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A novel class of self-dual solutions in SU(2) gauge theories is considered. The solution has half- 
integral topological charge Q = 1/2, an action S = 8 d Q  /g2, and is characterized by a conic 
singularity. The contribution of the corresponding fluctuations to the gluino condensate ($$) in 
supersymmetric gluodynamics is calculated. The result turns out to be finite indicating 
spontaneous breaking of chiral symmetry. The relation to analogous calculations in the 
supersymmetric O(3) a-model is discussed. Various ways of describing fluctuations with 
fractional Q, such as analytic continuation to a complex space containing several Riemann sheets 
or passing to a description in terms of orbifolds, are considered. 

1. INTRODUCTION 

The aim of the present work is the description of fluctu- 
ations with fractional topological charge Q in gauge theories 
and an analysis of its physical consequences on the example 
of Cdimensional supersymmetric gluodynamics with gauge 
group SU(2). 

The analogous problem for the 2-dimensional super- 
symmetric O(3) a-model was considered in Ref. 1. It was 
shown in that paper that fluctuations with half-integral top- 
ological charge give a finite contribution to the fermion con- 
densate ($$) and thus ensure spontaneous breaking of 
chiral symmetry in the model. It will be seen below that an 
analogous effect arises in supersymmetric gluodynamics as 
well. Namely, it will be shown that fluctuations with Q = 1/ 
2 make a nonzero contribution to the gluino condensate 
($$) #0, and that use of the quasi-classical approximation 
is justified parametrically. 

Before describing in detail the Q = 1/2 fluctuation we 
recall that the integral nature of Q for i n~ t an tons~ .~  is con- 
nected with the compactification of the physical space to a 
sphere, i.e., with the identification of all infinitely distant 
points. A different choice of boundary conditions could re- 
sult in fractional topological charges. In particular, in gluo- 
dynamics with SU(2) gauge group the introduction of so- 
called twisted boundary conditions4 makes it possible to 
obtain solutions of the classical equations-tor on^,^ possess- 
ing Q = 1/2 and actions = 4?/g2. The fundamental reason 
for the admissibility of such solutions is related to the nontri- 
viality of the first homotopy group .rrl(SU(2)/Z2) = Z,, 
which in turn is due to the existence of the elements of the 
center Z2 = exp{i.rru3k), k = 0, 1, belonging to the group 
and leaving invariant the gluon fields in the adjoint represen- 
tation: 

Thus in fact the group is SU(2)/Z2 and the nontriviality 
a,(SU(2)/Z2) = Z2 indicates the existence of new (non- 
instanton) solutions of the classical equations. 

Beside twisted boundary conditions there exist other 
ways of describing fluctuations with fractional Q: analytic 
continuation to a complex space containing several Rie- 
mann sheets, or passage to a description in terms of orbi- 
folds. It was the latter approach that was exploited in the 
analysis of the O(3) u-model.' 

In this article the self-duality equations of the gauge 
theory will be formulated in terms analogous to the corre- 
sponding Cauchy-Riemann conditions for the O(3) a-mod- 
el. It is in these terms that we are able to describe the self- 
dual solution with Q = 1/2 and to follow fully the logic of 
Ref. 1 in the calculation of the gluino condensate ($$). 

A few words about supersymmetric gluodynamics 
proper. There exist a number of serious arguments"" to the 
effect that indeed in the model spontaneous breaking of dis- 
crete chiral symmetry occurs and a nonzero condensate 
($$) f 0 arises. We recall that the theory possesses naive 
U( 1 ) symmetry: t,P -+ exp{ia)f, broken by the anomaly 
d,a, -GG. However in the process the discret symmetry 
Z2 xZ, survives. The nonvanishing of ($$) signals sponta- 
neous breaking of this discrete symmetry down to Z,, in 
accord with the Witten6 index, which equals two. 

Further, the arguments in Refs. 7 and 8 are based on 
calculating the instanton contribution to the correlator 

Making use of clustering as x-. co one might conclude that 
II = ($$)'#o. These arguments, however, do not consti- 
tute a proof since it was clarified9 that theoretically uncon- 
trollable contributions from large distances may in principle 
compensate the contribution from a small size instanton. 

Let us note that although the instanton contribution to 
II is nonzero, the corresponding contribution directly to 
($$) does vanish, and therefore a direct calculation of ($$) 
using instantons is impossible. The reason for this is trivial 
and due to the existence of four gluino zero modes in accord 
with the index theorem. This results in the instanton solu- 
tion changing the chiral charge by four units and the corre- 
sponding vacuum transition being necessarily accompanied 
by the creation of precisely two gluino pairs ($$,$$). 

We note also that a consistent calculation of ($$) was 
carried out in Ref. 10. However, the corresponding very in- 
direct calculation cannot answer the question about the fluc- 
tuations that determine this condensate. 

And, lastly, a final argument which we shall consider in 
detail, connected with direct evaluation" of ($$) on the 
basis of the toron solution of Ref. 5. In this case the topologi- 
cal charge Q equals 1/2 and the number of gluino zero modes 
equals two (and not four as for the instanton with Q = 1 ) in 
accord with the index and the expression for the anomaly. 
Therefore the toronic vacuum transition changes the chiral 
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charge by two units and is accompanied by the production of 
the pair $$, as is verified by the explicit calculation in Ref. 
11. 

We note that the toron solution5 is defined in a box of 
size L and uniformly "smeared out" over the entire volume: 
G,, - 1/L 2. However the size of ($$) is finite as L + w . It is 
clear that the calculation in Ref. 11 is only of heuristic value 
since literally the standard quasi-classical approximation 
used in that paper is not valid in the strong coupling regime, 
g (L+ w ) - w . In addition the solution of Ref. 5 exists only 
for definite ratios of the lengths of the sides of the box. 

In this paper we propose a different formulation of the 
toron solution' influenced by the corresponding analysis1 of 
the O(3) a-model. In place of the field G,, - 1/L "smeared 
out" over the entire volume we obtain in this case, as in Ref. 
1, a solution defined in the infinite space R with G,, con- 
centrated in a small neighborhood A + 0. In consequence the 
quasi-classical evaluation of ($$) discussed below becomes 
fully justified in view of asymptotic freedom: g(A) -0. We 
note that, just as in Ref. 11, the value of ($$) is independent 
of the regulator A and determined by the only dimensional 
parameter A of the theory; in the process the correct renor- 
malization theory relation is automatically reproduced. 

It is clear from what has been said above that the here - 
obtained assertion about ($$) #O is not new. The purpose of 
this paper is different, namely to find a self-dual solution 
with Q = 1/2 and to describe methods for using this solution 
on the example of SU(2) supersymmetric gluodynamics. It 
is to be hoped that analogous solutions exist in a broad class 
of theories-whenever the group T, is nontrivial. In such 
cases there should exist point singularities with nontrivial 
values for the Wilson loop, see Ref. 1. 

Finally, a last remark about the parameter A-0 figur- 
ing in the definition of the classical self-dual solution both in 
this paper and in Ref. 1. As will be seen below, the solution is 
determined as the limit for A-0, with A set equal to zero 
only at the end of the calculations. Were we to set A = 0 at 
the beginning we would obtain the trivial result G,, = 0. 
Such a situation, connected with the passage to the limit, is 
apparently common in the description of solutions with frac- 
tional Q. For example, to 't Hooft's toron solution5 corre- 
sponds the field strength G,,= 1/L 2, which equals zero for 
L + GO, yet the condensate ($$) turns out to be finite." 

The geometric interpretation of the parameter A + O  is 
discussed in detail in the Appendix of Ref. 1 and is connected 
with the regularization (referred to in the literature as blow- 
ing up) of the fixed points of the orbifold-a singular mani- 
fold of a special kind. Since the introduction of the param- 
eter A is not new in principle in comparison with Ref. 1, we 
shall not discuss it in detail but refer the reader to the above- 
mentioned paper. 

The plan of this paper is as follows. In Sec. 2 we obtain 
the solution of duality equations, which is expressed in terms 
of an arbitrary analytic function. This makes it possible to 
follow the logic of Ref. 1, redefine the theory on two Rie- 
mann sheets and obtain a self-dual solution with Q = 1/2. In 
Sec. 3 we formulate the criteria for the selection of modes 
that must be taken into account in calculating the corre- 
sponding functional integral. In Sec. 4 as an application of 
above-mentioned ideas the toron measure is calculated in 
supersymmetric gluodynamics and it is shown that the con- 
densate (?$) appears due to fluctuations with Q = 1/2. 

2. SELF-DUAL SOLUTION WITH Q= 1 I2  

We start from the axially-symmetric Witten ansatzI2 
for the gauge fields A ; (r,t ): 

here Ao,A,,@,,@, are functions of r and t. Substituting the 
ansatz ( 1 ) in the expression for the field strength 

we arrive at the following duality equations, written in two- 
dimensional notation: 

Here and below a, = (d,,,b', ) = (a /at,d /ar) are the deriva- 
tives acting in the two-dimensional space (t,r). In this case, 
as in the analysis of two-dimensional theories, it is conven- 
ient to pass to complex notationI2: 

and express the solution of the duality equations (2 )  in terms 
of an arbitrary analytic function g(z) 1 2 :  

In order that the solution be finite as r-0 it is necessary 
to impose the additional regularity requirement on \V, which 
in turn leads to the restriction on g(z):  

Igl=l for r=O, Igl<l for r>O. 

In this way expressions (4)  for @ = @, - i@, and 
A =A, - iAo together with the additional condition (5) 
solve the posed problem. Namely, the self-duality conditions 
for gauge theories are formulated in the same terms of analy- 
ticity of g(z) as in the O(3) a-model3 with the additional 
requirement (5) .  The last circumstance is related to the fact 
that, in contrast to the two-dimensional a-model, the theory 
is defined only on the half-plane Re z>0. 

In order to find the analytic function g(z) correspond- 
ing to Q = 1/2 it is necessary to consider the explicit expres- 
sion for the topological charge expressed in two-dimensional 
notationI2: 

m - 

It is seen from expression (6)  that the topological charge is 
determined by the phase acquired by the analytic function f 
on passing round the contour that encompasses the physical 
space Re z>0. 
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We are now prepared, following the logic of Ref. 1, to 
describe the self-dual solution defined on two Riemann 
sheets and possessing Q = 1/2. As for the O(3) a-model, 
the solution is defined with the help of the limit A -0, corre- 
sponding to regularization of the fixed points of the orbifold 
(see the Appendix of Ref. 1 ). Keeping in mind what has 
been said above we shall write the analytic function g(z), 
defined on two Riemann sheets, satisfying the finiteness re- 
quirement (5)  and ensuring Q = 1/2 in the following form: 

a-z 
g ( z )  = lim ( -)' a+z =[ 

dg  3 a+a a-z " 
f = - = - - -  - 

a 2  (a+z) .  (a+.  ) 
A characteristic feature of the solution (7), just as in the 
O(3) u-model, is the presence of the cut. Here Im a = to has 
the physical significance of localizing the pseudoparticle so- 
lution along the time axis. 

In the following we set without loss of generality to = 0. 
We note that the requirement Re a = A > 0 automatically 
ensures the regularity condition (5) .  Moreover, in going 
round the contour encompassing the physical space Re z>0 
the function f acquires a phase equal to T, which in accor- 
dance with ( 6 )  means that Q = 1/2.2 Let us note that by 
setting A = 0 at the end of calculations we restore single- 
valuedness of the potential A ; on one physical sheet; G:, on 
the other hand is single valued for any A. 

The resultant solution will be called a toron, just like the 
analogous solution in the O(3) u-model of Ref. 1 (see foot- 
note 1 ). The important difference between the toron solu- 
tion and solutions with integer Q is due to the presence of the 
cut. However physical gauge-invariant quantities are single 
valued and continuous across the cut, so that in essence the 
cut must be understood as the boundary of the physical 
space on which the values of all functions are defined. Conse- 
quently the solution is defined on a compact manifold with a 
boundary in contrast to, say, the instanton which is defined 
on S4-a compact manifold without boundary. This fact 
may be realized3 more explicitly by means of the conformal 
transformation which takes the cut z-plane into a disc of 
radius R, with the physical space understood as the limit 
R - m .  We note that such an interpretation is possible be- 
cause of conformal symmetry of the Lagrangian. Solutions 
of classical equations, of course, "respect" this symmetry. 

We return to relation (7) and describe the qualitative 
behavior of G:, as a function of r and t. Explicit calculations 
show that GZ, is well-behaved at r = 0 and for lzl - W .  

Name1 y 

(for technical details see Ref. 13 ) . Here and in the following 
the coordinates are made dimensionless using A, so that in 
essence the described object has a small size A, degenerating 
in the limit A -0 into a point defect. It is important to note, 
however, that our regularization of this point singularity is 
such that the self-duality equations are satisfied also for fi- 
nite values of A. 

Explicit calculations show further that in the neighbor- 
bi-rci has an integrable singularity: 

This property will be important in the following section, in 
the analysis of zero modes in the toron field. 

We note that although equality of (4)  to the analytic 
function g(z)  ( 7 )  ensures solution of self-duality equations 
having Q = 1/2, the resultant expressions for R and @ are 
too unwieldy for further analysis. Some simplification can be 
achieved by a convenient gauge choice. To this end we recall 
that the duality equations ( 2 )  have the U(1)-gauge free- 
dom: 

which may be expressed in terms of an arbitrary analytic 
function h(z) as  follow^'^: 

One may choose h ( z )  such that the field A is represented in 
the form 

A,n=-?j,,vad, In P ( r ,  t )  , 
- qop=(jni, =qioa=-pi, qij - 

a - - ~ a i j ,  (10) 
- 9r""=-' 

/ ~ E , V A S ~ A O ~ ,  E O I Z ~ = ~  

Here P(r,t) depends on r,t; ij;, are 't Hooft's  symbol^.^ If 
such a choice is possible then, as we show in Sec. 3, the prob- 
lem of determining zero modes in the field of a toron is sub- 
stantially simplified. In complex notation condition ( 10) is 
expressed as 

(0'- i ) /r=A'=2id In P ( r ,  t ) .  (11) 

One may explicitly verify that the choice of the gauge func- 
tion h (z) in the form 

exactly ensures that relations ( 10) and ( 11 ) are satisfied 
with the following expression for P: 

In what follows we shall omit the prime, it being understood 
that all results refer to the gauge ( 10). 

We note (see, e.g., the review in Ref. 14) that the duali- 
ty condition for ansatz (10) has the form 

One may verify by explicit calculation that our expres- 
sion ( 13) indeed satisfies Eq. ( 14). 

In conclusion of this section we list some properties of 
the functions Pand @ which are needed for further analysis. 
First we note that P is a regular function, single-valued on 
the cut and tending to a constant in the asymptotics JzJ -t m . 
As regards @ we have 

which ensures regularity of the potential A ; at r = 0( 1). 
Moreover, the imaginary part of @ (Im @ = - @,) is sin- 
gle-valued on the cut, while the real part (Re @ = @, ) expe- 
riences a jump-it changes sign keeping its magnitude un- 
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changed. Consequently it follows that the expression 

is single-valued, regular, and has no jumps across the cut. 
The properties of G;,, P, and @ listed in this section 

play an exceptionally important role in the selection of the 
"correct" zero modes. 

3. ZERO MODES IN SUPERSYMMETRIC GLUODYNAMICS 

As is known, supersymmetric models are conveniently 
distinguished from ordinary ones in that only zero modes 
need be analyzed. Nonzero modes, as usual, cancel between 
bosons and fermions and give no contribution to the generat- 
ing functional. This fact substantially simplifies the calcula- 
tion of the toron measure in Sec. 4. 

As regards zero modes, an explicit expression can 
usually be obtained for them in an arbitrary self-dual field 
without particular difficulties (in this case, however, this is 
not so, see below). Indeed, in the so-called background 
gauge D iba; = 0 the zero modes of a; can be explicitly ex- 
pressed in terms of the classical field strength G;, (in this 
section p, Y = 0, 1,2,3 are the usual Lorentz indices). To 
show this we recallL5 that the equation for zero modes a; in 
the background gauge has the form 

It is easily verified that the four translational, one con- 
formal and three gauge modes: 

expressed in terms of G ,",, , satisfy relations ( 15). In particu- 
lar, in the instanton field G ;, - 7;" ( 1 + x 2 )  - 2 the formu- 
las ( 16) reproduce the well-known eight gluon modesL5: 

XA 
a," (A) -qar4 (l+x2) -', at-qpha- ( l i - ~ ~ ) ~  ' 

These modes are everywhere regular and normalizable, i.e. 
satisfy all necessary requirements. 

In our case, for the toron having Q = 1/2, the modes 
( 16) continue to satisfy Eqs. ( 15), but they do not satisfy the 
regularity requirement and are therefore unacceptable. In- 
deed, since G ; ,  (8)  is singular for z+ 1 the same singularity 
is present in the modes ( 16). 

It is thus necessary to explicitly solve Eqs. ( 15). It is 
more convenient, however, to reduce the problem to a Dirac 
equation, i.e. to an equation of first order. Indeed, it can be 
shownI6 that to each fermion zero mode in the adjoint repre- 
sentation correspond precisely two vector zero modes (in 
the D,A ; = 0 gauge). In particular, the four gluino zero 
modes 

0,-D,$=O, o,*=(*i, a) ,  2a-o,+G,oae, qs, ra-~,+G,,"x,e 

(17) 

in the instanton field correspond precisely to the eight gluon 

zero modes (16). Here E is a constant two-component 
spinor. 

In the toron case, although the modes ( 17) satisfy the 
Dirac equation, they are unacceptable for the same reason as 
the gluon modes discussed above (failure to satisfy the regu- 
larity requirement). 

And so the problem is reduced to the search for regular 
solutions of the Dirac equation for a fermion in the adjoint 
representation in an external toron field. However, prior to 
any calculations, the number of such solutions can be pre- 
dicted from the index theorem or from the form of the axial 
anomaly. Namely, there should be precisely two zero modes 
in accord with the fact that the toron vacuum transition 
changes the chiral charge by two units and must therefore be 
accompanied by the production of a $$ pair. 

We return to Eq. ( 17), whose analysis is substantially 
simplified in the gauge where A ; is expressed in the form 
( 10). In that case the field is expressed through the function 
P, so that it is natural to search for the solution of ( 17) in the 
form 

~=Tj~pc~N+dnPf  (P)  E 

with a constant spinor E and arbitrary function f (P) .  In that 
case Eq. ( 17) is written as 

Using properties of the a,+ matrices (17) and the relations 
for the 7j  symbols: 

we arrive at the equation 

Taking into account that P satisfies the equation 
U P  = O(14) we find for f the solution f = P - 2 .  In the end 
then we may write the two fermion zero modes as 

In the last stage we have again gone over to complex notation 
and expressed the gauge-invariant quantity $$ in terms of 
the functions @ and P ( 1 1 ) . 

The properties of the solution (20) will be discussed 
below, for now we note that the instanton field may also be 
expressed in the form ( 10) (the so-called singular gauge) 
with 

In that case the mode (20) has the form 

and is not a new solution in comparison with the above-listed 
modes ( 17) (as can be seen from its regularity) and more- 
over, it can be shown (using the most general ansatz for the 
solution ), that no other regular solutions beside those 
given in (20) exist. 

To demonstrate the regularity of the modes (20) it is 
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sufficient to recall the properties of the functions and P 
listed at the end of Sec. 2. It follows from these properties 
that l 2  is finite for r-0, z- 1, single-valued on the cut, 
and tending rapidly to zero l $ I 2 -  121 - 6  as lzl - CO, which 
ensures its normalizability: 

Thus the two fermion modes (20) satisfy all the require- 
ments, while the fact that I $ I 2  coincides on both sides of the 
cut indicates the existence of a gauge transformation "U" 
such that U$ is single valued [literally in the gauge ( 10) this 
condition is not fulfilled]. The explicit form of the matrix 
"U" is unimportant for our purposes and therefore we shall 
not discuss it in any further detail. 

As was clarified above, the existence of precisely two 
fermion modes in the toron field was expected. Of interest 
was only the concrete realization of the general assertion of 
the index theorem. 

We note that in the calculations of Ref. 11 also only two 
zero modes are kept, however the concrete way of their real- 
ization differs from ours. Namely, all the modes listed in 
(17) turn out to be regular, however only two of them- 
$,,,-satisfy twisted boundary conditions, while the other 
tw~-$,,~-are rejected for this reason. 

As far as the number of gluon zero modes is concerned 
we have, as was clarified above, two gluon modes corre- 
sponding to each fermion mode V . l6  Introducing the solu- 
tion (20) with E = ( A  ) and E = ( y  ) into Ref. 16 we obtain 
precisely four gluon zero modes satisfying the requirements 
of regularity and normalizability. Indeed, since a i a i  - I $''I2 
the fulfillment of above-mentioned requirements for l 2  
ensures also their fulfillment for (a; )'. The procedure for 
deducing the zero modes a; from V is completely unam- 
biguous, but since the resultant expressions are unwieldy we 
see no need for displaying them explicitly. What is important 
is that their number is precisely four in accord with the four 
collective coordinates describing the location of the toron 
(literally our solution describes a toron at the origin of the 
coordinates). The parameter A, present in the solution, is 
not a collective variable, as was explained in the Introduc- 
tion, and plays the role of a regulator. At the end of the 
calculations it should be set equal to zero. 

We note that in the calculations of Ref. 1 1 in supersym- 
metric gluodynamics with a 't Hooft5 toron solution 
:'smeared out" over all space, precisely four gluon zero 
modes occur just as in our case; the remaining modes, al- 
though satisfying the equations of motion, fail to satisfy 
twisted boundary conditions. The role of the regulator in 
Ref. 11 is played by the free parameter L (in place of our 
parameter A ) . 
4.THE TORON MEASURE ANDTHE GLUINO CONDENSATE IN 
SUPERSYMMETRIC GLUODYNAMICS 

As an application of the above constructed solution 
with Q = 1/2 (Sec. 2) we calculate in this section the toron 
measure in supersymmetric gluodynamics and show how 
the ($$) condensate arises as a consequence of this solution. 
As was already mentioned, the condributions of nonzero 
modes precisely cancel so that one must analyze only the 
zero modes given in Sec. 3. 

As usual, in the evaluation of the generating functional 

Z in the quasi-classical approximation each bosonic zero 
mode gives rise to a factor MJi:2dxo. Here M, is the ultra- 
violet cutoff, and dx, the corresponding integral over the 
collective variable. Each fermionic zero mode is accompa- 
nied by the factor d&/MA", where d~ is the factor connected 
with integration over the collective Grassman coordinate. 

After the above has been taken into account the toron 
measure takes on the following form: 

Here the factor gP4M i d  4x0 is due to the four bosonic zero 
modes while the factor M i  'd 2~ is due to the two gluino zero 
modes (20) and, lastly, the factor exp{ - 4?rZ/g2) is the con- 
tribution of the classical toron action. As was to be expected 
the toron measure is independent-of A, as is easily verified by 
a dimensionality check. 

As in the case of instanton ca lc~la t ions~- '~  the expres- 
sion for the toron measure is in a precisely renormalization- 
invariant form. It is easy to follow this phenomenon starting 
with the instanton calculations, Refs. 7-10: 

In formula (23) the factor M:g-8 corresponds to the eight 
zero modes (16) in the instanton field, the factor (d2&,/ 
M,) ( d  ,E,/M,) corresponds to the four gluino modes ( 17), 
while the standard factor exp{ - 87?/g2) is connected with 
the classical instanton action. The renormalization invar- 
iance of the toron measure is now easy to understand: togeth- 
er with a decrease of the action by two the number of ac- 
ceptable zero modes also decreased by precisely two, exactly 
reestablishing the correct renormalization group relation. 

All is now ready for the calculation of the chiral con- 
densate ($$). Substituting in place of $ its zero modes (20) 
and taking into account that integration over collective fer- 
mionic variables yields exactly unity ( J  ~ ' d  2~ = 1 ) we verify 
that 

<I@$) -As J d4z0 qOa (z-x0) tpOa (x-x0) =A3. (24) 

In the last step we used the value of the normalization inte- 
gral (21). 

Let us summarize. The instanton can ensure a nonzero 
value only for the (?$,$$) correlator, 7-'0 in accord with the 
existence of four fermionic zero modes and integration over 
four Grassman variables d ' ~ , d  2 ~ 2  (23). The toron solution 
with Q = 1/2 changes the chiral charge by two units and has 
two zero modes, so that the corresponding vacuum transi- 
tion is necessarily accompanied by the production of the pair 
$$, as was demonstrated in the explicit calculation (24). 

The ideology of this calculation is analogous to that of 
Ref. 1.1. The difference has to do with the fact that in the 
calculations of Ref. 11 use is made of the standard quasi- 
classical approximation, which is not valid when the size L 
of the box is increased, since then the typical values ofg that 
are important are large: g (L  - co ) - cc . 
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In our case the toron solution, just like any other self- 
dual solution, exists for arbitrary values ofg. However, keep- 
ing in mind that the object being considered is essentially 
pointlike (Sec. 2),  it is clear that the characteristic scale is 
x2-A2-0. In that case the coupling constant g(x- A) -0 
is small and the quasi-classical approximation is justified. 
This shows that the situation differs from the instanton cal- 
culations,'~* where the answer is determined by an integral 
over the instanton size .f dp, whereas only that part of the 
entire contribution that is due to a small-size instanton is 
justified and under cmtrol. 

Moreover, the solution of Ref. 5 on which the calcula- 
tion in Ref. 11 is based exists only for definite ratios of the 
sides of the four-dimensional box. This casts doubt on the 
reality of the corresponding fluctuations, since a small 
change in the dimensions of the box should not lead to a 
change in the physical content of the theory. 

A few words about the choice of the value Q = 1/2 as 
opposed to other fractional values of Q. The corresponding 
special feature manifests itself in that the quantity V is 
required for all modes [in including the zero modes (20) ] to 
be the same on both sides of the cut. This requirement is 
satisfied only for Q = 1/2. The situation just dscribed is 
analogous to the corresponding result of the 0( 3) u-model,' 
where the existence of translational zero modes satisfying all 
requirements unambiguously determined the acceptable 
value of Q to be 1/2. This fact was interpreted in Ref. 1 as 
indicating stability of the given solution and instability of 
solutions with other fractional topological charges. 

We also note that, as in Ref. 1, the correct renormaliza- 
tion group dependence is reestablished only for Q = 1/2. 

5. CONCLUSION 

The main purpose of this work was the description of a 
self-dual solution with Q = 1/2 and an analysis of physical 
consequences connected with this solution on the example of 
supersymmetric gluodynamics. As was shown, the corre- 
sponding fluctuations ensure spontaneous breaking of dis- 
crete chiral symmetry and give nonzero contribution to the 
chiral condensate. Apparently this is a new independent 
contribution, which should be taken into account along with 
the instanton calculations of Refs. 7-10. 

An alternative point of view is also possible, raised in 
Ref. 17, to the effect that the instanton is a superposition of 
two objects with half-integral topological charge. In Ref. 17 
such an object with Q = 1/2 was the meron," having infinite 

action. In some sense the above described solution (Sec. 2)  is 
similar to a meron: they both have zero size (for A = 0). 
There is also a difference: the toron has finite action, the 
meron-infinite. This interpretation is also favored by the 
instanton calculations of Ref. 9. As can be seen from that 
paper the evaluation of the various correlators reduces to 
integrals saturated by instantons of zero size [see formulas 
(32) and (33) of Ref. 91. It is possible that this contribution 
can be interpreted as due to two torons (we recall that the 
toron size is zero for A = 0).  At least in the 0( 3) u-model 
the two-toron contribution indeed exists and gives a nonzero 
contribution along with the instanton to the correlator 
(?*,?*) * 

'We keep the term "toron", introduced in Ref. 5, for both the self-dual 
solution of the O(3) a-model' and for the gauge-theory solution con- 
structed below. We thus emphasize the fact that this solution minimizes 
the action and has Q = 1/2, i.e., has all the properties associated with the 
toron of Ref. 5. 

2We call attention to the fact that to the instanton corresponds 
g(z) = n t  , (a, - z)/(ii, + z ) ,  while to empty space corresponds 
g(z) = ( a  - z)/(ii + z)," so that expression (7)  for g(z)  falls precisely 
between these solutions, as it should according to its sense. 

'The author expresses gratitude to A. Morozov and A. Roslyi for clarifi- 
cation (with the O(3) a-model as the example) of this point of view with 
regard to the solution with fractional topological charge. 

4The difference from the commonly used notation for +j" is due to non- 
standard expression for G,,, [see ( 1 ) 1, containing a " -':'sign in front of 
the term E , ~ ,  Ap . 
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