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The evolution of off-diagonal elements of the density matrix under the influence of a pulse train is 
considered for spin systems with restricted spectra. It is shown that this process can be regarded 
approximately as diffusion in frequency space. An equation is derived describing the dynamics of 
the off-diagonal elements that determine the intensity of the multiquantum transitions. The 
obtained dependences of these intensities on the pulse-train duration are in good agreement with 
the available experimental data. 

The methods of multiquantum (MQ) NMR Fourier 
spectroscopy that have been vigorously developed in the last 
years make it possible to increase the resolution substantial- 
ly by detecting transitions in systems of N interacting +- 
spins subject to the selection rules Am = 0, & 1, + 2, ..., 
f N (Refs. 1-4). In the theoretical interpretation of the 

corresponding experiments one encounters the problem of 
describing the dynamics of the off-diagonal elements of the 
density matrix under the action of various pulse trains. 
These off-diagonal elements are directly connected with the 
intensity I, (T) of n-quantum transitions (T is the time of 
action of the pulse train, and n = Am). We have previously" 
developed a theoretical approach based on an approximate 
treatment of the evolution as diffusion in frequency space. 
This approach has made possible a correct description of 
MQ experiments in where there are many coupled 
spins and the spectrum is practically unlimited. The ob- 
tained behavior of 1, (T) agreed with experiment and it was 
shown that I,, (T) -0 as T- CU. 

From the experimental standpoint, great interest at- 
taches to the study of.MQ spectra in systems consisting of a 
finite number of spins and having therefore a restricted spec- 
trum, such as large organic molecules. Experiment has 
shownX that in such systems we have I ,  -exp( - n2/N) as 
7- 00,  where N is the number of spins. An attempt to de- 
scribe such problems theoretically was undertaken in Ref. 9, 
where the exact Liouville equation was replaced by a system 
of linear differential equations, and this system was solved 
numerically. Notwithstanding the good agreement with ex- 
periment, the derivation of the system of equations is in no 
way physically grounded, and the region of its applicability 
is not clear. 

At the same time, the simple diffusion model proposed 
in Ref. 5 can be used also in the case of spin systems with 
restricted spectra. This is the purpose of the present paper. 

We consider N 1/2-spins coupled by a dipole-dipole 
(d-d)  interaction. The typical scheme of the MQ experi- 
ment is the following: a spin system at equilibrium in a 
strong constant field and described by a density matrix 

is acted upon in a time T by a pulse train, called preparatory; 
the system undergoes next, for a time t, a free evolution de- 
termined by the d-d interaction; a (detecting) pulse train is 
then again applied, followed by the action of a 90-degree 
pulse, and the transverse magnetization is measured. 

In a rotating coordinate frame we have 

(Ix(t))=Sp[Ix exp('/,inI,) V exp(-iHdzt) 
X u p  (0) U-' exp(iHdrt) V-' exp('/,inI,) ] 

=Sp[ V-'z,V exp(-iHdzt) Up(()) U-' exp(iHdzt) 1, (2)  

where U and V are the evolution operators that determine 
the action of the preparatory and detecting pulse trains, and 
HdZ is the secular part of the d-d interaction. The detecting 
train is usually such that the following condition is satisfied7: 

V=exp(iAwI,t)U-' exp(-iAoZ,t), ( 3  

where Aw is a frequency detuning introduced artifically to 
distinguish between transitions having different selection 
rules. 

We introduce the eigenvalues of the operators 
I, = By=, Z i z  and ( [Hdz,Zz ] = 0) :  

Z,lka)=klka), Hdzlka>=oalka>. ( 4 )  

Expression ( 1 ), following a Fourier transformation with re- 
spect to t, can then be written in the form 

Expressions (4)  show that the spectrum consists of a num- 
ber of lines corresponding to transitions with absorption of n 
quanta of the R F  field (n = k - I).  Just as in Ref. 5, we 
assume that the matrix elements in (5 )  do not depend on a 
or 0. This is equivalent to assuming that the widths of the 
lines corresponding to various multispin processes are equal. 
From Eq. ( 5 ) ,  with allowance for (2), we can then obtain for 
the intensity of the nonzero transitions 

The matrix elements of the evolution operator can be repre- 
sented as 
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Thecharactsristic time of change of the phase @,, ( T )  for the 
pulse trains used in the e~periment ' .~ is of the order of w, - I ,  

where w, ' is the linewidth due to the d-d interaction. Since 
we shall consider only time intervals longer than w, -I, we 
can assume that averaging takes place in ( 6 )  over the rapidly 
varying phases (the random-phase approximation). Expres- 
sion (6 )  takes the form 

FIG. 1. Plot of idtensity of n-quantum transitions in a system of N = 6 
f -spins. 

Our main task is now to obtain a diffusion-type equa- 
tion for the matrix elements of the evolution operator, in 
analogy with what was done in Ref. 5. Since the evolution 
operator has the group property Substituting ( 13) in ( 11 ) and taking the initial condition 

( 12) into account we get 

pXtv ( t )  =C ( X I  z exp ( - 7) ex*[ 2ikn(t-x) I. 
k 

we have in the matrix elements 

m.7 
or approximately According to (6 ) ,  the intensity of an n-quantum transi- 

tion is 

Using again random-phase approximation, we get 

Substituting here ( 14) and changing to summation, we get 

We introduce the quantity 
where A is a normalization constant. The stationary value of 
I ,  ( t )  is obviously P,, , ( t ) = C ( x ) C ( y )  l ( x l U ( t )  ly )12 .  (10) 

Changing in (9)  from summation to integration we obtain 
the Smoluchowski equation for 

from which we can obtain in standard f a ~ h i o n l ~ . ~  a diffusion 
equation for P,, ( t )  : 

(See Ref. 5 concerning the calculation of the diffusion coeffi- 
cient D. It is of the order of the d-d linewidth.) Since the 
evolution operator satisfies in our approximation the condi- 
tion 

the initial condition for ( 1 1 ) takes the form 

We seek the solution of ( 11 ) in the form of a Fourier 
series: 

FIG. 2. Plot of intensity of n-quantum transitions in a system of N =  21 
+-spins. 
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FIG. 3. Plot of I,," vs n at N = 21. The straight line was drawn at least 
squares. 

I t  is convenient to define the constant A such that the follow- 
ing condition is met: 

We consider two specific cases corresponding to avail- 
able experimental data,8 N = 6 and N = 21. The results of 
the numerical calculations with the aid of ( 16) and ( 17) are 
shown in Figs. 1 and 2. This behavior of I, ( t )  agrees well 
with experiment. 

Expression ( 17) for the stationary value of the magneti- 
zation at large N (in our case, at N = 2 1 ) is well approximat- 
ed by a Gaussian curve (see Fig. 3 ) : 

This result agrees with the experimental dataX and with the 
simple qualitative estimates of Ref. 7. The same result can be 
obtained from (17) analytically if it is noted that the main 
contribution to the sum in ( 17) is made by the terms with 
l ~ N / 2 .  Putting I = N / 2  + k, using the Stirling formula, re- 
taining in the expansion only the terms quadratic in k, and 
changing from summation to integration, we obtain Eq. 
(18).Asseenfrom (18) , a sN-  co wehaveI,,"-0,inagree- 
ment with the results of Ref. 5. 

We see thus that the simple diffusion model previously 
proposed by us in Ref. 5 for spin system with unrestricted 
spectra is valid also in the case of a finite number of spins, 
and good agreement with experiment is observed already at  
N = 6 .  

The present results can be used in the planning and in- 
terpretation of experiments on NMR MQ spectroscopy. 
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