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It is shown that the tricritical behavior of a pure thermodynamic system is unstable against the 
introduction of disorder in the form of weak fluctuations of T, . In the neighborhood of the "pure" 
tricritical point (TCP) a phase transition of the percolation type is realized. The true TCP of the 
disordered system is displaced into the region of a first-order transition of the pure system. In the 
region of the first-order transition the width A ~ o f  the region of hysteresis associated with pinning 
of the interphase boundaries is found. In the three-dimensional case AT a AS, where ASis the 
entropy discontinuity in the transition, and in a two-dimensional system AT oc (AS)2". 

1. INTRODUCTION 

We are interested in the behavior of a system near a 
tricritical point (TCP) in the presence of frozen impurities. 
We assume that such a system is described by a Ginzburg- 
Landau functional with a random temperature: 

where the spatial dimensionality is D = 2 or 3. 
To simplify the writing of the formulas we confine our- 

selves to the case of a scalar order parameter, although our 
analysis can be generalized without difficulty to systems 
with a multicomponent order parameter. 

The fluctuations of the temperature in ( 1.1 ) are as- 
sumed to be Gaussian and uncorrelated: 

We shall consider the case of weak disorder: 

The second-order phase transition in the disordered 
system was investigated in Refs. 1 and 2, in which it was 
shown that frozen impurities give rise to an asymptotic 
"dirty scaling" regime with changed critical indices. The 
renormalization-group ( R G )  method used in Refs. 1 and 2 
is applicable only for b k ya2/Tc (T, is the transition tem- 
perature). Moving along the second-order transition curve 
toward the TCP we inevitably reach the region of small 
b 5 ya2/T,, in which the R G  equations lead to an increase of 
the effective charges and lose their applicability. Below (in 
Sec. 2 )  we investigate this region and show that here a phase 
transition of the percolation type occurs, analogous to that 
studied previously in the theory of very dirty superconduc- 
tors and dilute ferromagnets. We show too that the percola- 
tion transition occurs also in the region b < 0, I b / 5 b *, where 

Thus, the disorder displaces the TCP into the region of nega- 
tive b, in which, in the pure system, a first-order transition 
occurs. 

Below, in Sec. 3, we investigate the stability of the do- 

main boundary between the ordered and disordered phases 
in the region b ,: 0, b$ b *. It will be shown that the domain 
boundaries in this region are stable, i.e., in thermodynamic 
equilibrium a first-order phase transition, associated with 
discontinuities of the entropy S and other thermodynamic 
quantities (which we denote collectively by 0 ) ,  should oc- 
cur. In fact, equilibrium is difficult to reach near the transi- 
tion line, since a first-order transition occurs by way of the 
creation of domains of another phase and subsequent motion 
of the domain boundaries, which is strongly braked by fro- 
zen disorder. In Sec. 4 we estimate the width AT of the hys- 
teresis region associated with the pinning o; domain boun- 
daries at defects. It is shown that for D = 3 the ratio A 0  /AT 
in the region 1 b 1 % b * remains constant as the TCP is ap- 
proached along the first-order transition line, while for 
D = 2 we have AO/Ar= (AO)"'. 

2. THE PHASE TRANSITION OFTHE PERCOLATION TYPE 

We consider the region of small 1 b I in the functional 
( 1.1 ). Following Ref. 3, we expand the order parameter p in 
the eigenfunctions of the equation 

Then the Ginzburg-Landau functional ( 1.1 ) can be written 
in the form 

Equation (2.1) is the Schrodinger equation with a ran- 
dom potential. In any realization r ( x )  and for large E,, 
[namely, E,, > E,- D' (a /c)  - D,  ; see Ref. 51, re- 
gions in which levels with energy E,, exist are exponentially 
rare. The density of states for such values o f E  have, to within 
a numerical constant p,,, the f ~ r m ~ . ~  

C I/' E'l* a -% 
p ( E )  =p,7-zE'h (-) exp[ -38 T(--) ] , D=3, 

a 
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As can be seen from (2.3 ), the eigenmodes with E,, > r 
turn out to be unstable against the appearance of nonzero 
values ofa, . For r$  Eo these modes have an energy E,, in the 
region of the "tail" of (2.4), and the corresponding wave- 
functions are strongly localized. Below it will be seen that 
the reduced percolation-transition temperature r,  does sat- 
isfy the inequality r, $Eo, and therefore, to first order, we 
can neglect the interaction of different localized modes and 
write the free energy corresponding to the amplitude a,, , and 
the corresponding equilibrium equation, in the form 

where 

Y, =I $p'd"~-l-~- (aE/c) D", YE = j qEdDr-- (aE/c) D, 

in which $ r $ ( x )  is the localized solution of (2.1 ) in the 
region of the tail and 1 is the characteristic scale of this solu- 
tion. Thus, we obtain a system of exponentially rare "drop- 
lets" with a nonzero order parameter; the energy of such a 
droplet is given by (2.5). In (2.5) we have neglected com- 
pletely the interaction between the droplets (interaction due 
to overlap of the functions $, ; at the same time, the transi- 
tion to the ordered state in such a system is determined by 
precisely this interaction. It is not difficult to show (see Ap- 
pendix A )  that in the case of infrequent droplets this interac- 
tion (or, more precisely, the difference of the energies of 
interaction of two droplets with oppositely and with identi- 
cally oriented order parameters) is given by the expressions 

where R,, is the distance between droplets i and j, a ,  is the 
solution of (2.6) for the ith droplet, and f = ( c / a r )  "2is the 
correlation length. 

Finally, we shall assume that droplets for which V,, is 
greater than the temperature are "coupled," i.e., the order 
parameter in them is of the same sign; otherwise, the drop- 
lets are independent. As is well known,' a percolation transi- 
tion in such a system of randomly arranged droplets occurs 
when their concentration reaches the value 

where0 = 0.95 for D = 2 a n d 0  = 0.89 for D = 3, and R, is 
determined by the equation 

The equations (2.8) and (2.9) determine the phase-transi- 
tion temperature; here it is necessary to remember that N 
itself depends on the temperature. 

Strictly speaking, the above picture of a percolation 
transition is valid when the magnitude of the interaction de- 
pends only on the distance R,, between the droplets. In our 
case there is also a dependence on the amplitude a, of the 
order parameter in the droplet, but the dependence on R, is 
much sharper (exponential). Therefore, we shall assume 
that the spread of values of a,  can be disregarded, and shall 

consider certain average (characteristic) droplets. 
The magnitude of the order parameter in a droplet and 

the smallest value of E for which droplets exist are deter- 
mined from (2.5) and (2.6): 

= -bY,S (b2Y, -4adYe(~-E) )2h  , (2.10) 
2 d Y E  

In the remainder of this section we shall not consider the 
region - b k r a d  (which corresponds, as will be shown be- 
low, to a first-order transition), and so we neglect the differ- 
ence between Em,, and r. In this case, this averaging implies 
that we are considering droplets with 

aF= { j p (E) d~ } -' j aZp (E) dE 

and with concentration - 
N= ~ P ( E ) ~ E ,  

1 

or 

The expressions (2.13 ) are valid if 

We shall consider the two-dimensional and three-di- 
mensional cases separately. 

1)  D = 3. Using (2.8), (2.9), and (2.13) we obtain 
equations for r a t  the transition point: 

where 

This expression gives the possibility of obtaining a crite- 
rion for applicability of the assumption of exponentially in- 
frequent droplets [or, equivalently, of the requirement 
(2.14) 1. Since the factor multiplying the inner logarithm is 
- 1, this criterion can be formulated as 

KT;'"ITB 1. (2.16) 

First we consider positive b> f ya'(d /c3) ' I 2 ,  when the 
term with d i n  (2.5) and (2.6) can be neglected (everywhere 
below in such inequalities and order-of-magnitude estimates 
numerical factors - 1 are omitted; otherwise, we give a num- 
ber that is only an estimate and gives an idea of the magni- 
tude of this factor). Taking into account that the average 
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value of a2 in (2.10) corresponds to 
( E) - 1010-21/2(a/~)3 [which, incidentally, gives us the 
right to replace I = (c/aE) '" by { = (c/ar)  'I2], we obtain 

and the condition (2.16) gives 

(We recall that the region of dirty scaling'+2 corresponds to 
b 2 y'a/T). 

For smaller values of b, lying in the region 
I b I 4 4  ya2(d /c3) 'I3, the criterion (2.16) [with allowance 
for (2.10) 1 leads to the expression 

Here it is necessary to take into account that the re- 
placement of the real system by randomly distributed aver- 
age droplets also implies averaging over scales smaller than 
f .  This leads to a renormalization of the coefficients of the 
powers of e, in ( 1.1 ). The corrections to the quantities d, b, 
and r were calculated with logarithmic accuracy in Ref. 8: 

The bare quantities b, and do are taken from T- 1. It is to be 
understood that such renormalizations have been performed 
everywhere after (2.16). It can be seen that the condition 
(2.18) is always fulfilled. As regards the corrections to .rand 
y, we can neglect them. 

For values of b that are large in magnitude and negative 
it is necessary, as already indicated, to take into account the 
amount by which Emin deviates from T [see (2.11 ) 1; in this 
case the approximation of infrequent droplets becomes inap- 
plicable. However, it will be shown below that for 
- b> ya2(d /c3) ' I 2  a first-order transition occurs. 

Thus, the transition occurs in the region of values of b 
defined by the inequalities 

The formation of droplets gives rise to a correction to 
the specific heat of the homogeneous system. This correction 
is given by the expression 

OD 

where Yr is the volume of the system. Thus, for D = 3, 

[expressions for b and d are given in (2.19) and (2.20) 1. 
Above, in the derivation of (2.17), we used the estimate 

( E) - ? ( a / ~ ) ~ ;  however, in (2.22) the more accurate 
expression ( E - r)  - T ' / ~ ~ ( ~ / C )  3'2 was used. It was also 
taken into account that $, - 1/13 and Y6 - 1/16 (I  is the 
droplet radius, 1-6). We recall once again that the expres- 
sions (2.22) are valid under the condition (2.14), which, as 
we have established, is fulfilled in the vicinity of the percola- 
tion-transition point. The expression (2.22) for the specific 
heat due to the droplets must be compared with the classical 
expression of the Landau theory (for r < 0 and b = const) 

(which is valid even when fluctuations are taken into ac- 
count, if renormalized quantities b and dare used) and with 
the fluctuational contribution to the specific heat (for r > 0 )  

In the vicinity of the TCP under the conditions (2.17) and 
(2.18) the fluctuational contribution (2.24) is small in com- 
parison with Co for the same value of 1 71, while the contribu- 
tion (2.22) of the droplets is comparable in order of magni- 
tude to Co at TZT, [more precisely, C(T, ) - Co ( - r, ) 1. It 
is easily verified that ( dC /d~) ,= ,  <0, and, therefore, the 
maximum of the total specific heat C,,, lies at a temperature 
below T, (see the figure). 

2) D = 2. The condition that the thermal fluctuations 
be small on scales smaller than { has the form 

[where y 4c/a; see ( 1.3 ) ] and is a limiting condition for our 
results, if the condition (2.25) is not fulfilled it is necessary 
to consider the scaling behavior near the two-dimensional 
TCP, and this goes beyond the scope of the present paper. 
Assuming that (2.25) is fulfilled and proceeding as in the 
three-dimensional case, we find that a transition of the per- 
colation type occurs for values of b in the range 

The contribution of the droplets to the specific heat is given 
by the expression 

FIG. 1. Qualitative dependence of the specific heat on the temperature 
near the transition point r, ; the branches I and I1 correspond to the cases 
b>ya' (d /c3)" '  and lb / ( p 2 ( d  /c3)''',  respectively, for D = 3, and to 
analogous conditions for D = 2 [see (2.27) 1. 
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The qualitative conclusions concerning the temperature de- 
pendence of the specific heat that were reached for the three- 
dimensional case are also valid here (see Fig. 1 ). 

At the transition point itself we should not expect any 
appreciable anomaly in the behavior of the specific heat in 
either the two-dimensional or the three-dimensional case. 
Indeed, such an anomaly could arise only on account of the 
disregarded unbroken bonds between droplets. However, 
the derivative of the concentration of such bonds with re- 
spect to T does not have a singularity at T,, and their energy 
Tc , by virtue of the conditions (2.2 1 ) or (2.26), is consider- 
ably smaller than the energy of a droplet. Strictly speaking, 
the phase transition in the system of interacting droplets is 
equivalent in symmetry to that in the initial system (with be, - (aZ/T) ye,), and this should lead to singularities of the 
dirty-scaling type'.2; however, these singularities are scarce- 
ly observable, since they contain a small factor related to the 
proximity to the percolation situation. 

In the ordered phase near the transition point T, such 
quantities as the average order parameter + and correlation 
length L (the size of a bound cluster) have, according to 
percolation theory, a power-law dependence on the reduced 
concentration x,  = I ( N  - N, )/N, I: 

- c d z ~ / d z z + a ~ r p o + b c p ~ + d c p ~ = O ,  (3.1) 
where p, (z) satisfies the boundary conditions 
pO( - co) = O a n d p $ ( +  C O )  =31b1/4d. 

Multiplying (3.1 ) by d p  /dz, integrating, and substitut- 
ing the result into ( 1.1 ) (where now the integration is per- 
formed over z ) ,  we obtain an expression for the surface ten- 
sion of such a wall: 

.,e estimate (3.2) has been obtained with allowance for the 
fact that the wall thickness satisfies 6- ( d c )  'lZ/lb I .  

We turn to a dirty system, in which S~(x,z)+o.  Now 
the boundary is deformed and deviates from a plane; how- 
ever, if we assume that the curvature of the boundary at each 
point is not large, the order parameter can be represented in 
the form 

where c (x )  is the deviation of the boundary from a plane. 
Substituting (3.3) into ( 1.1 ), we obtain 

Q) cc xoQ7 (2.28) + J '/2cr6~ (x. Z) q?dD-'x d ~ .  (3.4) 
L 5 zo-". (2.29) 

The second term in (3.4) is a random function of the vari- 
  he region of this power behavior is in any case bounded by able {(x) determining the shape of the domain wall. When 
theinequality no < 1. Inourcase,N dependson the tempera- studying deformations of the wall on scales greater than its 
tureas in (2.13 ) , and to a range ofvariation of N(  I AN 1 <Nc ) thickness 6 we can rewrite (3.4) approximately in the form 
there corresponds a range of variation of T( ( ATI T, ). Then 
x in (2.22) and (2.23) can be replaced by AT/T,. The values a=$.+ 5 [I+ (V,c ( x ) ) ' ] ' ~ ~ ~ - ' x  
of the critical indices for D = 2, 3 can be found, e.g., in Ref. 
7. + I 0 (z-5 (x) ) h (x, z )  dD-'x 6 ,  

3. DOMAIN-WALLSTABILITY ANDTHE FIRST-ORDER 
TRANSITION 

We turn now to the region of large negative values of b. 
We shall consider the question of the first-order transition in 
this region. Such a transition is characterized by the possibil- 
ity that at the transition point phases with zero and nonzero 
order parameters coexist and, consequently, there is an in- 
terface between them. Thus, we seek the region of values of b 
for which a domain wall is stable against fluctuations in- 
duced by the disorder. 

We show that the functional ( 1.1 ) can be reduced to the 
form of the Hamiltonian of a domain wall in the "dirty" 
Ising model with a random magnetic field.9 We consider a 
planar domain wall in a pure system on a first-order transi- 
tion line determined by the condition ar = 36 '/16d. We in- 
troduce the coordinates x ,  ,..., x ,  , in the plane of the wall, 
and z in the perpendicular direction. The order parameter po 
in this case depends only on z; minimizing ( 1.1 ) (for ST = 0) , 
we obtain an expression from which the order parameter can 
be determined: 

where 8 ( y )  is the Heaviside function and 

h(x, z)  =u(p2(oo)6~(x, z ) ,  (3.6) 
<h(x, z) h(xf, z ' )  )=A6 (x-x') 6 (2-2') , 

(3.7) 

Thus, we have obtained the Hamiltonian of a domain 
wall in the Ising model with a random magnetic field.9 In 
fact, the correlation function of the random quantities h (x, 
z)  contains not only the right-hand side of (3.6) but also 
subsequent terms of the expansion, with derivatives of S- 
functions, e.g., the term A,S(x - x1)S" (z - z'), corre- 
sponding to the random potential U(x, [(x) ). In Appendix 
B it is shown that allowance for these terms does not affect 
the result, and, therefore, we shall not take them into ac- 
count in what follows. 

It has been implicitly assumed above that the introduc- 
tion of impurities does not shift the transition from the curve 
of first-order phase transitions of the pure substance, deter- 
mined by the parameters a ,  T, b, and d; it has also been as- 
sumed that the introduction of impurities leaves the thick- 
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ness of the wall unchanged. For this, in any case, it is 
necessary that the fluctuation of the free energy of the wall in 
a volume of order CD be small in comparison with its average 
value: 

We note that the conditions (3.8) are opposite to the condi- 
tions for the existence of the percolation transition investi- 
gated in Sec. 2. Below, we shall convince ourselves that the 
conditions (3.8) are sufficient for stability of the domain 
boundaries. 

We shall make use of the results of Refs. 9- 1 1. In these 
papers it was shown that in the Ising model in a random field 
for D = 3 ferromagnetic ordering is observed and, conse- 
quently, in the presence of antiperiodic boundary conditions 
a domain wall exists. Here it is required that 

which implies that the deformations are slow. The case 
D = 2 will be considered separately below. 

For the mean-square wall deformations 
w$,, ( L )  = ( ( c ( L )  - c(0)  ) 2, induced by thermal fluctu- 
ations and the disorder, respectively, we have'0.'' 

We note that it makes sense to speak of fluctuations of the 
wall only if these fluctuations exceed the wall thickness 6. 
Since w , ,  increases with L less rapidly than L, the condition 
(3.9) is equivalent to the condition 

where the length 04P is determined by the relation 

We define 04P T,h by the condition 

WT, h(P2, h )  -E.  
Thus, 

9, =g exp [BT-'(d/c"-"~]. B-10, (3.15) 
9,,= [d'"c'I~/ya2 I h 1 1"' 
=E[ 1 h l / y a ' ( d / ~ ~ ) ' ~ ] " ~ .  (3.16) 

It follows from (3.16) that, if we neglect the thermal fluctu- 
ations of the wall, the condition for the existence of a first- 
order transition takes the form Ib / % ya2(d / c 3 )  ' I 2 ,  i.e. [see 
(2.19) and (2.20) 1, 

In fact, because of the smallness of the power 1/10, we can 
always neglect the renormalization factor. 

The possibility of neglecting thermal fluctuations is due 
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to the large magnitude of the exponent in (3.15) [see 
(2.19) 1. A criterion for a first-order transition that practi- 
cally coincides with (3.17) was obtained in Ref. 12, but there 
the role of renormalizations and thermal fluctuations was 
not discussed. 

We now consider a two-dimensional system. Although 
long-range order does not exist in the two-dimensional Ising 
model in a random field, the correlation length is exponen- 
tially large (see, e.g., Ref. 11): r ,  c ~ < e x ~ [ ( d / A ) ~ ' ~ ]  [the 
large magnitude of the exponent is ensured by the inequality 
(3.8b) I; therefore, we shall also give estimates for D = 2. 

By analogy with (3.13) we introduce two lengths 9, 
and Y,, defined by the relations 

Two cases are possible. 
a )  -5"' $ Y2. This means that thermal fluctuations can 

be neglected and the inequality itself can be rewritten as fol- 
lows: 

In this case the criterion (3.12) gives 

As in the three-dimensional case, we have obtained a crite- 
rion opposite to (2.26). Comparing (3.20) and (3.21) with 
(2.25), we discover that the condition (3.20) is less strin- 
gent than (2.25); on the boundary of the region (3.21) the 
condition (3.20) goes over into (2.25). 

b )  2, < Y 2 ,  or 

Thermal fluctuations of the wall become important, and the 
effective thickness of the wall is equal to w,. In this case 
(3.12) again formally leads to the expression (3.21), but 
now renormalized quantities appear in it [in the case ( a )  we 
neglected the renormalizations, so that (3.20) and (3.21) 
were written, in fact, for the bare values]. 

4. PINNING OF DOMAIN BOUNDARIES AND HYSTERESIS 
NEAR THE FIRST-ORDER TRANSITION 

Pinning of the domain wall at impurities should lead to 
the appearance of long-lived metastable states near the first- 
order transition point. In the given case there do not exist 
critical nuclei of the new phase, increase of which would lead 
to rapid decay of the metastable state. The dynamics of the 
transition is determined by the motion of the walls for which 
the pinning force is smaller than the "driving forcev-the 
difference of the densities of the thermodynamic potentials 
of the two phases. Therefore, hysteresis should be observed 
in the T dependence of the thermodynamic quantities in the 
neighborhood of the transition point. 

For the pinning force the following expressions were 
obtained in Refs. 13 and 14: 
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For D = 3 we have To = (c3/d)'I2 (in the renormalized 
quantities) and we are interested only in the case T< To. 

These expressions make it possible to estimate the 
width AT of the hysteresis by comparing E, and the differ- 
ence AF of the free-energy densities of the two phases. As- 
suming that the temperature shift AT is small, namely, that 

we obtain for AF 

and from the equality E, = AF we find AT: 

It can be seen that (4.4) and (4.6) lead to the condition 
16 1 $ ya2(d /c3) ' I 2 ,  SO that the assumption that AT is small is 
fulfilled in the entire region of the first-order transition. 

In the case D = 2 our results are valid in the region in 
which the renormalization can be neglected, i.e., under the 
condition (3.20), which again coincides with T< To. Now, 

We shall return to (4.6). We recall that the discontinui- 
ties of such quantities as the compressibility and entropy at a 
first-order transition are proportional to b. For example, for 
the entropy we have 

As can be seen from (4.6), in three-dimensional sys- 
tems a linear relation should be observed between the width 
AT of the hysteresis and the discontinuity of the entropy 
(and of other quantities experiencing a discontinuity at a 
first-order transition) : 

Strictly speaking, the coefficient of AS in (4.9) can have a 
weak dependence on AS because of the renormalization of d 
[see (2.19), in which it is necessary to use T = 36 '/16ad], 
but this effect is unlikely to be observable. 

In the two-dimensional case, provided that the thermal 
fluctuations are small, we obtain 

Once again we stress that we can speak only nominally of a 
first-order transition in a dirty two-dimensional system, 
since on exponentially large scales a domain boundary al- 
ways loses its stability, so that there is a finite thermodynam- 
ic "smearing" of the transition. In practice, however, this 
effect should almost always be unobservable against the 
background of the hysteresis induced by the pinning of the 
boundaries. 

5. CONCLUSlON 

We have shown that in the neighborhood of a TCP of a 
disordered system there is always a region of a percolation- 
type phase transition associated with the formation and in- 
teraction of localized droplets-a transition of a type known 

previously for superconductors3 and ferromagnets4 with 
strong disorder. We have obtained estimates for the region of 
existence of such a transition [see (2.21) and (2.26)] in 
three-dimensional and two-dimensional systems. The con- 
tribution of the droplets to the specific heat of the system 
near the transition point has been found [see (2.22) and 
(2.27) 1. 

The condition for the occurrence of a first-order phase 
transition, associated with the stability of the domain boun- 
daries between the ordered and disordered phases, has been 
found. This condition turns out to be complementary to the 
condition for a percolation transition, and the intermediate 
region between these two regimes has not yet been investi- 
gated. The width AT of the region of hysteresis near the first- 
order transition, associated with the pinning of domain 
boundaries at inhomogeneities, has been estimated. In a 
three-dimensional system AT a AS while in a two-dimen- 
sional system AT a  AS)'^^, where ASis the entropy discon- 
tinuity in the first-order transition. 

Thus, in the two-dimensional case the relative "smear- 
ing" of the transition grows as the discontinuity decreases. 

APPENDIX A 

To determine the energy of interaction of the droplets 
we shall consider two droplets located on the x,  axis at equal 
distances from the coordinate origin; R,, is the distance be- 
tween the droplets. Two variants are possible depending on 
whether the order parameters in the droplets have the same 
or opposite signs: 

Then from ( 1.1 ) we obtain 

We assume that droplet j is in the half-space x ,  >0. 
Here pi falls off exponentially: 

where 5- = (c/ar)  Ir - ri 1 %{ [the droplet size 
I = &(T/E) ' I 2  5 61, and p, -ai/6- is the value of the 
order parameter on the boundary of the drop. 

Thus, we can write 

ITij- -4 j c div ( r p c V ~ )  dDr+4 1 cpi( -c~ 'rp~+a(r+6r  (x) ) rpj 
x,>o =,>a 

+bd+dcp:) dDr=-4c j div (cpiVpj)  d D r .  (A4) 
X,>O 

Finally, we obtain in the three-dimensional case 

E2 R . .  ~ ~ , = b n c c p ~ r p ~ ~  - y) , U--3, 
Rij 

and in the two-dimensional case, for Rv $4, 
~ ~ ~ ~ 4 n " c r p ~ ~ ~ ~ j ( ~ l R i j ) ' ~ ~  exp (-R,,/E). (A6) 
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APPENDIX B 

The contribution to the Hamiltonian from the random 
potential is equal to 

where 

and the correlator A,  can be estimated as 

For case D = 3 the quantity w ,  was calculated in Ref. 15: 

It can be seen immediately that w ,  increases more slowly 
with L than does w, (the same is also true in the two-dimen- 
sional case), and on large scales it is certainly possible to 
consider only the random field. The estimates in Sec. 3 were 
based on an analysis of fluctuations on small scales; applying 
the arguments of this section to (B2) and (3.10) we again 
obtain the condition (3.17) for a first-order transition. 

For D = 2, following Refs. 16 and 17, we can obtain 

which is valid at sufficiently high temperatures. The region 
of these temperatures can be estimated using the results of 
Ref. 13, in which it was shown that at To - (ya21b lc2/d 2 ,  ' I "  

a change occurs in the dependence of the pinning force on 
the parameters ofthe model [as in (4.1 )-(4.3) 1. Thus, (B3) 
is valid for T k  To. We are interested mainly in the opposite 
case, when renormalizations can be neglected. In this case it 
is clear that w ,  a L"-' as in (B3) (see Ref. 18), but the coef- 
ficient should change. Knowing the pinning force in this 

case,I3 it is not difficult to estimate this coefficient 

Here we have used the fact that the pinning force is deter- 
mined by fluctuations on the smallest scales; the same esti- 
mate is obtained by substituting To for Tin (B3). Repeating 
the arguments of Sec. 3, we again obtain (3.21 ) as the crite- 
rion for a first-order transition. 
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