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A general formalism is proposed for the solution of the Maxwell equations with the aid of 
complete Green functions. This formalism is based on the fifth-parameter technique. A new effect 
is predicted: an object wave scattered by a smooth inhomogeneity forms a conjugate image 
additional to the main one. The two images are on opposite sides of the inhomogeneity and are 
simultaneously real or virtual. This effect is of wave origin: the intensity of the conjugate image 
vanishes in the limit R -+ 0. 

The theory of propagation of waves relies mainly on 
approximate methods in spite of the fact that the exact solu- 
tion of any system of linear equations can be represented in a 
series form. This is because series are not very suitable for 
numerical calculations. Several asymptotic methods for 
solving the wave equations are known at present: these are 
integral equations,3v4 geometric o p t i ~ s , ~ . ~ - ~  smooth pertur- 
bationsI7 short-wavelength a ~ y m ~ t o t e s , ~ . ~  and a parabolic 
e q u a t i ~ n . ~ * ~ - ' ~  Use is also made of the methods developed in 
quantum field theory".I2 and of variational principles.I3 

The most general approach to the solution of linear 
equations with variable coefficients involves the use of com- 
plete Green functions. At present the main method for the 
calculation of Green functions is perturbation theory. On 
the other hand a nonperturbative approach is used exten- 
sively in quantum theory and this is based on the fifth-pa- 
rameter technique developed by Fock and S~hwinger . '~- '~ 
We shall use this method to solve the Maxwell equations. 

em (x) = e:) (x) + w 2 j  d'xr G,. (x, xr) oh. (xr ) a:" (xl). (5 

where u,, = E,, - Sks.  Both Eqs. (2)  and (4)  cannot be 
integrated in a finite form. However, an approximate solu- 
tion of Eq. (4)  for the Green function has a number of im- 
portant advantages. Firstly, the Green function determines 
the structure of the general solution ( 1 ) irrespective of the 
source or of the function etO'(x). [It  should be noted that in 
most approximate methods a specific e'O'(x) function is used 
as the first approximation.] Secondly, the main advantage of 
the adopted approach is the fact that the solution (4)  can be 
obtained on the basis of a nonperturbative approximation 
based on the fifth-parameter technique. 

We shall write down the inverse of the operator A in the 
form of an integral with respect of the parameter T :  

m 

COMPLETE GREEN FUNCTION FOR THE MAXWELL Using Eq. (6),  we obtain the following solution of Eq. (4): 
EQUATIONS 

m 

The vector representing the intensity of an electric field t 
in an inhomogeneous medium exhibiting time dispersion G,. (x, x') = -j dr  Urn. (x, XI. TI'). (7) 

satisfies the equation 
2w 0 

7 

( 1  
U (x, x', T) = exp [i - ( ~ f i 0 )  ]8(') (x-x') . 

(rot rot ~ ) , + d ~ ~ ~ ~ , , ( t ,  x)E,=O. 2 w 
(8) 

Going over to a Fourier transformation, we find from Eq. There are several methods of calculating the function U(x, 
( 1 ) that XI, 7). 

A. Let us assume that p, (x)  is any complete system of 
Ilmses (a, X) =0, (2)  orthonormalized functions. We then have 

~ m s = - ~ m , k ~ k l a d , l +  ~ 2 ~ m S s 6 m 8 d 2 - d m d + ~ 2 ~ m 6 .  (3 
a 

U (x, x', T) = r ( v n e ( X O  CP [ i  --(A+~o)] cpl (XI.  
Here, E,, (w,x) is the permittivity tensor. 2 o 

We shall assume that the functions E,, ( a x )  decrease 
sufficiently rapidly outside a finite number of inhomogene- 

We shall find initially the Green function for homogeneous 

ities located in a limited amount of space. If a source creating 
space (E,, = a,, ), assuming that p, (x)  = ( 2 7 ~ ) - ~ ' ~  

a field e'Oi(x) is specified outside this region, there should be 
X exp(zlcx) : 

a solution of Eq. (2)  which differs in the asymptotic limit d3k 
Limn (x, XI, 7 )  = - S ( 2 q 3  

Q m n  ( k ,  7) eirg, 5 = x - x', 
from etO'(x) by the presence of a diverging spherical wave. 
Our task will be to find the solution of Eq. (2)  subiect to 
these boundary conditions. 

We shall introduce a complete Green function satisfy- 
ing the equation 

AmsGen(x, x') =-6,,6("(x-x') . 

Allowing for the rules of calculation of a function of matri- 
(4) ces, we obtain 

Then, the solution of Eq. (2 )  can be represented in the 7 
0.. = I ) , . I v ) C ~ ~  ( i  ?g A*) 

formt7 !J 
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Here, the projection operator is P 2; = u:' (u:') *; u:' and 
A, are the eigenvectors and eigenvalues of the equation 
A,,u, =Au,:A,,, = a 2 - k 2 , A  3 - w ~ ; u ( ' ) = ~ ~ , u ( ~ ) =  - e~ 2 

u ' ~ )  = k/k are the unit vectors of a spherical coordinate sys- 
tem in the momentum space. Obviously, we have 
Q,, (k,O) = S,, . Since 

we find from Eqs. ( 7 )  and (9)  that1" 

B. We skall represent G(x, x') as a matrix element of 
the operator GE - A-' in the coordinate representation: 
G(x,xl) = (x' 1 G I x). The vectors I x) are normalized by the 
condition (xlx') = c?'~'(x - XI). Equation (4) represents a 
matrix element of the equation AG = - I, where the opera- 
tors .?, and j, = - id, obey the usual commutation rela- 
tions. Consequently, the quantity A in Eq. (8)  can be regard- 
%d as a shift operator in the variable 7. The operator 
U = exp(irA/2w) describes evolution of a ~ertain~sysgrf! 
with the Hamiltonian H = - A/2w. Equation id, U = HU 
is formally identical with the equation for the S matrix. Its 
solution can be found by the field-theory methods. 

C. The transformation function Urn, (x,xl,r) satisfies a 
Schrodinger-type equation 

subject to the initial condition 

The solution of Eq. ( 11 ) can be obtained by methods 
developed by Fock and S ~ h w i n g e r . ' ~ ~ ' ~ ~ ' " . ' ~  

GREEN FUNCTION IN THE WKB APPROXIMATION 

We shall seek a particular solution of Eq. ( 11 ) in the 
form 

Separating the real and imaginary parts, we obtain 

[ 2 0 6 m n d r S S ~ m j k ~ k l s  (djl-djSdlS) - w ~ E ~ ~  1 Lsn=O, ( 12) 

2OdrLmn=~mjk~kls[dj(LsndlS)+djS(dlL~n) I. (13) 

Assuming that L = aK, S = w$, p = V$, we shall write 
down the zeroth-approximation equations: 

where M,, = E,, +p,p,. The solution of Eq. ( 14) can be 
represented by an expansion in normal modes. With this in 
mind, assuming that p = n, we shall find the eigenvalues and 
the eigenvectors of the equation 

The equation detlM - n21 I = 0 yields the refractive in- 
dices n, for normal modes. The eigenvectors uk' satisfy the 
conditions 

Consequently, the matrix obeys 

Using Eq. (17) ,  we find from Eq. ( 14) the eikonal equation 
for a normal wave: 

We shall now represent a in the form a =A exp(ia). We 
shall multiply Eq. ( 15 ) by a* ( E  2; ) * and add it to its com- 
plex-conjugate. This yields the energy transport equation 
(from which the index p is omitted) 

In terms of the eigenvectors, we have 

We shall now multiply Eq. ( 15 by a* ( E  2; )* and subtract 
the complex-conjugate equation: 

This yields an equation for the determination of the change 
in the phase of the amplitude of a wave propagating in a 
gyrotropic m e d i ~ m . ~  

The solution of Eq. ( 18), $(x,xl,r), can be found using 
ray characteristics satisfying canonical equations 

with a Hamiltonian 

In optical terms, $(x,xt,;) is a generating function 
of the canonical transformation x ,  = x ,  (x1,p',r), 
pa = p a  (xf,p1,7) to constant coordinates x' = x(0) and mo- 
menta p' = p(0) (Refs. 19 and 20). In the path of a ray the 
function F(x,x1,7) = $(x(r) ,xt , r )  satisfies the equation 

Here, I (x ' ,p f ,~)  is the value of the "Lagrangian" 

If using the equation x ,  = x ,  (xf,p',r) we deduce the value 
p: = IT, (x,xl,r) corresponding to a ray passing through the 
points x' and x(T), we obtain the solution of Eq. ( 18): 

r 

I$ (x, r'. T )  = drr  l (xf, n (x. x', T) . T I ) .  (21) 
0 

Similarly l9 we obtain the solution of Eq. ( 19) : 
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A ( x ,  x'. r ) = I ' ( x f ,  n ( x ,  x', r ) ,  T ) ,  

I (x ' ,  p', r )  =c det l~3~F/dx,dx,' 1. (22) 

The integration constant c is found from the condition 

lim A ( x ,  x', r )  = ( 2 n i r l o )  -". 
r-o 

After calculation of the zeroth approximation we shall 
seek the solution of Eqs. ( 12) and ( 13 ) as an expansion in 
reciprocals of w :  

If there are several rays connecting the points x and x', then 
Eq. (8) is a superposition of the function Urn, (x,xf,r) for 
each of these rays. If we limit ourselves to this approxima- 
tion, we obtain the Green function 

where 

Eikonal approximation. We can obtain the Green func- 
tion in the eikonal approximation simply by confining our- 
selves to the approximate solution of Eq. ( 18) obtained by 
the Fock method in the form of an expansion in powers of T: 

q P ( x ,  x', T )  = E 2 / 2 ~ + ~ $ p ( 1 )  ( x ,  x ' )  +'C3$p(3)  ( x ,  x ' )  + . . . . 
Equation ( 18) yields a system of recurrence equations: 

the solution of which is 
1 

$,!" ( x ,  X I )  = CIS sk-I 1:' ( x l + E s ) .  (25) 
0 

We shall find the Green function for a gyrotropic medi- 
um representing a magnetically active cold plasma with a 
tensor 

E ~ ~ = E ~ B ~ ~ +  (&,,-EL) bnlbn+ilt&rnnhh, 

where b is a unit vector parallel to the induction of a static 
homogeneous magnetic field.2',22 In the eikonal approxima- 
tion, we have 

where e, and e, are unit vectors perpendicular to the vector 
f , 

1 

( 1 )  1  $, ( x ,  x ' )  = - 1 ds  n,? (t , x f +  l s )  , 
2 0 5 

=e l+ ' / ,  [ (bee) 9 (be,) ' 1  + ( - 1 ) "  xbblE. 

The function $ ( x , x l , r )  is invariant under the substitution 
X-x',b+ - b. 

From Eqs. (20) and (22) we find that a = 0, 
A = ( 2 r i ~ / w ) ~ / ~ .  Consequently, 

It should be noted that already in this approximation 
the Fourier transform g, (x,xf ) contains a pole correspond- 
ing to an allowance for the multiple scattering effects. A 
similar result can be obtained by summing a Born series. '2,23 

After substitution of Eqs. (26) and (23) into Eq. (5), we 
obtain a solution which is valid in the Born and eikonal ap- 
proximations. 

FORMATION OF DIRECT AND CONJUGATE IMAGES 

We shall assume that the medium is isotropic. In this 
case, we have ni = n2 (x ) , and 

P 

The solution of Eq. (5) can be represented by 

where a = n2 - 1. Let us assume that the function a(x) de- 
creases rapidly outside a finite region of space of volume 
-L  3. We shall assume that the origin of the coordinate sys- 
tem is inside the scattering volume and we shall introduce a 
unit vector n directed toward the point of observation. We 
shall use 

Since the main contribution to the integral (27) comes from 
a region I f ,  I < 1c3 1, the function (26) can be represented by 

i 
g ( x ,  X I )  = 7g12J (:&. g) exp[ im  1 E~ I 

2 0  

We shall assume that in a plane defined by z = z, < 0 
there is a plane object outside an inhomogeneity. In the para- 
bolic-equation approximation the wave field of this object in 
the region z > z, is given by 
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Here, x, and x,, are two-dimensional vectors in the xy 
plane; 5, = x - x,, d(x,, ) is the density of the dipole mo- 
ment of the radiation source. Substituting Eqs. (28) and 
(29) into Eq. (27), we obtain the field intensity at an arbi- 
trary point x. 

We shall consider the field distribution in the region 
z)L. Using the relationship (6; = x' - x,) 

and the identity 

2i a 
u ( x ' )  exp [ i s  (x' ,  z )  ] = - - exp [ i s  (x ' .  z )  1, 

o d z  

we find that integration of Eq. (27) by parts demonstrates 
(as in the quantum scattering problem of Ref. 24) that the 
free field cancels out. We then obtain 

em (r) = Em. ( n )  J d2xn' d%.g("( xn-xng, L) exp[ i o  (2-1.) 
2 0  

where no = xdx,. If the radius of the first Fresnel zone is 
considerably less than the transverse dimensions D of an in- 
homogeneity (2 lzol ) "'4 D), we can ignore the diffraction 
effects limiting the attainable resolution of an image.25 In 
this case the limits of integration with respect to x:, and x,, 
can be extended from - co to co . 

We shall assume that in the axial region we can repre- 
sent a(x) by 

where h(z) is a function which decreases rapidly in the re- 
gion Izl )L. Then, after integration with respect to x:, , we 
find from Eq. (30) that 

Here, 

We shall find the field in the z = z, plane, where z, is a 
root of the equation z = f1 (z). Since h (z) decreases rapidly, 
it follows that in the range lzl B L the function F, (z) assumes 

the value F, = F, ( co ), which is equal to the focal length of a 
lens the role of which is played by the focusing inhomogene- 
ity. Consequently, z, satisfies the lens equation: 
z; - z; = F; '. Using the relationship 

we obtain the field intensity in the image plane z = z,: 

i o  ( z - z , )  - -- 
2Fo zi 

Consequently, the image is located at points with the coordi- 
nates x, = (z,/z,)x,,, where x,, is a set of points belonging 
to a given object. 

We shall show now that in the region z < 0 the scattered 
wave also forms an image. If z < 0, we obtain from Eq. (27) 

( 0 )  , - 2 )  e x )  = em ( x )  + exp ( - i o z )  J d3xr  (n) g")(xn-xn 1; 

d 
xexp ( i o z ' )  --; exp [ - i s  (x', z )  ]eLO' (x') . (34) d z  

Substituting Eq. (29) into Eq. (34), we reach the conclusion 
that a sharp image is observed in the z = z, plane defined by 
the condition 

m 

Obviously, if Izl SL, the function F,(z) becomes 
F, = F2( - co ). Integration with respect to transverse vari- 
ables gives the field intensity in the z = z, plane: 

R ( a )  = 1 dz  h ( z )  F2 ( I )  e2'wz. 
2 -m 

(37) 

Here, R ( a )  is the reflection coefficient. 
We shall assume that an object is located in a plane 

z, = - c < 0. If c > F,, it then follows from Eqs. (32) and 
(33) that the image of this object is real and its coordinates 
are 

Foe 21 
Z l  = - , X, = - - XO",. 

c-F,  c 

The position of the image formed by the wave scattered in 
the negative direction of the z axis is described by Eqs. (35) 
and ( 36) : 2, = - z, and x, = - zlx,, /c, where z, is the 
root of the equation - z; ' - z; = F; '. The position of 
this image is related by the inversion transformation z-+ - z 
to the main image. However, the illumination in this image, 
which is proportional to the square of the coefficient 
I R ( w )  1' is determined by the high-frequency spatial Fourier 
components of the effective longitudinal refractive index 
hF,. We note that in the case of one-dimensional scattering 
the reflection coefficient is 
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and in the case of the functions h (z) satisfying the condition 
lildh /dzl< I h I it is exponentially The existence of a 
three-dimensional focusing medium has the effect that the 
integrand acquires a factor F, (z) which generates a pole 
singularity in the complex z plane. Consequently, the expo- 
nential smallness can transform into one of the power-law 
type.26 By way of example, we shall assume that 
h (z) = coshP2(z/H). We then have 

If il < H, the reflection coefficient and the refractive index 
are given by the Fresnel formulas. 

We shall now make some comments. 
1 ) If c < Fo , then the main and conjugate images are 

virtual. 
2)  The coefficient y in Eq. ( 3  1 ) can be negative. In this 

case an inhomogeneity is similar to a diverging lens and both 
images are virtual. 

3 )  In the case of real inhomogeneities the expansion of 
a ( x )  becomes 

o (x) =a (0) +x,h,(z)+'lzx,x,h,,,(z) + . . . . 
In this case the image becomes deformed: it is rotated in the 
xy plane and shifted in the direction of the vector h. 

4) Two direct and two conjugate images,formed by or- 
dinary and extraordinary waves, appear in a gyrotropic me- 
dium. The area occupied by the image of a planar object 
consists of "polarization domains," which are regions in 
which the field orientation varies continuously. 

In conclusion, the authors expressed their deep grati- 
tude to E. L. FeTnberg for constructive comments, to S. M. 
Rytov, A. V. Gurevich, and seminar participants for com- 
ments. 
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