
solution described by the system (3.12), we can estimate the 
last quantity: 2 , ~  - b~5~Z,/3a. Therefore, our approxima- 
tion is valid if bs3<3a, and it can be used either for low 
values of b  and any width S, or  for any b and small 6. This 
approximation simplifies the situation radically: the system 
of equations (3.14) becomes closed and the dependences of 6 
and 2, on h Vare specified. This makes it possible not only to 
find the width S  of a packet of parametric spin waves, but 
also the integrated characteristics such as the nonlinear sus- 
ceptibilities X' and X" without solving explicitly the initial 
integrodifferential equations in the system (3 .8)  and with- 
out subsequent integration in 

L v L 

h J (s)  Re a ( s )  d s ,  X" = -- V (z) Im a ( x )  dx .  
IL 

In fact, using our notation we can transform the expressions 
in Eq. (3.15) to 

i.e., we can describe the susceptibilities in terms of 2, which 
depends on h V in accordance with the system (3.14). 

3.4. Analysis of the solutions of the system (3.14) for 
integral characteristics of parametric spin waves. We readi- 
ly obtain from the system (3.14) that 

Equation (3.18) gives the dependence of 6  on h V; after its 
substitution in Eq. (3.17) we obtain the dependences of X 
and Y (i.e., of Z,,) on h V. We recall that in these equations 
the functionsA f,,f2, y, yl,and y" depend on S. 

3.4.1. Solution for small values of the excess (supercri- 
ticality) above the intermediate threshold. To within terms 
not higher than S', we obtain from Eqs. (3.17) and (3.18) 

E-t (0) =6(6E' ( I f  a6/3-5bfila) +6':"/2). (3.20) 

Here y  = y ( 0 )  and the coefficients ( ( O ) ,  ( ' and ( " are given 
by Eq. (2 .5 ) ,  whereas a and b  are the coefficients of the 
expansion of the function S o ( x ,  x ' )  of Eq. (1.9).  If b # O ,  
when < ' = 0,  and we can limit Eq. (3.20) to the terms which 
are linear in 6. We then obtain 

We recall that i f<<((O) ,  when N ( x )  a S ( x ) ,  the quan- 
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tities / 2,12 and Re 2, are described by simple formulas from 
the S theory: 

Comparing these formulas with Eq. (3.19), we can easily see 
that a major qualitative modification of the distribution 
function of parametric spin waves n (x) above the threshold 
[i.e., in the range where f > ((0) ] has very little influence on 
the integral characteristics of the system of parametric spin 
waves (C,,x'andx") iff - ((0) issmall. In fact, ifb # O  the 
difference between Eqs. (3.19) and (3.22) is proportional to 
(f - f (0) ) 2 .  However, if b = 0, then ( ' = 0 and the differ- 
ence between Eqs. (3.22) and (3.19) is proportional to 
(f - ((0) )3'2. Therefore, modification of the distribution 
function above the threshold may be undetectable in experi- 
ments which yield the integrated characteristics of a system 
of parametric spin waves x'( f) and ,y" ((I. 

3.4.2. Solution in the case of a slight nonanalyticity of 
the coefficients SO(x, xi) and hVB y.  It  is well known that in 
the case of an analytic dependence of the coefficients SO(x, 
x') on x and x' [when in terms of the notation of Eq. ( 1.9) 
we have a = c, = c, = 0 ]  a packet of parametric spin waves 
is of zero width along x. Therefore, we may assume that at 
low values of a and c, such a packet remains narrow. In fact, 
it is clear from Eq. (3.18) that if the function 

vanishes at some value S = S,, an increase in h V increases 
the width 6 of a packet of parametric spin waves from 0 to 
S,,, . Then, at higher values of h V, we have 

Here, 

This solution is obtained if 

It is natural to call the above inequalities the conditions of 
slight nonanalyticity. The solutions given by the system 
(3.23) differ from simples-theory solutions for one group of 
pairs by the substitutions y(0) - y(S, ) So(O, 0 )  -SO(O, 
S,, ). This has a simple physical meaning: above the interme- 
diate threshold a packet of spin waves expands on increase in 
the supercriticality parameter until the "effective nonanaly- 
ticity" dSO(O,x)/dx vanishes in the limit x- 6,. 

3.4.3. Solution for a strong analyticity when hV%y. 
The conditions of Eq. (3.25) are no longer satisfied. Then, 
f, (6) remains positive in the interval O<S<l, and an in- 
crease in the supercriticality parameter causes S to increase 
to unity. Bearing in mind that at x close to unity we have 
y(x) =:y,x4/(1 - x2), we find from Eqs. (3.17) and (3.18) 
that 

fyl) ISXo12=lhV12. 

-f (I) S Re Zu=hV, (3.26) 

FIG. 2. Dependence of the width 8 of a packet of parametric spin waves 
and of the integrated amplitude on the supercriticality parameter h ' / h  : 
[curve 1 represents the solution of Eq. (3.29), curve 2 is the solution of 
Eq. (3. l a ) ,  and curve 3 is the dependence of the integrated amplitude 
IS(,/ of a packet on the supercriticality parameter]. 

The expressions in Eq. (3.26) differ from the asymptotes of 
the simple S-theory formulas for one group of pairs because 
SO(O, 0) is replaced with S0(O. 1 ) . 

3.4.4. Numerical solution for YIG. We shall now con- 
sider Eqs. (3.18) and (3.17) for a specific set of coefficients: 

which is typical of YIG when H, - H = 100 Oe [Table I 
and Eq. (1.9)]. For this set of coefficients we have 
((0) = 4.4,(' = 2.2, f " = 8 and Eq. (3.20) becomes 

Figure 2 shows the dependences S(f) obtained by solving 
the above equation, which is valid for small values of S 
(curve 1) and those obtained from Eq. (3.18) (curve 2). 
This figure includes also the dependence of (SE0(*/r2 (0) on 
(, obtained from Eq. (3.17) for the same set of coefficients 
given by Eq. (3.28). Clearly, the integral amplitude of para- 
metric spin waves ISE,12 is practically identical with the S- 
theory solution and the packet width 6(f) rises very slowly 
on increase in the supercriticality parameter {. 

4. CRITERION OFTHE LOSS OF STABILITY AS A RESULT OF 
A SECOND MODIFICATION OF THE DISTRIBUTION 
FUNCTION 

In this section we shall show that the steady state of 
parametric spin waves, investigated in Sec. 3 and realized 
above the threshold f >  &(0), may become unstable on 
further increase in the supercriticality parameter. Conse- 
quently, a third group of pairs of parametric spin waves with 
a singular distribution n (x) a 6(x2 - x,') , appears and it is 
concentrated at latitudes x = . x,, x ,  > 6. As in Sec. 2, the 
threshold of this instability is found from the condition 

IP(x) I ' = y 2 ( r )  for x = * z . .  (4.1) 

but the self-consistent pumping P(x) has to be calcuiated 
now for a steady state of the type described by Eq. (3.9) and 
realized when 6 > &(O). This problem simplifies greatly if, as 
in the derivation of the system of equations (3.14), we ignore 
the second moment of the distribution function of paramet- 
ric spin waves Z2 compared with the zeroth moment E,,. 
Then, if x>S, Eq. (3.3) for P(x) simplifies to 
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Bearing in mind that the conditions of Eq. (3.13) should be 
satisfied when 1x1 = S, we shall represent this dependence as 
follows: 

The threshold condition of Eq. (4.1 ) is now equivalent to 

(0 (x3) =o. (4.4) 

The function p (x )  can be expanded as a Taylor series near 
the point x = S and the coefficients of this series can be 
found from Eq. (4.3) by substituting there P(x)  from Eq. 
(4.2) and using the conditions of Eq. (3.17) : 

(y2 (x) 'j(n+3' (x) ] . (4.6) 
x=-6 

The steady-state solution obtained in Sec. 3 should sat- 
isfy the condition of external stability: 

A , = -  (y'(6))  '"+ ax/, (a)!, (6) + (7' (IS) ) '1. (6)/fi (6) <O. 
6 

This condition is obeyed at low values of 6 since in this limit 
the only nonzero term is 2Xf, f, -- 2abX < 0 (the solution ob- 
tained in Sec. 3 is realized in the case when a > 0 and b < 0).  
An increase in the supercriticality parameter may result in 
breakdown of the condition (4.7) and then a new solution 
should appear, but if 

then before breakdown of the condition (4.7) the equality of 
Eq. (4.4) is satisfied when 

and the threshold of creation of the third group of pairs will 
be reached. 

At the threshold value of the supercriticality param- 
eter, we have 

Eliminating x, from the above equations, we can find the 
threshold value of the supercriticality parameter 6, and then 
use Eq. (4.10) to find x, and employ Eq. (3.18) to determine 
6,. For the set of coefficients in Eq. (3.28), typical of YIG 
when H ,  - H = 100 Oe, we carried out this procedure on a 
computer and obtained 

These values of l3 and x, are marked on Fig. 1. 

5. EXPERIMENTAL INVESTIGATION OF MULTISTAGE 
EXCITATION OF SPIN WAVES IN YTTRIUM IRON GARNET 

5.1. Experimental method. An experimental investiga- 
tion of multistage excitation was carried out on YIG single 
crystals. Parametric spin waves were excited by the method 
of parallel pumping at a resonance frequency op/2a  = 9.37 
GHz. The threshold value of the pump field h, for the first 
group of parametric spin waves was determined by the tradi- 
tional method from the appearance of a characteristic split 
in a pulse reflected from a cavity. 

We investigated various groups of parametric spin 
waves characterized by 0 (k )  # n-/2 by a new method involv- 
ing investigation of their collective excitations, which under 
certain conditions are independent and are observed sepa- 
rately from oscillations of the main group of waves excited 
on the equator. Collective oscillations of the second, third, 
and higher groups are readily excited by a transverse weak 
signal h ,  which interacts only with the waves characterized 
by 0(k)  #a/2 because the matrix element of the interaction 
[see, for example, Eqs. (6.23) and ( 14.14) in Ref. 21 is 

V, cr sin 28 (k)  exp icp (k) . (5.1) 

Collective oscillations were excited by a combination reso- 
nance method developed in Ref. 7. The apparatus included 
not only a magnetron, used as a source of pulsed microwave 
pumping of spin waves, but also a source of a weak micro- 
wave signal in the form of a klystron operating at a frequency - 

w, ( t )  = w, + R(t )  which varied periodically within a nar- 
row range I Rl 5 1 MHz near the magnetron frequency. The 
signal at the combination frequency R, separated out in the 
nonlinear system of parametric spin waves, excited reson- 
antly collective oscillations of parametric spin waves. The 
special feature of such a method of excitation of collective 
oscillations, distinguishing it from a method described in 
Ref. 7, was the use of a bimodal cavity. Two degenerate or- 
thogonal TE, ,, modes in a cylindrical cavity were used as a 
channel for parallel pumping of parametric spin waves and 
as a weak signal channel, respectively. The required polar- 
ization of the modes and the coupling between them were 
ensured by rotation of the supply waveguides at the ends of 
the cavity about its cylindrical axis. An alternating field of 
the first mode h at the point of the location of a sample was 
oriented parallel to a static magnetization field H and in this 
case the field of the small signal h, was perpendicular to H. 
Since the matrix element of the interaction of the transverse 
signal h, (and of the associated uniform precession) with 
spin waves was proportional to sin 20(k) [Eq. (5.1) 1, para- 
metric spin waves excited near the equator of the resonance 
surface did not react to the small signal h,. Therefore, the 
response of the system of parametric spin waves to a small 
signal should be observed only at a certain critical value of 
the pump field h = h, corresponding to creation of paramet- 
ric spin waves far from the equator. Elimination of the influ- 
ence of an intense group of parametric spin waves character- 
ized by 0(k)  = n-/2, which appeared immediately after the 
first threshold, on the process of interaction with a weak 
transfer signal was the basic principle of the method em- 
ployed by us. 

A simplified variant of this principle was already used 
in Ref. 8 where the field in the transverse channel h, was 
induced by the sample itself on appearance of parametric 
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spin waves with a polar angle far from ~ / 2 .  The "active" 
variant of the method, utilizing an external transverse field 
h,  , made it possible to record with high precision the thresh- 
old excitation power of groups of parametric spin waves 
characterized by B(k) # ~ / 2  and to measure the parameters 
of their interaction with a small signal h,,  which carry infor- 
mation on the state of these groups of parametric spin waves. 
These parameters are primarily the resonance frequency of 
collective oscillations and the resistivity of the system of pa- 
rametric spin waves to the field h, . These parameters could 
be determined by direct observation of oscillograms of a sig- 
nal reflected from the resonator on the klystron side. Under 
subthreshold conditions the resonator was matched to the 
waveguide system of the magnetron and klystron in such a 
way that there was no reflected signal at the natural frequen- 
cy of the resonator which was w,,/2a = 9.37 GHz. The klys- 
tron signal frequency was modulated linearly by altering the 
voltage on its reflector using a sawtooth pulse. A complete 
oscillogram of the reflected signal was in the form of a reso- 
nance curve of the resonator. At the center of the curve there 
were low-frequency zeroth beats between the klystron signal 
and the attenuated magnetron signal, which passed from the 
parallel to the transverse channel because of imperfect de- 
coupling between the modes which in our experiments 
amounted to - 50 dB. 

If h > h,, collective excitations were excited in a sam- 
ple at a frequency (I,,, and additional absorption of the 
small-signal energy appeared in the resonator at a frequency 
separated from w, by R,,,, The resonance curve in the oscil- 
logram of the reflected signal became distorted at the rel- 
evant point and a resonance peak appeared at this point due 
to collective oscillations of parametric spin waves character- 
ized by B(k) # ~ / 2 .  An increase in the pump power in- 
creased the amplitude of the peak and shifted it away from 
the central frequency. 

5.2. Experimental results and discussion. The thresh- 
old h, for the excitation of parametric spin waves character- 
ized by B(k) # ~ / 2  was determined to within -0.5 dB from 
the distortion of the resonance curve in the oscillogram of 
the reflected small signal, i.e., by the method described 
above. Figure 3 shows the dependences of these thresholds 
on the static magnetic field obtained for a YIG sphere with 
the M(((100) orientation. The values of h,/h, corresponded 
to data obtained at a fixed value of the field H = H, - 100 
Oe in an earlier investigation of emission of radiation along 
the transverse channeLx 

The absence of,.absorption of the small signal in the 
range h ,  < h < h, was a direct proof that only parametric spin 
waves B(k) close to n-/2 were excited in the system. Broad- 
ening to the range H >  H, showed that in the interaction 
with the transverse small signal that indeed occur only for 
the waves with B(k) # a / 2 .  In fact, in the range H >  H,. the 
spectrum of spin waves was lifted relative to the point 
H Z  H, by such a large amount that only the long-wave- 
length part of the spectrum with B(k) # ~ / 2  was in a para- 
metric resonance. This lifted the forbiddeness of the interac- 
tion of parametric spin waves with the field of a transverse 
small signal and as a result an absorption peak of the small 
signal appeared practically directly after the first threshold. 
The steep reduction in the value of h,  / h  , on transition across 
H, left no doubts about the fact that this was due to a change 

FIG. 3. Experimental dependence of the threshold power on the magnetic 
field: 1) first threshold ( h  = h , ) ;  2 )  threshold of excitation of parametric 
spin waves characterized by B(k)  # v/2 ( h  = h, ) .  

in the distribution of parametric spin waves over the angles 
N k ) .  

This was the r;ison for special interest in the kink of the 
h, (H) curve at the point H z H ,  - 300 Oe. The attribution 
of this kink to a change in the distribution of parametric spin 
waves was confirmed by a change in the nature of the inter- 
action of these waves with the small-signal field. In the re- 
gion labeled I, where H > H, - 300 Oe, there was one strong 
wide absorption peak, whereas in the region I1 correspond- 
ing to fields H < H, - 300 Oe there were two symmetric nar- 
row low-intensity peaks at frequencies w, + R,,, . The insets 
in Fig. 3 show oscillograms of the reflected small signal typi- 
cal of the three regions. In fields H < H, - 700 Oe (region 
111) the peaks were strongly broadened and one peak was 
observed clearly at a frequency w, - a,,, . The broadening 
was expected since a nonlinear correction to the damping of 
parametric spin waves appeared in this range of fields be- 
cause of three magnon coalescence processes.' 

We were particularly interested in regions I and I1 
where parametric spin waves have k f  0 (H < H,) and 
there is no three-magnon nonlinear damping 
( H >  H,, z H, - 700 Oe).  In the region I1 the experimental 
and theoretical values of the threshold powers for the cre- 
ation of the second group of pairs of parametric spin waves 
h : were practically the same (Fig. 1 ). This suggests that, in 
this range of fields, creation of a singular group of paramet- 
ric spin waves with angles B(k) far from 7 ~ / 2  occurs in agree- 
ment with the theory. 

A theory of collective oscillations, which makes it possi- 
ble to understand the nature of the response of the system of 
parametric spin waves to a weak transverse signal h, in the 
region 11, can be developed quite simply. The matrix element 
of the coupling between h, and the parametric spin waves via 
uniform precession is given by Eq. (5.1). Therefore, the 
transverse field h, excites collective oscillations of paramet- 
ric spin waves with the azimuthal mode number tn = - 1, 
which do not interact with collective oscillations of the first 
group of waves localized on the equator of the resonance 
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surface. In fact, the matrix element relating collective oscil- 
lations of two groups of parametric spin waves has the prop- 
erty S(k, k') = S (  - k, k') [for a Fourier transform we have 
Sm(x ,x ' )  = ( -  l ) m S m ( ~ ,  - ~ ' ) ] , ~ ~ t h a t a t l o w v a l u e s o f  
x = cos 8 (k )  the matrix element S * ' (x, x') is proportional 
to 1x1. Similarly, by analogy with Eq. (1.9), we can show 
that for x, x'- 0, we have 

and this element vanishes for x = 0 or x' = 0. Then the fre- 
quency R, of the resonance of the response second group of 
pairs to h, can be calculated exactly in the same way as the 
frequency of the resonance of the response of the first group 
of pairs to a weak longitudinal signal Q ,  (Refs. 1 and 10). 
We then obtain 

where 

s2*= (s' (02,@2) *S-' (0,, 0,) ) 12, 

T2'=(T1(82, 0,) +Ti (02, -0,) ) 12. 

Here, r, = T (B,), N, is the number of parametric spin 
waves in the second group of pairs, and S ' '(8, 8 ' )  and 
T'(8, 8 ') are the axial Fourier harmonics of the matrix ele- 
ments S(k, k') and T(k, k ' )  with the numbers m = '1. It 
follows from Eq. (5.2) that the resonant response to a trans- 
verse field appears at two frequencies, which corresponds to 
an oscillogram of the region I1 in Fig. 3. Thus, the usual 
multistage excitation of singular groups of parametric spin 
waves appears in the region 11; there is a quantitative agree- 
ment between the experiments on YIG and our calculations 
(without recourse to fitting parameters) of the threshold of 
creation of the second group. Moreover, the nature of the 
response of this system to a weak transverse signal is under- 
stood qualitatively. 

The pattern of the phenomena observed in the region I 
is more complex. It is clear from Fig. 1 that an increase in H 
brings the angle of creation of the second group ofpairs 8 (k )  
closer to the equator and in the region I we have lcos 
8, / < 0,l. Consequently, the response of parametric spin 
waves becomes much weaker and the method is insensitive 
to the second threshold, so that only the third threshold can 
be detected when parametric spin waves are excited far from 
the equator (Fig. lb) .  It is clear from Fig. la that the experi- 
mental values of the threshold power for the excitation of 
parametric spin waves characterized by 8 (k )  # r /2  in fields 
H, - H = 200 Oe and 100 Oe agree with the theoretical val- 
ues of the threshold of creation of the third group of pairs. 
We recall that, according to the theory, the modification of 
the distribution function beyond the second threshold 
should be very different in fields H ,  - H = 200 Oe and 100 
Oe. When H = H, - 200 Oe and h > h2 the second singular 
group of waves characterized by lcos 8,/ =: 1/20 should be 
created, i.e., it should be created close to the first group of 
pairs characterized by cos 8 , = O .  However, if 
H = H ,  - 100 Oe, then in the fields h > h, we can expect 
gradual broadening of a packet of parametric spin waves 
and, for the supercriticality parameter corresponding to the 
threshold of creation of the third group of pairs, a packet of 

parametric spin waves remains fairly narrow: 
lcos 0 (k )  1 5 0.12. Our experimental method was not suffi- 
ciently sensitive to detect the difference between the two 
types of modification of the distribution of pairs of paramet- 
ric spin waves close to the equator. As pointed out already, 
this method can be used only to detect the creation threshold 
of the third group of pairs characterized by lcos e31 ~0.7- 
0.8. Indirect evidence in support of our description of modi- 
fications of the distribution function of parametric spin 
waves at the equator is provided by the quantitative agree- 
ment between the experimental and theoretical values of the 
threshold field h,. 

The nature of the response of the system of parametric 
spin waves to a weak transverse signal h, in the region I can 
be understood qualitatively. In fact, it follows from Eq. 
( 1.4) that in the case of YIG we have T ( r /4 )  =4r(.rr/2). 
Therefore, in the expression for the resonance frequency Q,, 
which is similar to Eq. (5.2) for R,, the square of the damp- 
ing factor r , ' z r 2 ( r / 2 )  under the radical is 16 times 
greater than r2 z r2 ( r / 2 ) .  Consequently, for moderate val- 
ues of the excess above the threshold h, the radical becomes 
purely imaginary and the expressions for Q: can be repre- 
sented in the form 

Because of the large value of T, no response is observed at 
the frequency 0,. This corresponds to an oscillogram with 
one peak at the frequency 0: (Fig. 3).  A quantitative com- 
parison of the theoretical and experimental values of the res- 
onance frequency and susceptibility X ,  " (a,+) in the field 
H = H, - 200 Oe was made in Ref. 11. Therefore, in the 
range of fields I and in the range I1 there is a quantitative 
agreement between the experiments and theory in respect of 
the threshold of creation of parametric spin waves far from 
the equator and a qualitative understanding is gained of the 
nature of the response of the system to a weak transverse 
signal. All this allows us to assume that the observed pattern 
of modification of the distribution function of parametric 
spin waves (due to an increase in the intensity of the pump 
field) does occur in reality. 
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