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Spherically symmetric inverse problems for the scattering of spin-; fermions by a static 
gravitational field are considered within the framework of the general theory of relativity. 
Methods are developed for the reconstruction of the metric tensor from the scattering data for the 
Dirac equation in the Schwarzschild metric. The problem of finding the link between the S-matrix 
and the Hamiltonian operator in curved space for a neutrino with fixed zero orbital angular 
momentum and for a massless or massive field with fixed energy is discussed. The main links in 
the neutrino algorithms consist of two definite systems of two nonlinear ordinary differential 
equations constructed from the scattering data. It is established, first, that the inverse problems 
studied in this paper generalize the previously solved classical inverse problems for a gravitational 
field to the quantum case. Second, they generalize the familiar Marchenko and Regge-Newton 
methods in quantum theory of scattering to the case of a gravitational field. Third, these inverse 
problems are a logical extension of the inverse problems for the Klein-Gordon-Fock equation 
studied in a previous paper. The results may be of interest in atrophysics in connection with the 
direct determination of the inner structure of objects. 

1. INTRODUCTION 

In a number of recent papersJ-"he author has studied 
in the framework of the theory of general relativity (TGR)  
the static inverse problems of scattering of classical particles 
by a spherically symmetric gravitational field. In these pa- 
pers algorithms for the reconstruction of the curvature ten- 
sor of spacetime from the asymptotic characteristics of the 
geodesics of massless or massive particles were developed. 

In the present paper the inverse problem in TGR for the 
scattering of quantum particles will be considered. Such 
problems will be solved here in the general spinor case for a 
spin-4 fermion, i.e., for the Dirac equation. 

The generalization of nonrelativistic methods in inverse 
problems to relativistic spinor particles in flat space has been 
known for quite some time. The Gel'fand-Levitan method 
has been developed for the Dirac equation by Prats and 
TolL4 New results, as well as rigorous mathematical justifi- 
cation of previously known ones, were then presented by 
Gasymov and Levitan."' The Marchenko method for the 
Dirac equation was developed by Weiss, Stahel and Scharf.' 
Finally, the modification of the Regge-Newton (fixed ener- 
gy) method for the Dirac equation was carried out by Cou- 
dray and C O Z . ~  However, the gravitational field was not con- 
sidered in the above papers. 

The aim of the present paper is to determine the relation 
between the S-matrix, which can be introduced in asymp- 
totically flat spaces, and the Dirac Hamiltonian operator in a 
gravitational field. 

We shall use the relativistic units, where f i  = c = 1. 
The structure of the spherically-symmetric static gravi- 

tational field is given by the interior Schwarzschild metric" 

which we extend to the entire space. We assume that the 
metric functions ~ ( r )  and p ( r )  are regular at zero and that 
the space with the metric ( 1 ) is asymptotically flat, i.e., that 
Y andp,  together with all their derivatives, vanish sufficient- 
ly rapidly as r -  W .  

The corresponding system of three Einstein equations 
within the framework of the hydrodynamic static model is 
given in Ref. 11. In such a model the gravitating matter is 
characterized by radial distributions of density p ( r )  and 
pressure p ( r ) ,  which are connected by the Oppenheimer- 
Volkov integro-differential equation (the static condition). 
In the indicated approximations the Einstein system ofequa- 
tions can be integrated by quadratures; its solution has the 
form 

where x is the Einstein gravitational constant. The inverse 
formulas 

permit the reconstruction of the matter density and pressure 
from the metric ienb;;;. 

From the Oppenheimer-Volkov equations, which fol- 
low from the field equations, one may deduce the differential 
equality 

2 , . 2 , , ' r + r ~ V v " l r 2 C , r y ' -  3 ,V  . '--31.Lt'+4e1t-4=0, (4)  

which connects the functions v and p. In this manner, the 
components g,,,,re" and g , ,  =el' of the metric tensor are 
mutually dependent in the hydrodynamic model under dis- 
cussion. In the case of a static field the system of three Ein- 
stein equations contains only two unknown functions-p 
and v, and so turns out to be overdetermined. 

The wave inverse problems here considered consist in 
the reconstruction of the metric functions p and v, i.e., the 
curvature of spacetime, from spinor sattering data that de- 
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pend on the total angular momentum j for fixed energy E, 
and on E for fixed j. 

In Sec. 2 the Dirac equation is discussed in the 
Schwarzschild metric. In Sec. 3 the inverse scattering prob- 
lem is solved at fixed angular momentum j = 4 for the neu- 
trino. In Sec. 4 the inverse scattering problem is analyzed at 
fixed energy for massless and for massive particles. 

2. THE DlRAC EQUATION 

The interaction of classical spinor (spin f ) and gravita- 
tional fields is governed by the generally-covariant Dirac 
equation. The properties of such an equation are discussed in 
detail in the book by Grib, Mamaev and Mostepanenko. l 2  It 
has the form 

i y n  (2) Tn$ (.x) =m$ (x) , ( 5 )  

where $(x) is a Dirac bispinor, V, is the spinor covariant 
derivative in Riemann space, y" (x)  is a variable 4-vector 
(with respect to the label n )  under general transformations 
of coordinates and is connected with the constant Dirac ma- 
trices y" ; here and in the following summation over repeated 
indices is understood. 

Let us introduce a quartet of frame 4-vectors h :,, , 
numbered by the index a = 0,1,2,3. They are normalized ac- 
cording to h P'h,,,, = qab, where vab is the metric tensor in 
the tangent Minkowski space, and they are called the tetrad. 
We also introduce the dual tetrad h y' ,  defined by the condi- 
tions h Y'h tb, = a:, with h ,'a'h,,,k = g, , .  The variable 
fourth order matrices are given then by yn(x) = h ;,, y", and 
the spinor covariant derivative has the form 

Here Cab, are the Ricci rotation coefficients, which are con- 
nected to the tetrad vectors by the relations 

with V, the covariant derivative of the vector field. The 
Dirac equation in the Riemann space, Eq. ( 5 ) ,  is conformal- 
ly invariant for m = 0. 

In terms of the tetrad the square of the interval is given 
by 

(a1 ds2=g,, dx' dxR=rlCb (h,  dx') (h :b )d~k) .  

We may choose, in the case of the centrally-symmetric met- 
ric ( 1 ), for the basis of the tangent pseudo-euclidean space 
the vectors with components h yo, = e "I2, h :,, = - ./2 

f 

h :,, = r- I ,  h :3, = ( r  sin 8 )  - ', the remaining components 
being trivial. The components of the vectors of the dual tet- 
rad are inverse in magnitude. The nontrivial covariant com- 
ponents are equal to 

The variable "Dirac matrices" have the form 
=e-v /2yo ,  y l (r)  =e-eizyl ,  

yZ(r) =r-ly2, y3 (r, 0 )  = (r sin 0)-'y3. 
( 8 )  

Let us calculate now the spinor covariant derivative op- 
erators. To this end it is necessary to know the Ricci rotation 
coefficients. The Christoffel symbols for a centrally-sym- 
metric gravitational field are given in Ref. 10. Calculations 

according to formula (7)  show that from among the 64 Ricci 
rotation coefficients only the following 9 are nontrivial: 

C - '(e-lllz-e-"/2 sol-V )/2, C o l o = - C l o o ~ - ~ ' ~ ~ " ' Z / 2 ,  
c 122- -C 1 3 3 -  - - ~ z 1 2 = - ~ 3 1 3 = - r - 1 e - ~ z  , CZ53=-C3L3=-r-1 ~ t g  0. 

Substitution of these values into Eq. (6)  yields the following 
expressions for the spinor covariant derivatives 

Vo=~o+l/ryOylv'e(~-W)/Z ? 

V,=a,+i/8v' (l-e(W-vl/z 1,  
V2=a,+1/2y1y2e-~z, 

V,=a,+'/,y2y3 cos O+1/2y1y3e-p/2 sin 0,  

which together with ( 8 )  lead to the Dirac equation in the 
Schwarzschild metric: 
i[e-v/zyo~o+e-W/zyl~l+3/8vVe-~/2y111/BvYe-"12 y ' +r- 'e -" /*~~ 

+r-iyza2+'/zr-1 ctg Byz+ (r sin 0)  -'y3a3]$ (x) =m$(x) .  (9)  

In the standard representation 

the stationary Dirac equation (9)  breaks up into a system of 
two spinor equations: 

(m-e--v/2E)$1 

+r-lozde$z+'lzr-l ctg Oozll~+ (r sin 0)-103&$21, ( 10) 

(m+e-V/2E)$2=-i[e-~/201~r$l+ 3 / 8 ~ ' e - p ~ 2 0 1 $ I - 1 / 6 ~ ' e - V / 2 a l  

+ r - ~ e - p t 2  o l$ l+r-1~2d~$r+1/~r-1  ctg Ooz$l+ (r  sin 0)  -lo33e$t 1 ,  

(1  1)  

containing the Pauli u matrices, for the functions 11, (r,O,p) 
and 712(r,6,p). 

This system can be reduced, upon separation of the vari- 
ables, to a system of two scalar ordinary equations. Separa- 
tion of variables in the Dirac equation for the spherical de 
Sitter world has been considered by Chernikov and Shavok- 
hinaI3 in bispherical coordinates. Separation of variables in 
the Dirac equation for the Schwarzschild world in spherical 
coordinates can be carried out by analogy with the potential 
case. I 4 3 l 5  

Indeed, the total angular momentum j and its compo- 
nent m are conserved for motion in an arbitrary central field. 
We shall look for spinor components of the wave function in 
the form 

$,=r-If (r) GQ,,,,,, $2=i!-r'+1r-ig(r) GQ,,rm, (12) 

where f and g are scalar radial functions, the matrix G(O,p) 
realizes a rotation,' nj,, ( O f i  are spinor spherical harmon- 
ics, and I = j + f ,  I ' = j f 4. Let us introduce the number il 
such that A =  - j - $ =  -1-1  for j = l + i  and 
il = j + 1 = I f o r j  = I - 1. This number takes on the values 
il = ... -2, - 1,1,2 ,..., wi th i l>Ofo r j= I - f and i l <Ofo r  
j = I + 1. Then substitution of Eq. ( 12) into the spinor Eqs. 
( 10) and ( 1 1 ) gives the following system for the radial wave 
functions: 
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In empty space v=,u=O and this system, naturally, goes 
over into the well-known system for free Dirac radial func- 
tions. 

The first-order equations ( 13) and ( 14) are equivalent 
to one second-order equation for the function$ 

I"+ [ ( 3 - u ) v ' / 4 - p 1 / 2 - t  (1+mE-'e"2)- 'v ' /2]  1' ( 15) + [ (3-u) v"/8+~~v'~/64+~v'~/16-3p'v'/16 

where u ( r ) e x p [ $ ( , u  - Y ) ] ,  and 

The equation (15) is fairly complicated: the coefficient 
of the first derivative depends on the energy, while energy 
and angular momentum enter the coefficient off in a nontri- 
vial fashion. 

3. THE INVERSE PROBLEM AT FIXED ANGULAR MOMENTUM 

We consider this inverse problem in the important case 
of a massless spinor field, i.e., the neutrino. Upon setting in 
the Dirac equation ( 15) the mass m = 0 we have 

irr+(5y'/4-kt'  ' 2 - 7 ( ~ ' / 4 )  [' 

where we have introduced the frequency w = E. Thus in the 
massless approximation the dependence of the coefficients 
of the wave equation on E and A is substantially simplified. 
Let us note that the two terms preceding the centrifugal one 
in the coefficient off are regular at zero, since it follows from 
Eq. (2)  that e" - 1 -?r?p-+O as r-0. 

We shall construct here a solution of the inverse prob- 
lem only for the fixed value A = - 1, when the centrifugal 
term in Eq. ( 17) is absent and there is no singularity at zero. 
This case corresponds to a total angular momentum j = 
and to zero orbital angular momentum. 

The space with the metric (1 )  is asymptotically flat, 
and the asymptotics for r- w of the radial wave functions 
for I = 0 has the form 

sin [o)1-+6 ( o ~ )  ] 
c o s [ o r + b  ( a )  ] 

The inverse scattering problem under study consists of 
the reconstruction of the metric tensor from the frequency 
dependence of the phase shift S(w) of the neutrino wave. 

Let us perform in the Dirac equation ( 17) for A = - 1 
the standard change of the function 

which eliminates the first derivative. We then obtain the 
equation 

for the function X, which approaches f asymptotically as 
r- w . This equation is equivalent in form to the Schrodinger 
equation for an S-wave in a central field with potential 
U - k *Q that depends linearly on the square on the momen- 
tum k = w. Here 

and the "potential" Q> 0 while Uand Q-0 as r- W .  

To solve the inverse problem we introduce the functions 

?(I.) = r  - j (ZZ(,,- i ) .  @ ( r )  = ( J ~ ) - ~ ~ = U - ~ ~ ~ .  (21) 

The function0 increases monotonically and has on the semi- 
axis r > 0 only one zero at ro, so that 0 ( r )  > 0 for r > r,,. 

If one first changes in the Schrodinger equation (19) 
the argument r -+p(r) ,  and then the functionx -@-'x, then 
the potential loses its dependence on energy. However, the 
boundary condition at r = 0 then goes over into the bound- 
ary condition at r = ro, and the regular wave function may 
have a node at the point rO. 

We shall further suppose that the gravitating matter is 
distributed in the exterior of an absolutely impenetrable 
sphere of finite radius ro. In the inverse problem the value of 
ro is unknown a priori and is itself subject to determination. 
The regular solution satisfies x(w,r0) = 0, while its radial 
derivative satisfies x1(w,r,,) = @- ' ( r o )  For empty space 
r,, = 0. 

The method of inversion, which coincides for Q = 0 
with the familiar Marchenko method, can be conveniently 
given the following form. 

We introduce the linear integral equation-analog of 
the Marchenko equation 

with symmetric kernel 

which (in the absence of bound states) is constructed from 
the phase shift. 

The integral equation (22) is the principal link between 
the S-matrix, given for all w, and the curvature. This equa- 
tion determines the triangular integral operator of the trans- 
formation from the free to the perturbed solution. Let y (o , r )  
be the Jost solution for the wave equation (19), i.e., y a  
exp(iwr) ,r- m, then in the upper half-plane of the complex 
frequency Im w>O we have 

m 

y(o. r ) = @ ( r ) ~ \ ~ [ i ~ P ( , . ) ] +  i lb B(r. ' , )C\P({O): ) .  r > b .  
P O . )  

(24) 
This is the analog of the Levin representation. '' For the Jost 
solution we have the boundary condition 

y (o, r,) =Y (a) =I Y ( a )  1 e-". 

9 Sov. Phys. JETP 69 (I), July 1989 I. V. Bogdanov 9 



where Y(w) is the Jost function. The region of triangularity 
of the kernel B is given by the determinant g,,,g, , of the radi- 
al-temporal part of the metric tensor. 

The high-frequency asymptotics of the wave functions 
is, naturally, not at all free. I t  can be found from the corre- 
sponding asymptotics in the energy dependent problem by 
the replacement r - 8  and multiplication by Q. For w- co 

and r > r,, we have the rapidly oscillating functions 

and the high frequency limit of the phase shift is 6 (  cc ) = 0. 
For the kernel B(r , r l )  we have the boundary condition 

at r' = fl 

The last formula relates the potentials U and Q through 
phase-shift information. 

The gravitational analog of the Marchenko equation 
(22) is a linear integral Fredholm equation of the second 
kind, which can be inverted." If b is the resolvent of the 
Fredholm kernel D (it depends parametrically on the inte- 
gration limit p ) ,  then 

B (r ,  r ' )  =@ ( r )  

and at the boundary r' = /3 we have 

For the metric tensor one may derive a closed system of 
two ordinary differential equations. Let us do so in terms of 
the functions v andfl. It is seen from the definition ( 2  1 ) that 

and, upon substitution o f p  andp '  in Eq. ( 4 ) ,  we obtain the 
first equation of the system. The second equation is found 
from the boundary condition ( 2 5 ) ,  keeping in mind Eqs. 
(20),  (21),  (27) and (29).  The indicated system 

contains the relativistic static condition (30) and the con- 
nection between the metric and the kernel of the transforma- 
tion operator ( 3  1 ). In principle this system can be converted 
into a single closed nonlinear third-order differential equa- 
tion for the function p ( r ) ,  although such a procedure is 
rather unwieldy. At the stage when the derivative v' is eli- 
minated from the system one obtains for it an algebraic equa- 
tion of fourth degree. 

The nonlinear system of equations (30) and ( 3  1 ) repre- 
sents the final result in the algorithm for the reconstruction 
of the curvature from the phase shift 6 ( a ) .  The second equa- 
tion of the system is obtained from theS-matrix, as the latter 
determines the form of the function H(p). 

Uniqueness of the solution of the inverse problem is 
ensured by the unambiguous choice of the function H(fl)  in 
Eq. (31).  

The main steps in the process of reconstruction of the 
metric tensor from the neutrino scattering phase shift 6 (w)  
are the following. It is first necessary to accomplish the 
Fourier transformation (23), i.e., obtain the kernel D of the 
analog of the Marchenko linear integral equation (22) and 
find the Fredholm resolvent b of this kernel. Then with the 
help of Eq. (28) it is necessary to construct the function 
H(fl) ,  which specifies the structure of the nonlinear system 
of two differential equations of first and second order, Eqs. 
(30) and (31),  for the functionsfl(r) and v ( r ) .  After inte- 
gration of this system we obtain the value r,,, which gives the 
transcendental equation P ( r )  = 0. Now one may calculate 
from formula (29) the metric component g ,  , . From the field 
equations (3 )  one may determine the matter pressure and 
density and, further, the equation of state of the matter. 

Once the reconstructed metric is known one may find 
the exact neutrino wave function by quadratures. Indeed, 
given the function Q( r )  we may calculate from formula 
(26) the kernel of the transformation operator B(r,r l) ,  and 
with the help of the analog of the Levin representation 
(24)-the Jost solution y ( r ) .  Then the radial component f 
for the bispinor is given by formula ( 18), and the component 
g b y  formula (16) f o r m  = 0 ,  E = w ,  andR = - 1. In this 
manner, in the massless case the Dirac bispinor in the gravi- 
tational field is completely determined by its proper asymp- 
totics for r- C C .  

4. THE INVERSE PROBLEM AT FIXED ENERGY 

We shall consider this inverse problem for the general 
case of a massive spinor field. For its solution we shall pro- 
ceed not from the one second-order equation ( 15), but from 
the system of two first-order equations ( 13) and ( 14). 

The regular normalized solution of the Dirac equation 
has for r-0 the asymptotics 

and for r- co the asymptotics with the wave number 
k = (E' - m 2 )  '1 ' .  

cos (kr-TI?./?+ 6 ) )  
( )  ( - - sin (/,-r-xria+h,) 

since the Schwarzschild world is asymptotically flat. 
The inverse problem being analyzed consists in the re- 

construction of the curvature of spacetime from an infinite 
sequence of scattering phases a,, given for all R and at fixed 
energy. 

Let us make in the system of Dirac equations ( 13 ) and 
( 14) the change of function 

rx 

then the second terms on the left sides drop out and the 
system takes on the form 

fk'+)vr-'ep12 j,.-eU12 (e-'I2E+ nz) &=O, (33) 
~ L ' - ~ r - ~ E ~ 1 2 g ) ~ + e i ~ 1 2 ( B - ~ ~ ~ E -  m )  j A- -0 . 

(34) 

In the limit r-- co the radial spinor -FA.  
The centrifugal term in the Dirac equation is modified 
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in a gravitational field and acquires a factor e/"l ,  but this 
difficulty may be overcome. Let us replace the independent 
variable r  in the system ( 3 3 )  and ( 3 4 )  by 

where we have introduced a constant unknown in the inverse 
problem 

OD 

We note that b ( 0 )  = 0  and b ( r )  - r , r -  CC. Let us intro- 
duce the diagonal potential matrix 

rE(v+w O ) 
0  v -w'  

here the central "potentials" have the form 

~ ( b )  =E( l - rb - ' e -v lZ) ,  W ( b )  =m(rb-I -1 ) .  ( 3 7 )  

with V <  0 ,  W >  0  and V, W-0  as b -  CG. After the indicated 
change of argument the Dirac system of equations ( 3 3 )  and 
( 3 4 )  can be expressed in matrix form 

In this form the system is mathematically equivalent to 
the Dirac equation, in which r - b ,  for a central field with the 
potential matrix ( 3 6 )  in flat space. Thus the inverse problem 
under discussion is modeled by a relativistic inverse problem 
but in flat space, which can be solved by the appropriately 
modified method of Coudray and C O Z . ~  This generalized al- 
gorithm has the following structure. 

Let us introduce the matrix linear integral equation- 
the analog of the Coudray-Coz equation' 

h ( r )  

K ( r , r f ) = P ( b ( r ) , r l ) -  dEE- 'K(r ,E)P(E,r1 )  ( 3 8 )  
0 

with kernel 

A 

Here Fy are the free radial spinors, c, are constants calcu- 
lated from the scattering phases 6, , and ,,,, are spinor in- 
dices. 

The integral equation ( 3 8 )  is the main link between the 
S-matrix, known for all A, and the curvature. I t  determines 
the triangular integral operator, whose kernel K ( r , r l )  is a 
2X 2  matrix, of the transformation from the free to the per- 
turbed solution. Consequently 

b ( r )  

F , ( r )  = R 0 ( b ( r ) )  - d t  E-'K(r,  E)FI@(E) .  
( 4 0 )  

0 

and the region of triangularity of the kernel K  is specified, as 
can be seen from Eq. ( 3 5 ) ,  by the metric component g, ,. 

There are boundary conditions for the kernel K ( r , r l )  at 
r' = b: 

Y ( r ) + W  ( r ) = - 2 b - ' K , 2 ( ~ . ,  b ) ,  

V ( r )  -W ( r )  =2b-'KLI ( r ,  h ) .  

Obviously, all elements of the matrix K  contribute to the 
potentials. The integral equation ( 3 8 )  is in fact equivalent to 
two systems of coupled equations, two each, for the func- 

tions K ,  ,, K , 2  and K 2 , ,  K12. The properties of such systems 
are analogous to the properties cf the ordinary scalar Fred- 
holm equation of the second kind.'' 

The neutrino has a mass m = 0  and a "potential" 
W = 0. In that case 

and one must verify the compatibility condition 

I<,> ( r ,  D )  +KZ1 ( r ,  b )  =(I. ( 4 2 )  

If it is satisfied then the first of the identities ( 3 7 ) ,  defining 
the potential V, gives a relation between the sought for func- 
tions b ( r )  and ~ ( r )  . The second relation between these func- 
tions follows from the static condition ( 4 )  after passage 
from ,u to b. Thereafter the whole problem reduces to the 
integration of a closed ordinary differential equation of sec- 
ond order with respect to, for example, the function b ( r ) .  
After this equation has been solved the metric function p ( r )  
can be found from formula ( 3 5 ) .  Then the constant a is also 
easily calculated. 

For a massive spinor field W # O  and the formulas ( 3 7 )  
lead to unambiguous answers for the functions b ( r )  and 
~ ( r ) .  However these functions do not necessarily satisfy the 
static condition (4), which acts here also as a compatibility 
condition. 

Basically, the scheme for solving the inverse problem at 
fixed energy proceeds as follows. First, the coefficients c~ in 
the expansion ( 3 9 )  for the kernel P have to be determined 
from the phase shifts 6,. This stage is analogous to the po- 
tential case" and consists of inversion of numerical matrices. 
Thereafter it is necessary to solve the analog of the Coudray- 
Coz matrix integral equation ( 3 8 ) .  The so-obtained trans- 
formation operator with kernel K permits the calculation of 
the potentials V and W from formula ( 4 1 )  and the radial 
spinor F, from formula ( 4 0 ) .  Once the metric has been re- 
constructed the exact radial wave function FA can be ob- 
tained with the help of Eq. ( 3 2 ) .  

Thus, for an arbitrary class of scattering data (coeffi- 
cients c ,  ) the inverse problem has in general no solution. 
For the neutrino field its solution is constrained by the com- 
patibility condition ( 4 2 ) ,  while for a massive field it is con- 
strained by the condition ( 4 )  requiring the gravitational 
field to be static. However, for those classes of scattering 
data which satisfy the indicated conditions of compatibility, 
the inverse problems for massless and massive particles have 
unique solutions. To  this end, in addition, one must require a 
definite rate of decrease of the phases 6, as I/Z I - m. 

5. CONCLUSION 

The main link in the inversion algorithm at fixed zero 
orbital angular momentum of the neutrino consists of a cer- 
tain closed system of ordinary nonlinear differential equa- 
tions for the metric tensor. This system is constructed from 
the scattering data and solves, in essence, the problem of 
relating the S-matrix and the Dirac Hamiltonian operator in 
the presence of gravitation. 

The ultrarelativistic problem of the scattering of a spin- 
$ fermion by the curvature of spherical spacetime may be 
modeled by the nonrelativistic problem of the scattering of a 
spinless particle in a central field with a potential linearly 
dependent on the energy. The scattering of massive scalar 
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particles by a gravitational field with spherical symmetry is 
also modeled by an analogous nonrelativistic problem. 

The inverse problem, discussed in Sec. 3, has only been 
solved for a massless field with zero orbital angular momen- 
tum. The questions of generalization of this solution to par- 
tial waves with /Z # - 1 and to massive fields remain open. 

Also remaining open is the question of identifying the 
class of scattering data for which the inverse problem at 
fixed energy, discussed in Sec. 4, has a unique solution. 

It is known that in the helicity representation the mass- 
less Dirac equation splits into two independent spinor equa- 
tions of first order.'' It may be that the problem of recon- 
structing the metric from the S-matrix in the helicity 
representation, i.e., the inverse problem fot the Weyl equa- 
tion, also admits of a solution in closed form. 

Let us say a few words about possible applications. The 
exact inversion algorithms developed here for the neutrino, 
with its wave properties and spin taken into account, may 
turn out to be useful in astrophysics for the direct determina- 
tion of the internal configuration of relativistic objects of 
various nature, should the latter be in some real situation 
"translucent" to probing beams. The linear dimensions of 
such objects should be sufficiently small on an astronomical 
scale, end the neutrinos could be of such low frequency that 
their de Broglie wavelength could be comparable in size with 
the dimensions of the objects being probed. In contrast to the 
case of massive scalar particles, which was considered in an 
article by the author and Demkov,I9 the neutrinos readily 
penetrate and are hardly absorbed by the gravitating matter. 

As far as practical considerations are concerned one 
would like to "activate" a neutrino source of natural origin, 
for example a neutron star. The emission spectrum of neu- 
tron stars has been actively investigated lately.20 One can 
imagine favorable circumstances under which the detection 
of the scattered neutrino currents from such a source could 
be effectively achieved on Earth. 

I consider it my pleasant duty to thank Y. N. Demkov 
for his usual interest, also the leader of the city seminar of 
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