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We investigate the dynamics of a diatomic molecule acted on by circularly and linearly polarized 
IR radiation of high intensity ( 10-100 GW/cm2). The analysis is carried out in a two- 
dimensional approximation, so that account can be taken of the effect of the rotational degree of 
freedom on the dynamics of the vibrational transitions. The spectrum of the molecule quasi- 
energies is analyzed in the case of circularly polarized radiation. It is shown that quantum chaos is 
produced by linearly polarized irradiation. In particular, the change of the polarization with time 
is quasi-random leading to a quasi-continuous spectrum of the proper radiation of the molecule. 
The quantum-mechanical analysis of the system is preceded by a classical one. 

1. INTRODUCTION 

The last decades have seen considerable progress in the 
understanding and analysis of the dynamics of nonlinear 
classical systems. It has been found that the system dynam- 
ics can have a random character, and no special conditions 
need be met to realize motion of this type. In particular, 
chaotic motion can occur even in a one-dimensional system 
acted upon by an external periodic perturbation. The onset 
of chaotic dynamics can be roughly described as follows: An 
external field leads to formation of a system of primary non- 
linear resonances at frequencies that are multiples of the ex- 
ternal frequency. The influence of the nonlinear resonances 
on one another produces secondary nonlinear resonances 
and stochastic layers in the vicinity of the resonance separa- 
trices. If the field amplitude exceeds a certain critical value 
the various stochastic layers coalesce, and this leads to glo- 
bal stochasticity in the system.' 

Obviously, the specific features of the dynamics of a 
classical nonlinear system should be manifested also in the 
quantum approach. Recent research in this field (named 
"quantum chaos") has shown that for a quantum nonlinear 
system in an external filed to reflect features of a classical 
system it is necessary to satisfy the requirement V/y% 1, 
where Vis the interaction of the field with the quantum sys- 
tem and y is the nonlinearity parameter.2.3 In the opposite 
case V / y <  1 the nonlinear quantum resonances degenerate 
into two-level systems and the dynamics of the object has a 
quantum character. 

From among the simplest objects of quantum mechan- 
ics, the condition V/y$l can be met by a highly excited 
atom of hydrogen (or of an alkali metal) in a microwave 
field, and by a diatomic molecule in an IR  field. The behav- 
ior of highly excited atoms is theoretically analyzed in Refs. 
4 and 5. One of their main results is the determination of the 
external magnetic field's critical amplitude above which a 
regime of overlapping resonances is realized in the system. 
This brings about a situation in which an electron "diffuses" 
as a result of a sequence of many transitions into a region of 
lower-lying levels, all the way down to the ionization limit. 

In contrast to the hydrogen atom, the dynamics of a 
diatomic molecule acted upon by IR  radiation has a different 
character. In fact, in the one-dimensional approximation the 
vibrational degree of freedom of a diatomic molecule corre- 

sponds to a nonlinear oscillator with a weakly nonequidis- 
tant spectrum. At high radiation intensity the matrix ele- 
ment of a transition between nearest vibrational levels 
exceeds the anharmonicity of the spectrum, so that many 
levels participation thus right away in the dynamics of the 
transition. The ensuing specific dynamics of the system has 
been named quantum nonlinear resonance (QNR) . Accord- 
ing to the results of Refs. 2 and 6, in the QNR regime the 
molecule polarization oscillates at the characteristic fre- 
quency of the phase oscillations, R,, a ( Vy) 'I2, where V is 
proportional to the external-field strength. The square-root 
dependence of the phase-oscillation frequency on the exter- 
nal-field amplitude, and its insensitivity to variation (within 
the limits of the spectrum anharmonicity) of the radiation 
frequency, make it possible to treat this frequency on a par 
with the Rabi frequency and with other fundamental nonlin- 
ear-optics frequencies. Note that no experimental observa- 
tion of the phase-oscillation frequency R,, has as yet been 
reported for quatum systems. 

Our present purpose is an investigation of the dynamics 
of a diatomic molecule acted upon by intense IR  radiation in 
a two-dimensional approximation that allows for the rota- 
tional degree of freedom of the molecule. This question was 
first considered in a classical approximation in Ref. 7, where 
it was shown that interaction of a molecule with a circularly 
polarized field produces in the latter an isolated nonlinear- 
resonance regime. The system reduces in this case to one- 
dimensional, with a nonlinearity y = xfiR - B (the notation 
is defined in Sec. 2 ) .  In Secs. 3 and 6 we investigate in detail, 
by a quantum approach, the structure of the nonlinear-reso- 
nance phase-space and the structure of the system's quasi- 
energy spectrum. 

The dynamics of the molecule is fundamentally differ- 
ent if the radiation is linearly polarized. A regime of two 
interacting QNR is realized then in the system, and the mol- 
ecule motion (in the classical approach) is chaotic (Sec. 4).  
The results, given in Sec. 7, of a numerical analysis of the 
system show that the molecule dynamics is qualitatively al- 
tered also in the quantum case if the radiation field is linearly 
polarized. In particular, the time variation of the polariza- 
tion is quasi-random, leading to a quasi-continuous spec- 
trum of the molecule's proper radiation. We discuss the pos- 
sibility of observing quantum chaos in this system under 
conditions of a real experiment. 
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2. CLASSICAL MODEL 

In the classical approach, a diatomic molecule in a Z 
state can be set in correspondence with a system of two point 
masses m, and m, in an interaction potential U(r) having a 
minimum at r = r,,. In "action-angle" variables, the unper- 
turbed motion of the molecule corresponds to a Hamiltonian 
H, = H,,(I,L 2) ,  where I i s  indicative of the vibrational mo- 
tion of the nuclei (I = 0 corresponds to the absence of oscil- 
lations), and the variable L coincides with the torque. We 
shall designate the variables conjugate to I and L by 8 and p 
respectively (p is the angle between the x axis and the mole- 
cule axis). We confine ourselves hereafter to small values of 
Iand  L (H,,(I,L 2,  < / U(r,) I ) .  Expanding H,, up to quadrat- 
ic terms, we have 

We have changed in (2.1 ) to the dimensionless action vari- 
ables n = I /fi and I = L /fi, and have used standard notation 
for the harmonic-oscillation frequencies R = dH,/dI, the 
anharmonicity x = fi(d 2H,/dI ,) /R, the moment of inertia 
B = fi2dH,,/d(L ,) and the reduced molecule mass 
M = m,m,/(m, + m,). 

Consider the interaction of a molecule with a circularly 
polarized electric field E ( t )  (Ex = E cos wt, E, 
= E sin wt). Let the dipole moment of the molecule be 
d = e,,r, where e,, is the effective charge of the atoms and 
do the dipole moment in the absence of the field. The Hamil- 
tonian of the interaction of the molecule with the radiation is 
then 

Substituting 7 from (2.2) and retaining only terms responsi- 
ble for the resonance interaction, we have 

Wn'" 'b 

Hi.. = - cos (ewt+v) ,  = )  , (2.3) 
2 

where W is the parameter of the interaction of the IR with 
the molecule. We shall relate hereafter the value of the field 
E to the radiation intensity S = cE */8.rr. For rO in A, do in D, 
fiR in cm-', M in a.u., and S i n  GW/cm2 we have 

For example, for the GeO molecule parameters fiR = 985.8 
cm-I, xfiR = 4.2 cm-', B = 0.48 cm-', d,, = 3.28 D, 
r,, = 1.62 A, M = 13.11 amu and radiation intensities 
S= 2.5-25 GW/cm2 the parameter Wis 3.39-10.72 cm-'. 

We conclude this section by noting that for three-di- 
mensional space the Hamiltonian H = H,, + H,,, [Eqs. 
(2.1) and (2.3) 1 correspond to a molecule with an orbital 
angular momentum parallel to the radiation vector. 

3. ISOLATED NONLINEAR RESONANCE 

We proceed to analyze the vibrational-rotational mo- 
tion of a molecule on the basis of the Hamiltonian (2.1 ) and 
(2.3). We make a canonical change of variables: 

where k = I - n, 9 = 8 - wt  + e) is the slow phase and 3 is 
the variable conjugate to k. The Hamiltonian takes then the 
form 

ff=~(k)n-Bk2+'/,Wn"' cos 6=Heff(n, +)f Bk2, 
(3.1) 

A ( k )  =fi(Q-o) +2Bk, y=xfiQ-B. 

It is seen from (3.1 ) that k is an integral of the motion, so 
that the problem has been reduced to an analysis of a one- 
dimensional system with a Hamiltonian 

where k assumes the role of a parameter. 
Let us draw the portrait of the system (3.1 ) for different 

values of the parameters k. The equation for the immobile 
points is 

Wn" W 
ri = -sin +=0, &=A ( k )  -2yn + - cos 6=0. 

2 4n'" 

We obtain from (3.2) five immobile points with the follow- 
ing coordinates: hyperbolic points n = 0 , 9  = + a/2; ellip- 
tic point n = n,, 9 = + a ;  hyperbolic point n = n,, 
9 = f a ;  elliptic point n = n,, 9 = 0 ( 0  < n,<n,  < n,). The 
actual values of n ,, ,, , are obtained by solving a cubic equa- 
tion that follows directly from (3.21, where the points 
( n , , ~ )  and (n2,n) occur only under the condition 

By way of example, Fig. 1 shows, for the parameters of the 
GeO molecule ( S  = 25 GW/cm2, fi(R - w) = 15 cm-I), 
the positions of the points n ,, ,, , as functions of the param- 
eter k. Corresponding to a specific value of the integral of 
motion k is the straight line I - n = k along which the sys- 
tem moves in fact in the case of a circularly polarized field. 

Knowing the positions of the immobile points, it is easy 
to draw a qualitative phase portrait of the system (3.1) for 
different values of k. It can be shown, in particular, that for 

FIG. 1. Positions of immobile points n , ,  n,, and n, (thick solid 
curves) and of the separatrix of the principal nonlinear reso- 
nance (dashed lines). The parameter values are: 
fi(R - W )  = 15 cm-' ,  xfiR = 4.2 cm-' ,  B = 0.48 cm-I, 
S= 25 GW/cm2 ( W =  10.72 cm-I). The figureshows also the 
projections, on the nl plane, of the phase trajectory of the mole- 
cule in the case of linearly polarized radiation, for two initial 
conditions: a-n(0) = l (0 )  = 4,p(0)  = 9 ( 0 )  = 0, trajectory 
duration 10p'O s; b-n(0) = 5, 1(O) = 15, p ( 0 )  = 8(O) = 0, 
trajectory duration 1 0 ' '  s. In the case of circularly polarized 
radiation the system moves (on the nl) plane along the line 
k = / - n = const. The positions of the points n ,  and n, should - 20 - IU U 70 ZOL be interchanged. 
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k > k ,  there takes place in the system a principal nonlinear 
resonance in the vicinity of the elliptic point (n,,O) and an 
"accompanying" resonance in the viciniy of the elliptic 
point ( n  ,,.ir). At radiation intensities S < 25 GW/cm2, how- 
ever, the real dimensions of the accompanying resonance are 
small for most diatomic molecules, and its influence on the 
system dynamics can be neglected. 

If the system locks-in with the principal nonlinear reso- 
nance, the molecule motion constitutes periodic changes of 
the vibrational state n ( t )  [which are accompanied by 
changes of the rotational state l ( t )  = n ( t )  + k] ,  with a 
characteristic frequency 

The maximum and minimum possible values of n ( t )  are de- 
termined in this case by the position of the separatrix of the 
principal nonlinear resonance. Figure 1 shows dashed the 
position of the principal-resonance separatrix for selected 
values of the parameters. 

4. INTERACTION OF NONLINEAR RESONANCES 

As shown in the preceding section, nonlinear resonance 
is produced in the molecule in the case of a circularly polar- 
ized field. Roughly speaking, the region of the influence of 
the nonlinear resonance is bounded by the dashed lines in 
Fig. 1. When the field-rotation direction is reversed, the re- 
gion of influence of the resonance is symmetric about the 
ordinate axis to that shown in Fig. 1. The molecule dynamics 
has a fundamentally different character in the case of linear- 
ly polarized radiation. The regions of influence of the right- 
and left polarized radiation components overlap in this case. 
It is common knowledge that if the influence regions of the 
nonlinear resonances overlap, the dynamics of the system 
has (in this region) a chaotic character. 

In the resonance approximation, the dynamics of the 
vibrational-rotational motion of a molecule in a linearly po- 
larized field is described by the effective Hamiltonian 

Heff=fi (Q-o)  n-xfiQn2+BLZ+Wn'" cos 6 cos cp, 6=0-ot. 

The system (4.1 ) has no global integrals of motion other 
than the energy, so that the integral k = I + n can be approx- 
imately conserved only in regions where the influence of the 
the resonances is substantially weaker than that of the other. 
Figure 1 shows examples of the projections of the trajector- 
ies of the GeO molecule [calculated on the basis of (4.1 ) ] 
for two initial conditions. ~vident ly ,  in the second case the 
value k = 10 is approximately conserved. For initial condi- 
tions pertaining to the common region of the influence of the 
nonlinear resonances (case a ) ,  the trajectory is chaotic. The 
durations of the given trajectories in real time are 10-"' and 
10- I s, respectively. 

5. QUANTUM MODEL 

We proceed to analyze the dynamics of a diatomic mol- 
ecule exposed to I R  radiation in the quantum case. We con- 
fine ourselves, as before, to small values of the quantum 
numbers n and I .  For low-energy states, the energy eigenval- 
ues and the wave functions of diatomic molecule take in the 
two-dimensional approximation the form 

En,l=hQ (n+'/,) -xfiS2n2+B12, 
$.,! (r, c p )  = (2n)  -'heilwp,(r-r,), 

where the functionp, is close to a Hermite polynomial. Us- 
ing the operators 2 and iif (@, = n112p, , ), we can repre- 
sent the Hamiltonian of a molecule interacting with a circu- 
larly polarized field by 

Note that, just as in the classical case, the Hamiltonian 
(5.2) and (5.3) describes approximately thedynamics ofthe 
molecule in the three-dimensional case, when the orbital 
momentum of the molecule is perpendicular to the field. In 
fact, in the three-dimensional case the wave eigenfunction of 
the molecule is given by $ ,,,,, = p , @ , ,  , where a , ,  is a 
spherical harmonic ( lm 1 <L)  . We choose the quantization 
axis parallel to the vector of the_radiation w!ose interaction 
is defined by the Hamiltonian Hi,, = E(t)d. Let m z L )  1 ,  
i.e., the oribital-momentum vector is directed along the radi- 
ation vector. By virtue of the properties of spherical harmon- 
ics, the^ matrix elements that differ from zero are 
( Q L , ,  lHint ), and satisfy the selection rules 
L ' = L 1 and m' = m + 1 ,  while under the condition 
m z L $ 1  we have 

The transitions L, m+L + 1 ,  m - 1; L, rn-L - 1 ,  m + 1 
can thus be neglected and consequently the rotational state 
of the molecule can be characterized by only one quantum 
number, which is tantamount to a transition to the two-di- 
mensional case. 

6. ISOLATED QUANTUM NONLINEAR RESONANCE 

Let us construct the quasi-energy eigenstates of the sys- 
tem (5.2) and (5.3). We represent the system wave function 
in the form 

+(f, r, c p )  = y, y, en,, (f) e-iunt(2n)-~ei1Ppn(r-ro). (6.1) 

We substitute (6.1 ) in a Schrodinger equation with a Hamil- 
tonian (5.2). Discarding the nonresonant terms, we obtain 
the following equation for the coefficients c,,, ( t ) :  

I t  is clear from (6.2) that only the amplitudes with constant 
n - l are directly coupled to one another. We introduce 
B I;"' = c,,,,, + , . Equation (6.2) goes over then into the equa- 
tion for the vector B'" ( t ) ,  where the superscript k acts as a 
parameter. Putting 

we obtain an equation for the system quasi-energy E'" : 
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[ A  ( k )  n - y n 2 + ~ k 2 ]  BLk' 

where the parameters A(k)  = fi(R - w) + 2Bk, 
y = xfiR - B and W coincide with those defined in Secs. 2 
and 3 above. Note that Eq. (6.3) can be obtained by direct 
quantization of the Hamiltonian (3.1) of the classical non- 
linear resonance. Notice should be taken here of Ref. 8, 
where a quasiclassical method of obtaining the quasi-energy 
levels of a diatomic molecule in the field of an IR  laser was 
proposed for the first time ever on the basis of (3.1 ). Actual- 
ly, however, the conditions W/y$1 for the validity of the 
quasiclassical approach (which corresponds for most di- 
atomic molecules to very high external-field intensities) are 
difficult to meet. It is therefore necessary to calculate the 
molecule quasi-energy spectrum at the considered intensi- 
ties S- 10-100 GW/cm2 directly on the basis of Eq. (6.3). 

We have computed numerically the quasi-energy spec- 
trum of the system for the parameters of the GeO molecule 
at fi(R - w) = 15 cmp '  and for different values of 
k(  - 20gk920).  It was found that the distance between the 
first two quasi-energy levels is constant already at S = 25 
GW/cm2 ( W  = 10.72 cm-' ), i.e., it is independent of k and 
of the detuning variation fi(R - w) (within the spectrum- 
anharmonicity range). The frequnecy R,, of the transition 
between these quasi-energy levels is determined exclusively 
by the interaction Wand by the nonlinearity y. In the case of 
an external field that is at resonance with the transition 
n-n + 1, where n $1, we have R,, cc ( Wnl"y) ' I 2  (Refs. 2 
and 7) .  For n - 1, according to Ref. 9, R,, oc y(  W2)  'I3. 

7. REGIME OF INTERACTING RESONANCES 

The molecule dynamics in the case of linearly polarized 
radiation was investigated numerically. The fourth-order 
Runge-Kutta method was used to integrate the following 
system of equations: 

ifid,,,= [ f i  (9-0) n-xh9n2+BL2] c, , ,  

- t ' /LW(n+i )"2(cn+, ,  l+ ,+cn+ , ,  l - , )+' /4Wn'1a (c,- , ,  l+,+cn-, ,  

The computation accuracy was monitored against the nor- 
malization conservation Z,,., Ic,,,, 1' = 1. The system dynam- 
ics in the case of circularly polarized radiation was calculat- 
ed in accordance with the system of equations (6.2). The 
parameter values were the same as before: fi(S1 - w) = 15 
cm-I, xfiR = 4.2 c m ' ,  B = 0.48 cm-I, W = 10.72 cmp'.  
The initial condition was chosen to be a ground-state popu- 
lation ( lc,,, ( = 1). In this case only amplitudes with n = 1 
can differ from zero. Integration has shown that at the cho- 
sen values of the parameters and of the intial population, in 
the case of an isolated QNR (circularly polarized field), six 
or seven vibrational-rotational levels become involved in the 
dynamics of the transition. (On the average, the population 
of the sixth level Ic6, 612, was lo%, that of the seventh ( 1 %), 
and that of the eighth (0.1 % ) . It is seen from Fig. 1 that this 
is in full agreement with the classical estimate of the vibra- 

tional levels that are captured into nonlinear resonance (the 
size of the region bounded by the separatrix) . In the case of 
linearly polarized radiation, 7-8 levels with n and 2 1-25 lev- 
els with I were captured into resonance, i.e., altogether 200 
vibrational-rotational levels. 

It is convenient to choose as the observable quantity 
that characterizes the molecule motion the high-frequency 
component of the molecule polarization: 

P, ( t )  =P,(" ( t )  sin o t f  P,"' ( t )  cos a t ,  
(7.2) 

P , ( t )  =H,(" ( t )  sin o t +  P,(") ( t )  cos o t ,  

where 
T 

1 2n ~ 2 , ;  ( t )  = j (Ip( t )  I iXou 1 $ ( t )  ) sin o t  d t ,  2' = - 
0 o 

and an analogous expression for plf:, with sin wt replaced by 
cos wt. Since the radiation intensity is proportional to the 
second derivative of the polarization, the frequency spec- 
trum of P ( t )  determines the spectral composition of the 
proper high-frequency radiation of the molecule. Using the 
expansion (6.1 ) of the wave function, we have following ex- 
pressions for F(  T )  in terms of the coefficients c,,,, ( t )  : 

where 

Note that in the case of an isolated resonance, if the initial 
condition is chosen in the form of the population of a - 
single level we have F + ( t )  =0, and thus F:"' = - P:' and - - 
P;' = - PF'. In addition, in the case of a linearly polar- 
ized field, for a symmetric initial condition (in particular, 
when the ground state is populated), we have by virtue of the 
symmetry of the solution F y ' ( t )  ~ 0 .  

Figure 2 shows the time dependences of and their 
frequency spectrum 

P (v) = ( P ( t )  e-'" > 
(the angle brackets denote averaging over the time) in the 
case of perpendicularly (b )  and linearly ( a )  polarized radi- 
ation. For convenience, the polarization is normalized to the 
intensity of the field interaction with the molecule, corre- 
sponding to replacement of the approximation symbol in 
(7.3) by an equal sign. The corresponding plots for F:' are 
similar in form. It  is clear from Fig. 2 that in the isolated 
QNR regime the proper spectrum p ( v )  is a set of a small 
number of well-resolved lines. In the interacting QNR re- 
gime, on the contrary, the molecule polarization p ( t )  consti- 
tutes a very complicated quasi-periodic process with a nearly 
continuous spectrum. This result agrees with the conclusion 
that quasi-chaos is present in the system of the quasi-inter- 
acting QNR obtained earlier in Ref. 2 on the basis of a model 
Hamiltonian. Note that according to Ref. 2 the qualitative 
differences between the two regimes increase when the exter- 
nal-field intensity is increased. 
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FIG. 2. Time dependence of the polarization P ( t )  (7.2) of a diatomic 
molecule and its Fourier spectrum in linearly ( a )  and circularly (b)  po- 
larized fields. The polarization is normalized to the interaction of the field 
with the molecule. The Fourier spectrum is shown only for positive values 
of v, the plot being symmetric for negative v. The numerical calculation is 
based on (6.2), (7.3), and (7.4) for the parameters of Fig. 1. The initial 
condition was chosen to be a population Ic,, ,,(O) 1 = 1 of the ground state 
of the molecule. 

8. CONCLUSION 

The results above show that a diatomic molecule in an 
intense IR field is a promising object for the investigation of 
quantum stochasticity. An advantage of this system over a 
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Rydberg atom in a microwave field is that quantum chaos 
can be realized without a preliminary selective excitation 
into the region of high-lying levels. 

We have confined ourselves in this paper to a two-di- 
mensional case. The reason is that the two-dimensional case, 
on the one hand, is much more illustrative, and on the other 
it makes it possible to take into account the main effects 
connected with the influence of the rotational degree of free- 
dom on the dynamics of the vibrational transitions. A 
change to the three-dimensional case entails allowance for 
(2L + 1 )-fold degeneracy of the rotational state of the mole- 
cule with respect to the magnetic quantum number. In prin- 
ciple (at least from the standpoint ofcomputer experiments) 
allowance for degeneracy of the rotational levels does not 
raise unsurmountable difficulties. 

We conclude by considering one more question, not di- 
rectly connected with our results, namely the problem of the 
onset of a quasi-continum in complex molecule systems. It is 
common knowledge that an external field can be regarded as 
an additional degree of freedom. In this sense the situation 
investigated above is close to the problem of determining the 
eigenspectrum of a conservative system with three degrees of 
freedom (e.g., a triatomic molecule). Drawing an analogy 
between the quasi-energy spectrum of a diatomic molecule 
and the radiation field in the energy spectrum of a polyato- 
mic molecule, we can assume that the stochastic mechanism 
connected with the QNR interaction is one of the possible 
ways that a quasi-continuous spectrum can be produced in 
complex systems with a large number of degrees of freedom. 
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