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The diffusion of submonolayer films along crystal surfaces is studied theoretically. An 
explanation is given of experiments in which peculiar features were discovered in the behavior of 
the diffusion coefficient at concentrations corresponding to phase boundaries on the phase 
diagrams of multiphase films. 

1. Although diffusion processes in solids have been 
rather well investigated experimentally and theoretically, 
new experiments studying the diffusion of atoms on metal 
surfaces1-' have directed attention again toward the unusual 
behavior of the diffusion coefficient for certain concentra- 
tions of surface atoms. In Refs. 1 and 2 the diffusion of sub- 
monolayer barium films on ( 1 10) molybdenum crystallites 
was investigated, and a strong correlation was observed 
between the behavior of the diffusion coefficient D and the 
surface structure of the film. In particular, near a phase tran- 
sition for concentrations of surface atoms from C = 0.6 in 
the C(2  x 2)  commensurate structure to the incommensu- 
rate structure ( C >  0.6) a sharply pronounced plateau is 
seen in the concentration profile of the film's atomic distri- 
bution. This corresponds to a strong enhancement ( 1 0 h o  
10"imes) of the diffusion coefficient D ( C )  in a narrow con- 
centration interval. 

In Ref. 3 the diffusion of gold films on the surfaces of 
( 1 1 1 ) silicon crystallites was studied. A correlation was also 
noted between structural phase transitions and the magni- 
tude of the diffusion coefficient, although the form of the 
correlation had a completely different character. For con- 
centrations corresponding to boundaries between two sur- 
face phases (for instance, x fi and 5 X 1, or 7 X 7) ,  the 
diffusional motion of the film edge was halted, and resumed 
only at the annealing temperature of the film. A fairly de- 
tailed review of work related to diffusion on the surfaces of 
semiconducting crystals can be found in Ref. 4. 

The exactly opposite behavior of the diffusion coeffi- 
cients at phase transitions in the two cases ( a  sharp increase 
in D in the first and a decrease to zero in the second) is 
connected, evidently, not with the different specific adsorp- 
tion systems, but with the nature of the phase transition. The 
transition to the incommensurate phase proceeds continu- 
ously, while the structural transitions between surface 
phases of gold on ( 11 1 ) silicon are first-order (in the experi- 
ment, the region of two-phase coexistence is sharply fixed). 

The anomalous behavior of the kinetic coefficients in 
the case of a continuous phase transition in three-dimension- 
al systems has been quite well studied experimentally and 
theoretically (see, for example, Ref. 5) .  In particular, the 
critical behavior of the thermal conductivity coefficient of 
helium has been investigated at the transition to the super- 
fluid phase. Its magnitude increases anomalously at the 
transition point T,, and for T = T - T, -0 it is well de- 
scribed by a x oc 7 - ' I '  dependence. Analogous behavior of 
both the mobility and the diffusion coefficient is seen at the 
critical point of the liquid-vapor transition.' In  both cases 
the anomalous behavior of the kinetic coefficients is ex- 
plained by saying that the coefficient in question is linked to 

a critical mode; that is, is described by the relaxation of the 
order parameter of the system near the phase transition 
point. This property of the kinetic coefficients connected 
with a critical mode of the phase transition is, evidently, a 
general property of continuous phase transitions5~' and in 
this sense the transition to the incommensurate state is not 
an exception. The essential point is that for such a transition 
the order parameter is the soliton concentration, and conse- 
quently, coincides with the change in the concentration of 
atoms in the incommensurate phase, the diffusion coefficient 
describes the relaxation of the order parameter. Thus we 
expect its sharp increase in the vicinity of the transition 
point. In fact, as was shown in Ref. 7, such an increase can be 
linked to the formation in the film of lines of silitons, which 
in the incommensurate phase display a high mobility. 

However, such an explanation does not include the pe- 
culiarities of behavior in diffusion coefficient connected with 
the fact that, along with the purely kinetic component (that 
is, mobility) it contains a "thermodynamic" part, equal to 
the derivative of the chemical potential with respect to con- 
centration. We will see that, in contrast to the kinetic part, 
the thermodynamic part of the diffusion coefficient at the 
transition point in the incommensurate state goes to zero 
and limits the rapid rise in the diffusion coefficient. 

In this work we show that the situation for second-or- 
der transitions can lead to the opposite case when the diffu- 
sion is not linked to the relaxation of a critical mode (that is, 
the concentration does not coincide with the order param- 
eter). In this case there are no special reasons for an in- 
creased mobility at the transition point, although the renor- 
malization of the thermodynamic part of the diffusion 
coefficient at the transition point can lead to its anomalous 
growth, which can be described by the corresponding criti- 
cal index. 

For first-order transitions the approach developed 
leads to a natural explanation for the observed vanishing of 
the diffusion coefficient. 

In conclusion, it is shown that all the arguments can be 
transferred without difficulty to diffusion processes in the 
bulk in solids (for example, in alloys), which raises the pos- 
sibility of seeing analogous phenomena in bulk samples. 

2. To  describe a continuous phase transition in the 
framework of the Landau theory, in the simplest case it is 
sufficient to study a system described by a scalar order pa- 
rameter 7. To study the phase change arising at a fixed tem- 
perature as the concentration n = N / V is changed it is con- 
venient to look at the free energy functional F(V,T,N,77), 
where Vis the system volume and N the number of atoms in 
the system. We will assume that the order parameter 7 is not 
the independent variable thermodynamic density. n.  If we 

11 79 Sov. Phys. JETP 68 (6), June 1989 0038-5646/89/061179-04$04.00 @ 1989 American Institute of Physics 1179 



introduce the functional density f ( T,n,v): F = J fdV, and 
the corresponding differential df = - s d T  + pdn  (s is the 
entropy per unit volume, p the chemical potential), it is not 
difficult to establish the dependence of chemical potential on 
concentration: 

The Landau expression for f (n,T,v) in the vicinity of the 
transition has the form 

with 

We will further assume that the system is far from the "criti- 
cal" point, where dT, /an, = 0, so that the quantities a and 
a ,  are connected by the relation a ,  = adT, /an, ; the deriva- 
tive runs along the phase transition curve T, (n, ). 

The condition of the functional minimum df /dg = 0 
determines the value of the order parameter 

= a ,  (n, - n)/2B, from which we can at once establish 
the dependence of ,u on n (see Eq. 1 ) : 

The result allows us to reach several conclusions regarding 
the dependence of the diffusion coefficient on n. The diffu- 
sion current j arises as the result of the presence of a gradient 
in the chemical potential (see, for example, Ref. 8 ) ,  
j = - bnVp ( b  is the mobility). Taking into account the 
p ( n )  dependence, it is not difficult to rewrite this expression 
in the form 

Thus substituting in the definition of D the relation ( 3 ) ,  we 
get 

where D,, is the value of the diffusion coefficient in the sym- 
metric phase, and AD is the discontinuity in the diffusion 
coefficient for the transition to the nonsymmetric phase. 

Thus, within the Landau theory, we get a variation in D 
to its final value by means of a discontinuity at the phase 
transition boundary. Experimentally, such behavior should 
appear as a variation in the angle of deviation in the atomic 
distribution profile as a function of separation, n (x). 

However, up till now we have not taken account of the 
fluctuation region of the phase transition, in which applica- 
tion of the Landau theory is not justified and the behavior of 
the coefficient can vary substantially. The extent of the fluc- 
tuation region, determined by the Ginzburg criterion (see, 
for instance, Ref. 9 ) ,  depends on the system parameters and 
often occupies a rather wide interval (in temperature or con- 
centration), marked in experiment by a characteristic "A- 
type" singularity (or  anomaly) in the second derivatives of 
the thermodynamic potentials (for example, the specific 
heat). The diffusion coefficient D, containing the second de- 
rivative of the free energy with concentration, is no excep- 
tion to this. 

To determine the critical index A which defines the 
character of the diffusion coefficient anomaly near the phase 
transition line. 

we use the scale invariance hypothesis, written in the form 

Here g is  the system correlation radius, d is the dimensionali- 
ty ( d  = 2 or 3),  

since 

As a result we have for the diffusion coefficient 

i.e., we have A = - vd + 2, coinciding with the critical in- 
dex a for the dependence of the specific heat on I T - T,. I .  

We consider now the fact that the index a ,  measured for 
a fixed film concentration, can differ (even in sign) from the 
quantity a' measured for a fixed chemical potential. Accord- 
ing to the sign of the index a the thermodynamic part of the 
diffusion coefficient vanishes or diverges in the fluctuation 
region of the phase transition."' 

Experiments on the measured specific heat of adsorbed 
monolayers for second-order transitions have recorded dif- 
ferent possible forms for the index a."-" In particular, in 
the experiment of Ref. 11 on disorder in helium films on 
graphite, carried out for various fixed adatom concentra- 
tions, intervals were detected on the continuous phase tran- 
sition curve characterized by both negative and positive val- 
ues of the specific-heat critical index a .  We note that in bulk 
systems measured specific heats also show various possible 
signs of the critical index (see, for example, Ref. 16). 

According to our ideas, just such adsorbed systems, 
characterized for fixed concentration by positive values of 
the specific-heat critical index ( a  > 0),  permit the observa- 
tion of anomalous growth of the diffusion coefficient, lead- 
ing to plateau formation in the concentration profile n ( x )  . 
In the opposite case; when A = a < 0 and the diffusion coef- 
ficient vanishes at the transition point, a step should be seen 
in the concentration profile. 

From the form of the plateau or step in n (x) in experi- 
ment, it is not difficult to obtain the value of the index A. In  
fact, solving the diffusion equation in the case of a planar 
diffusion front, 

in quasistationary conditions (easy to produce due to the 
slow diffusion process, which holds the concentrations con- 
stant at the film extremities) for a narrow region in the vicin- 
ity of n, where the D a In - n,. I A dependence is valid, it is 
easy to find the following dependence of n on x:  

The coordinatex is measured from the kink of the plateau or 
step where n = n,. 
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We cannot completely exclude the possibility that pecu- 
liarities may arise in the kinetic part b of the diffusion coeffi- 
cient near the transition point (see Eq. 5 ) ,  which can alter 
the value found for the index A. However, for the case stud- 
ied so far, in which the diffusion mode describing the con- 
centration relaxation is not critical, there are no special rea- 
sons for an anomalous increase in the mobility b. As was 
shown above, such an increase in the kinetic coefficient 
usually occurs as a result of dynamic renormalization in the 
neighborhood of the phase transition in the case when the 
concentration scales with the order parameter and the diffu- 
sion mode is critical. 

Just such a situation occurs in the case of a phase transi- 
tion in the incommensurate state. As shown in Ref. 7, the 
sharp increase in the diffusion coefficient in the neighbor- 
hood of a phase transition can be explained by the high mo- 
bility of soliton lines that arise in the incommensurate phase. 
We will show that consideration of the thermodynamic part 
of the diffusion coefficient in the vicinity of the phase transi- 
tion complicates the picture resulting from analyzing only 
the kinetic properties of the system. 

We introduce the parameter S to express the degree of 
incommensurability S = (a - b) /b< 1 of the film, where a 
and b are the periods of the film and of the substrate in the 
direction of incommensurability (see, for instance, Ref. 17). 
The concentration k of soliton lines in the incommensurate 
film is proportional to the variation in adatom concentration 
n - n, and can be expressed in terms of 6 by the relationship 

The free energy of the system is expressed in terms of the 
concentration of soliton lines in the neighborhood of the 
phase transition by the relation (see Ref. 17) f = ~k + ck ', 
where E cc (S  - S, ) is the energy density per unit length of a 
soliton line, and the second term in the energy is connected 
with the system entropy increase due to kinks in the soliton 
lines. Using Eq. 11, it is not difficult to find that 

from which we can at once determine the behavior of the 
thermodynamic part of the diffusion coefficient; 

Da a' f  / an2a  (n  - n,) -- 0,  
n-n 

(13) 

that is, the critical index A = - 1. In experiments'.' the dif- 
fusion coefficient is seen to increase sharply, rather than van- 
ishing; this, obviously, means that a strong dynamic renor- 
malization of the kinetic part takes place, with a positive 
critical index exceeding one. 

To conclude this section on the behavior of the diffusion 
coefficient in continuous phase changes, we note that at 
present there is a large number of adsorbed systems in which 
such a transition is observed. Apart from the systems al- 
ready mentioned, disordered films of krypton forming a 
O x f i  structure on a graphite substrate,Ix oxygen films 
forming a p ( 2  x 2 )  structure on nickel ( 11 1 ) , I 9  hydrogen on 
iron (110) surfaces,"' and many other adsorbed systems 
have been quite well studied. Investigation of diffusion of 
such films on crystal surfaces could confirm or disprove the 
discussion above regarding the dependence of the diffusion 
coefficient. One must bear in mind that the fluctuation re- 
gion of some of these systems may be too narrow, since in 

experiments only the final jump in the diffusion coefficient 
will be seen (in accordance with Eq. 5 ) .  

3. We now turn to the question of the behavior of the 
diffusion coefficient near a first-order phase transition. As 
we said above, such a situation arises in studying the diffu- 
sion of gold on silicon ( 11 1 ) s ~ r f a c e s . ~  Here, diffusion is 
observed to stop when a concentration is reached on the dif- 
fusion front corresponding to that for the coexistence 
boundary of two different,surface phases for the given tem- 
perature. To  explain this phenomenon we investigate how 
the free energy functional depends on concentration near a 
first-order phase transition. This functional has the form of a 
double-well curve, the minima of which correspond to the 
concentrations n ,  and n2 of the two phases. At the point of 
phase equality the chemical potentials of the two phases are 
equal, p , = p2 For a concentration change from n ,  to nz the 
film consists of a two-phase mixture with equal chemical 
potentials; as n is increased islets of the new phase grow in 
area and the transition is completed at the concentration n,. 
Thus, in the concentration interval from n ,  to nz the system 
has the chemical potential p(, = p I = p 2 ,  which means that 

We emphasize that in this case the issue in question is 
the effective coefficient characterizing the diffusional mo- 
tion of the film boundary. The actual coefficient characteriz- 
ing diffusional motion of the particles in each of the equilib- 
rium phases remains at its final value. 

Schematically, the system behavior is described by the 
diagrams in Fig. 1. We see that when the diffusion front 
reaches the concentration n , (for fixed temperature) its 
movement ceases. For a variation A T  in film temperature 
the system will leave the state of two-phase thermodynamic 
equilibrium, so that p,  will be less than p,. In the intermedi- 
ate concentration region from n ,  to n,, corresponding to a 
two-phase mixture, the chemical potential grows linearly 
from p ,  to p,: 

FIG. 1. 
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the diffusion coefficient D were very distinct; the authors 
note the correlation between the minima of D and the con- 
version between bulk phases of Na,.O. 1 A1,0, and Na,.0.5 

FIG. 2. 

which is schematically depicted in Fig. 2. 
For a small deviation AT of the temperature from T,, 

plzpo+AT(dpl/aT) =po+ATs,, 

p2=p0+LT(dp,/dT) =p*+ATs,, 

so that 

where Q is the heat of transition. 
Therefore, the dependence of the diffusion coefficient 

D ' in the region of phase coexistence on ATcan be expressed 
as 

which can be measured experimentally via the variation in 
angle of deviation of the concentration profile n i x )  as a 
function of ATand Q. As D ' decreases the two-phase coexis- 
tence region occupies less area in the atomic surface distribu- 
tion, and in the limit D '- 0 (throughout which D 'has afinite 
value) a step should be evident in the concentration profile 
n (x)  . In fact, under conditions of coexistence there is a non- 
zero diffusion current j = - nD1(dn/dx) # O  since D l - 0  
as an/& - oo ; that is, n ( x )  jumps from n , to n,. I t  is possible 
that just such behavior has been observed for the diffusion of 
indium on a silicon ( 1 1 1 ) ~ u r f a c e . ~  

We note that all the discussion carried out above on 
surface diffusion can be generalized to the case of diffusion of 
defects in the solid crystal. If, on the phase diagram showing 
the system state as a function of temperature and defect com- 
ponents, there are first-order or second-order phase transi- 
tion lines, one should see the diffusion coefficient vanish or 
go to infinity at the corresponding concentrations. Such ex- 
periments are complicated by the difficulty of observing the 
diffusion front in the solid; however, they have been carried 
out. In Ref. 2 1 the propagation of the diffusion front of sodi- 
um in the crystal bulk in a-Al,O, was observed. In these 
measurements the regions of sharp maxima and minima of 

A1,0, for corresponding concentrations. I t  goes without 
saying that further investigations in this direction would be 
of great interest. 

In conclusion, we will formulate the basic results of our 
work. 

1. The observed experimental results on the anomalies 
of behavior of the diffusion front of adsorbed films (charac- 
terized by the vanishing of the diffusion coefficient) are ex- 
plained for concentrations corresponding, on the equilibri- 
um phase diagram, to a first-order transition. 

2. For the case of a second-order phase transition anom- 
alous behavior of the diffusion coefficient is discovered, 
characterized by a critical index coinciding with the critical 
index of the specific heat. Adsorption systems are indicated 
for which observation of a plateau in the concentration pro- 
file may be seen, in connection with the growth of the diffu- 
sion coefficient. 

The authors express their thanks to V. G. Lifshits for 
discussions of the experimental materials in the investiga- 
tions of the diffusion of films on monocrystalline surfaces. 
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