
Stochastic aggregation and subsequent recombination of particles generated by 
pulsed excitation in fractal and homogeneous systems 

I. M. Sokolov 

P. N. Lebedev Institute ofPhysics, USSR Academy of Sciences 
(Submitted 23 December 1987) 
Zh. Eksp. Teor. Fiz. 94,199-206 (September 1988) 

The author discusses the accumulation and recombination kinetics of particles generated by 
pulsed excitation in systems with arbitrary fractal and spectral dimensionality, assuming that the 
excitation creates particles in pairs and that these particles are annihiiated as a result of the 
bimolecular reaction A + B-0. He investigates the cases in which the characteristic size of a pair 
is the largest (i.e., the creation is spatially independent) and smallest spatial scale in the problem. 
Intermediate and truly asymptotic expressions are obtained for the decrease of the particle 
concentration after the excitation is switched off. The spatial distribution of the particles is 
investigated. 

INTRODUCTION 

Recently, the effect of density fluctuations of reacting 
particles on the kinetics of diffusion-controlled reactions has 
been intensively studied. For example, for reactions of the 
type A + B-0 at various initial particle concentrations, 
fluctuation effects lead to replacement of the asymptotic fall- 
off n ( t )  a t  ' of the concentration, predicted by formal ki- 
netic theory, i.e., by the law n( t )  a t-. d'4 , where d is the 
dimensionality of the space.'-' This effect is connected with 
statistical clustering of particles of the same kind. 

In this paper we will address the problem of particle 
clustering when particles are generated under pulsed condi- 
tions and recombine after the excitation is switched off. One 
example of such a process is the production of radiation- 
induced defects in an irradiated solid and their recombina- 
tion during a subsequent anneal. Another possible realiza- 
tion is photodissociation or photoionization of molecules in 
a solution. By carrying out such experiments in solutions of 
strong electrolytes, we can eliminate electrostatic interac- 
tions between the radicals and observe the diffusion-con- 
trolled processes. Because of our considerable interest in the 
study of fractal systems, we were strongly motivated to pay 
special attention to this particular case. We can list other 
systems which likewise constitute a realization of these pro- 
cesses; mixed molecular crystals when the concentration of 
one of the components is close to percolation value solutions 
located in channels of porous silicate or organic glasses, and 
reactions at the roughened surfaces of catalyst crystals. 

The corresponding problems for homogeneous systems 
have been investigated in considerable detail. The kinetics of 
particle annihilation after the switching-off of a very pro- 
longed excitation were studied in Ref. 8, in which the au- 
thors investigated the case of independent creation of two 
types of particle in equal quantities. In Ref. 9 the same prob- 
lem was investigated within a first-principles formalism both 
for independent and pairwise creation of particles; in this 
paper both the one-dimensional and three-dimensional cases 
were investigated. The asymptotic concentration of the par- 
ticles, as well as their spatial distribution, were studied in 
detail. 

There is much interest in the question of how particles 
accumulate within the excitation period. The authors of Ref. 
10 arrived at the conclusion that for independent creation of 

there occurs within the excitation period a spatial separation 
and accumulation of particles, while in the three-dimension- 
al case no accumulation occurs and an equilibrium concen- 
tration of reagents is established. In Ref. 11 the accumula- 
tion was studied using numerical experiments on a number 
of fractal and Euclidean lattices. It was shown that cluster- 
ing took place in systems with spectral dimension not ex- 
ceeding 2. In a three-dimensional cubic lattice this accumu- 
lation is absent. Several questions relating to the 
establishment of equilibrium concentrations were studied in 
Ref. 12. In Ref. 9 it was proved that accumulation is absent 
in one- and three-dimensional models with particle creation. 

In this paper we will study the intermediate (i.e., within 
times on the order of the irradiation time) and truly asymp- 
totic behavior of the particle concentration after the excita- 
tion pulse is switched off (the pulse duration is t,), and in- 
vestigate the problem of accumulation and spatial 
separation of particles in systems with arbitrary spatial and 
spectral dimensionality. The types of asymptotic behavior 
predicted in Ref. 9 are reproduced here as particular cases at 
fractal and spectral dimensionalities d, = d, = 3 and 
d, = ds = 1.  

THE MODEL 

Within the framework of the mesoscopic approxima- 
tion2 the behavior of the particle concentration in these sys- 
tems is described by the equations 

an,(x, t ) / i A = D A l z a  ( x ,  t )  - K ( n A ,  n,) +i, (x, 1 ) .  
(1  

dn, ( x .  t )  /at=DLlnl, ( x ,  t )  -K ( n A ,  n,) +if, ( x .  t ) .  

where n,,, (x,t) are the local values of the concentrations, 
i,,, (x,t) is the number of particles of a given species created 
per unit time per unit volume, K is an operator which de- 
scribes the in particle loss resulting from the reaction, and 
(i, (x, t))  = (i, (x, t))  = i,. The diffusion constants for par- 
ticles A and B are assumed to be the same, which simplifies 
the theoretical investigation; however, this has no effect on 
the asymptotic time dependence of the concentrations if 
neither concentration reduces to zero. This latter case may 
belong to a different universality class.I3 

For a system whose spectral dimensionality d, > 2 the 
operator K equals 

particles in homogeneous one- and two-dimensional systems K=const DRod~-'-'n,n, 
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(see Ref. 14), where 8 is the anomalous diffusion exponent 
and R, is the recombination radius. For d, <2 the function 
has a different character (the operator is nonlocal). 

If there were no particle-flux fluctuations in the system, 
an equilibrium concentration n,, would be established with- 
in the excitation time, characterized by equality of the influx 
of particles and their loss as a result of the reaction. Let us 
investigate the effect of fluctuations. 

The concentration difference 
r(x,t) = n, (x,t) - n, (x,t) obeys the equation 

dr(x, t)/dt=DAr(x, t)  +i,(x, t ) ,  (2 )  

where i, (x,t) = iA (x,t) - iB (x,t). The pair correlation 
function C(x,t) = (r(O,t)r(x,t)) equals 

where G(x,t) is the Green's function of the diffusion equa- 
tion and 

Assuming r(z,t) to be a Gaussian random variable 
(which is perfectly valid for independent creation of parti- 
cles or particle pairs), we find that 

Because n,,, (x,t) 2 r(x,t) 1, the average concentration of 
particles in the system cannot grow slower during the excita- 
tion period, or decrease faster after it is switched off, than 
does the quantity I (r(x,t)) 1 .  

In a number of cases"'.' particles in the system become 
segregated in the later stages of the reaction. The resulting 
spatial distribution is related to the fact that a particle of one 
kind which has entered into a region where there is a fluctu- 
ation excess of particles of another species is annihilated very 
rapidly, while the fluctuations themselves attenuate slowly. 
This situation leads to the space being split into regions oc- 
cupied by particles of only one kind. The reaction is intense 
only in the boundaries between these regions; these boundar- 
ies are found to be narrow compared to the characteristic 
sizes of the regions themselves. The structure of these boun- 
daries was investigated in detail in Ref. 4. The number of 
particles in the boundary regions becomes small compared 
to the total number of particles, so that 

[8(x)  is the Heaviside step-function]. 
The distribution functions for like and unlike particles 

are calculated by averaging the corresponding quantities 
over the Gaussian distribution of r(x,t) using the two-point 
correlation function C(x,t) .' The expressions for the distri- 
bution functions have the form 

P a a , B B  (x, t) = (1-yZ)'+y arctg [ (I-y2) '"ly] 

pAB(x, t) = (I-y2)Yz-y arctg [ (1-y2)"'/y] +y2((l-y")'", ( 5 )  

where y = C(x,t)/C(O,t). 
Let us assume that the mass centers of newly-created 

pairs are randomly distributed in space, that the vector 2a 
connecting the particles has a random orientation, that the 
quantity a is distributed according to some function p ( a )  
and has a characteristic value (a2) ' I2  = a,, and that the pair- 
creation events occur in a time-independent way. Let us in- 
vestigate two limiting cases corresponding to values of the 
ratio of the quantity a, to other characteristic scales in the 
problem, in particular to the scales n-'/dF-the average 
spacing between particles-and 1, a (Dt) + '' , where t is 
the observation time. The case of uncorrelated creation of 
particles corresponds to the case where a, is the maximum 
spatial scale in the problem. In this case 

c (x, t, t') =2i06 (t-t') 6 (x) . (6)  

However, for the case that a, is the minimum scale (i.e., for 
- l/dF 

a,<n and the system is studied over times 
t%a i f  e / ~ ) ,  

c (x, t, t') =ioaoZ(cosZ 6>6(t-t')6" (x),  (7)  

where S" (x)  is the second derivative of the S-function and 
(cos28 ) is the mean squared cosine of the angle between two 
vectors oriented arbitrarily in the space under study, in a d- 
dimensional Euclidean space, (cos28 ) = l/d. 

We note that by virtue of the finite pulse duration to the 
values of c are given by Eqs. (6)  and (7)  for Ogt and t '<to 
and are zero otherwise. 

Equations (6)  and (7)  are easy to obtain after investi- 
gating the auxiliary problem of calculating the correlation 
function for the density of pairwise disposed "unlike" 
points. The mass centers of pairs located at the points xi are 
distributed with a density n,  and 

After expanding the sums and passing from summation to 
integration over the coordinate of the center of a pair, we 
obtain 

g(x) =2n6 (x) -n J [ b  (a-X) +6 (six) ] p  (a) da. (9)  

For a,%l,,,, the contribution of the second term to these 
expressions is found to be small to the extent that  is 
small, so that we can limit ourselves to the first term: 
g = 2n6(x). When a,< n - the converse holds. Noting 
that the S-function depends only on the modulus of the argu- 
ment, and expanding the expression in square brackets up to 
terms of second order in a, we find in this case that 
g (x)  = nu: (cos2 9 )S" (x)  , where 9 is the angle between the 
directions of the vectors x and a. Equations (6)  and (7) are 
obtained as the corresponding limiting cases of (9)  by study- 
ing the pair creation versus time. 

The behavior of the Green's function G(x,t) in a fractal 
system is given by G(x,t) cc (Dt) - ds/2f({), where 6 = x/ 
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( D ~ )  11'2 + 0) and f([) -0 as 6- OJ faster than a power law. 

Approximate expressions for the operator A and the func- 
tion G(x,t) are found, e.g., in Ref. 15. Here, d, is the spectral 
dimensionality of the system, i.e., d, = 2d,/(2 + B), where 
the exponent of anomalous diffusion 8 determines the mean 
square drift of a particle in a time t: (x2) a t 2/'2 + @) . The 
dimensionality of the diffusion coefficient D for the fractal 
caseis [Dl  = [ L 2 + e / T ] .  

In a homogeneous system 8 = 0 and d, = d, = d. For 
this case the behavior of G(x,t) is known exactly. The addi- 
tional results that can be extracted from knowledge of the 
exact form of G(x,t) in the homogeneous case are presented 
in the Appendix. For the most part, these results coincide 
with those obtained in Ref. 9 within the framework of a dif- 
ferent approach. 

INDEPENDENTCREATION OF PARTICLES 

When the particles are created independently, 
c(x,t,t ') a iOS(x), and consequently ( ? ( t ) )  = C(0,t) be- 
haves like 

Ford, < 2 and t = to (i.e., for observations within the gener- 
ation time of the particles) 

n ( t )  a (r2 ( x ,  t )  )'h~io'~D-ds12t(2-dsl/~ (11) 

In this case an accumulation of particles is observed, which 
is connected with their statistical aggregation, and an equi- 
librium concentration of is not established. It is 
clear that d, = 2 is the critical dimensionality for this effect, 
in full agreement with the results of numerical modeling." 
On percolation clusters, d, z 4/3 (Ref. 16) and n ( t )  a t 'Ih. 
Within a time At = t - to) to after the source is switched on, 
the function n ( t )  reaches the fluctuation asymptotic form: 

n ( t )  (&to)  '" ( D t )  -ds'4. (12) 

We recall that in the absence of fluctuations the concentra- 
tion decreases like n ( t )  a (Dt) - d"/2 for d, > 2 and like 
n ( t )  a (DR $- 2 0 t ) - '  ford, > 2  (Refs. 14 and 17). 

The asymptotic behavior of ( 11 ) corresponds exactly 
to the type of fluctuation slowing-down which is observed in 
homogeneous systems, i.e., n ( t )  a nA/2 (Dt) - d / 4  (Refs. 3- 
7 ) ;  however, in place of the initial concentration of particles 
no the irradiation dose Q = joto appears in Eq. ( 12). For 
irradiation by very short pulses, i.e., when the particles 
created are unable to recombine within the irradiation time, 
the result (12) for the homogeneous case leads to well- 
known Ford,  > 2 the integral (9)  diverges at its 
lower limit, which corresponds to the fact that C(x,t) - w 
as x-0 and t-to. This unphysical divergence is connected 
with Poisson fluctuations in the number of particles created 
within small volumes at times immediately preceding the 
observation time, i.e., with the S-function-like form of the 
correlator c. It is clear from (4 )  and (5 )  that the presence of 
a divergence of C means absence of spatial segregation. 

Let us investigate the question of particle accumulation 
in the system. As in Ref. 10, we introduce an observation 
volume with sides whose length is of order I,. After calculat- 

ing the mean square difference of particle concentrations, 
where the latter are determined by averaging over this vol- 
ume (technically this is easy to do if we replace the S-func- 
tion S(x )  in Eq. ( 6 )  by a bell-shaped function with charac- 
teristic scale I, ), we find that 

d ~ - a - 0  
(ra ( to))> a (io/D1,, )'I#. (13) 

Comparing this quantity with the quanity n,, obtained by 
solving ( 1 ) under the assumption that fluctuations are ab- 
sent (An, = An, = 0):  

ds-2-8 
neq a ( io /DRo )'I*, (14) 

we see that fluctuation of the number of particles in any 
volume exceeding the particle volume is small compared to 
the equilibrium particle concentration and perturbs weakly 
the equilibrium distribution. Thus, particle accumulation 
during generation does not take place for systems with 
d, > 2. 

For At% to the asymptotic decay of the particle concen- 
tration is given by Eq. ( 12). The critical dimension for this 
effect is d, = 4. For ds > 4, the concentration follows the 
usual bimolecular law n ( t )  a t - ' for At) to. 

For At < to, after excitation by a very long pulse (when 
the first term in ( 10) can be neglected compared to the sec- 
ond),  

In the initial instants after the pulse switches off the relative 
fluctuations in concentration are small and the concentra- 
tion decreases like n ( t )  a t - '. The intermediate asymptotic 
form ( 15 ) is reached at 

Since to observe ( 15) it is rlecessary that t, < At 4 to, the 
length of the excitation pulse must be such that to) t,. It is 
clear from ( 15) that the critical dimension for observing this 
intermediate slowing down is ds = 6. The function 
n ( t )  a t  - ' I 4  which was observed in Ref. 8 corresponds to 
just this intermediate asymptotic form for the cased = 3 and 
to-+ co . As often happens, in this case the change to a fractal 
system reduces to a replacement of d by d,. 

PAIRWISE CREATION OF PARTICLES 

The case of pairwise creation of particles is much more 
interesting. In this case, 

I 

( e ( t ) ) a i o a 2  J d t  J d x ~ ~ r - ~ ( ~ ~ ( x , t ) ) ~ ~  
I-fa 

where f = (d, - 8 ) / ( 2  + 8 ) .  Let us turn our attention to 
the way this atypical combination of exponents arises. 

Depending on the sign o f f  there are two possible cases: 
( a )  f < O(dF < 8 ) .  In this case n ( t )  a (?) ' I 2  a t ;f'2 

and accumulation of particles takes place within the excita- 
tion time. It is not known to us whether this case is observed 
in real systems. On percolation clusters d F > 8  (equality is 
achieved for d>6)  so that the following case is applicable. 

(b )  f> 0 (d, > 8 ) .  In this case there is no accumula- 
tion of particles. For At< to the function ( r 2 ( t ) )  has the 
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form 

When the inequality d, < 4 + 38 holds, the decrease of 
(3 )  ' I 2  turns out to be slower than the predicted bimolecular 
kinetic decrease of n ( t )  (i.e., n ( t )  a t - ' for ds > 2 and 
n( t )  a t - ds/2 for ds < 2) ,  and the quantity n ( t )  follows the 
asymptotic form 

In particular, ford = 3 and 0 = 0 we haven ( t )  a t - 3 1 4 .  This 
expression agrees with that obtained in Ref. 9 for the case of 
pairwise particle creation in a three-dimensional system. 
There this expression corresponded to the purely asymptotic 
form of the decay of the particle concentration after switch- 
ing off a pulse of infinitely long duration (to - 0 )  ; in our case 
it arises as an intermediate asymptotic form when At4tn .  

For A t )  to we obtain from ( 17) 

A nontrivial fluctuation asymptotic form corresponding to 
this behavior 

is observed if the quantity ( ? ) ' I 2  decreases more slowly 
than n ( t )  when the latter is calculated by neglecting fluctu- 
ations, i.e., when the inequality 

holds. This inequality can be fulfilled if diffusion takes place 
at a roughened fractal surface (for example, at the surface of 
a solid catalyst). At such a surface 2<dF 9 3 ;  it can be shown 
that 8>dF - 2. When this latter relation is a strict inequali- 
ty, condition (20) will be fulfilled. The asymptotic form 
( 19) cannot be observed in any other homogeneous ( 9  = 0 )  
system. 

CONCLUSION 

We have obtained asymptotic forms for the accumula- 
tion of particles under irradiation, and expressions for both 
pure and intermediate asymptotic decays of the particle con- 
centrations after the excitation is switched off in systems 
with arbitrary fractal and spectral dimensions. We have in- 
vestigated what conditions must be fulfilled in order to ob- 
serve the corresponding fluctuation effects, taking note of 
the fact that for both independent and pairwise creation of 
particles in fractal and homogeneous systems one can have 
either particle accumulation during excitation or else a pow- 
er-law intermediate asymptotic decrease of the particle con- 
centrations. 

The author thanks L. V. Keldysh and A. V. Kondra- 
chuk for useful discussions. 

APPENDIX 

In homogeneous systems the quantity C(x,t) in ( 3 )  is 
easily calculated by passing to a Fourier transform and the 
functions C(x,t) can be expressed in terms of special func- 
tions for d = 1,2,3: in the case of uncorrelated creation of 
particles, for d = 1 we have 

(this expression coincides with that obtained in Ref. 10); for 
d = 2 ,  

i" [ ~ i ( -  x2 C(x, t )  =- 
2nD 8D ( t - t o )  8Dt 

and for d = 3 

By following the system's behavior for t > to, we see that 
for d = 1 and 2 clusters made up of like particles form in the 
system after the excitation period; the characteristic spatial 
scale of these clusters is - (Dt)  ' I 2 .  For d = 3 this scale en- 
ters into the problem only in the sense that the transition 
from a power-law decrease C(x,t)  a x - '  to the more rapid 
decrease determined by the expression in the brackets takes 
place over this spatial interval. 

For d = 1, C(O,t,) a t A'2 and the average particle con- 
centration in the system n) [2C(O,t,,)/?r] ' I 2  increases with 
time as n a t A'4. 

For d = 2 and 3, C(x,t)  diverges as x - 0 and t +  to. For 
d = 3 an equilibrium concentration is established in the sys- 
tem. For d = 2 

to  I " .  4nD t,, 

where to = 1 i / D ;  consequently the number of particles in a 
given specified volume increases no slower than the function 
N a  (In to) ' I 2 .  After the pulse is switched off, the intermedi- 
ate asymptotic decrease in the particle concentration for 
d = 2 i s  

FIG. 1. Pair correlation function for like and unlike particles for the case 
of independent particle creation in a homogeneous three-dimensional sys- 
tem corresponding to large (the dashed curve) and intermediate (solid 
curve) times. 
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while the three-dimensional case is described by Eq. (12) 
with d ,  = 3. For pairwise creation of particles 

An analysis of the divergence as x -+ 0 and t + to, analogous to 
that carried out for uncorrelated creation of particles, shows 
that accumulation of particles in a macroscopic volume does 
not occur and that equilibrium is established for any dimen- 
sionality. 

Let us discuss pair distribution functions of particles for 
d = 3. The behavior of the pair distribution functions of like 
and unlike particles calculated using Eqs. (4)  and (5 )  for 
the cases t ,  <t<to (the intermediate asymptotic form) and 
At) to (the truly asymptotic form) for independent creation 
of particles are shown in Fig. 1. The corresponding functions 
are shown plotted against the dimensionless parameter 
l =  x / ( 8 ~ t )  l i 2 .  

The particle pair distribution functions corresponding 
to the intermediate asymptotic form n ( t )  cc t -3'4 for pair- 
wise creation look the same as the function PA,,,, in its 

purely asymptotic form for the case of uncorrelated creation 
of particles. 
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