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The problem of attenuation of Rayleigh surface acoustic waves on a free weakly rough boundary 
of an elastic isotropic solid is solved using the Born approximation of perturbation theory and the 
Green function technique developed by Maradudin and Mills [Ann. Phys. (N.Y. )  100,262 
( 1976) 1. The errors in the paper of Maradudin and Mills are identified and the reasons for them 
are elucidated. The conditions are formulated under which the Green function method gives 
physically correct results for the problems dealing with the scattering of elastic waves on a weakly 
rough boundary. It is shown that in the limit st (a (Xis the wavelength of the incident Rayleigh 
wave and a is the correlation radius of the roughness) the reciprocal of the attenuation length 
tends to a constant value on increase in the frequency. It is shown that the results obtained in the 
present study are in agreement with those reported by Eguiluz and Maradudin [Phys. Rev. B 28, 
728 ( 1983) ] and it is pointed out that Eguiluz and Maradudin draw an incorrect conclusion that 
decay ofa Rayleigh wave into volume waves predominates at any wavelength. It is also shown 
that in the rangeA ( a the attenuation is governed by the scattering into secondary Rayleigh 
waves, whereas the decay into volume waves is exponentially weak, in good agreement with the 
results of Urazakov and Fal'kovskii [Sov. Phys. JETP 36,1214 ( 1973 ) 1. A strong dependence of 
the attenuation coefficient on the properties of the medium is deduced from numerical 
calculations. 

1. INTRODUCTION 

The present paper reports a theoretical investigation of 
the attenuation of Rayleigh surface acoustic waves on a free 
randomly rough boundary of an elastic isotropic solid. De- 
tailed investigations are of considerable interest because 
they can provide the information on surface properties of 
solids and also because of various potential technical appli- 
cations. 

This problem has been solved theoretically before in the 
case of weakly rough surfaces by a variety of methods.'-' For 
example, in the cornerstone paper1 it was shown for the first 
time that propagation of a Rayleigh wave along a free weakly 
rough surface S/K( 1 (6  is the rms amplitude of the rough- 
ness and A = 27~2t is the Rayleigh wavelength) results in its 
attenuation because of multiple scattering into volume 
(bulk) and secondary Rayleigh waves of the same frequency 
but with a different direction of the wave vector. The disper- 
sion law of Rayleigh surface waves was found in an integral 
form. Since the integral in question could not be calculated 
explicitly, Urazakov and Fal'kovskij;' estimated the order of 
magnitude of this integral and obtained the following results 
for the attenuation. In the long-wavelength approximation 
X)a ( a  is the correlation radius of the surface roughness) 
the surface and volume attenuations are of the same order of 
magnitude, whereas in the short-wavelength limit %(a the 
surface attenuation predominates. 

Urazakov2 calculated the energy flux in a wave aver- 
aged over the surface roughness. He demonstrated that in 
the limit of high values of a the attenuation is governed by 
the transport time which increases for high values of a. In 
contrast to Refs. 1 and 2, Maradudin and Mills3 found that 
for any value of a/X the surface attenuation is at least an 
order of magnitude higher than the volume process. The at- 
tenuation of Rayleigh surface waves was studied by Krylov 
and ~ ~ a m o v ~  in theX)a approximation. The scattering into 

the bulk of a medium was ignored following the conclusions 
of Ref. 3. However, it was pointed out in Refs. 5 and 6 that 
the results of Ref. 3 are in error. It was also stated by Eguiluz 
and Maradudin in Ref. 6 that the attenuation of Rayleigh 
waves on a weakly rough surface is governed primarily by 
the scattering into volume acoustic waves. On the other 
hand, it was shown in Ref. 7 that in the short-wavelength 
limit the attenuation is entirely due to the scattering into 
secondary Rayleigh waves, in agreement with the estimates 
obtained in Ref. 1. However, the frequency dependences of 
the attenuation coefficients given in Refs. 1 and 7 are funda- 
mentally different. 

It follows from this brief review that the various investi- 
gations cited above were carried out by different methods 
and yielded contradictory results. Our aim will therefore be 
to identify the reason for the published contradictory con- 
clusions about the nature of the attenuation of Rayleigh sur- 
face waves on a free weakly rough surface and to obtain 
quantitative expressions for the attenuation coefficients. 

2. FORMULATION OFTHE PROBLEM. EQUATIONS OF 
MOTION OF AN ELASTIC MEDIUM BOUNDED BY A FREE 
ROUGH SURFACE 

We shall assume that a plane monochromatic Rayleigh 
surface wave is incident on a randomly rough part of a 
boundary separating an elastic isotropic solid from vacuum, 
described by a random function x, = f(x,,x,) . The solid oc- 
cupies the half-space x, > 0 and the rough region is a rectan- 
gle of linear dimensions L, and L, along the x, and x, axes, 
respectively. It is assumed that roughness is weak: S/A( 1 
(S2 = ( f '(xl,x2) ), where the angular brackets denote aver- 
aging over an ensemble of all possible realizations of the 
roughness profile). We now have to find the field of displace- 
ments in scattered volume (longitudinal and transverse) 
and secondary Rayleigh waves, the energy fluxes of the scat- 
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tered waves, and the attenuation length of the incident Ray- 
leigh surface acoustic wave as a function of the parameters S 
and a of the roughness microprofile, of the wavelength R of 
the incident wave, and of the Poisson ratio a of the medium. 

We shall solve this problem in the first Born approxima- 
tion of perturbation theory using the Green function method 
applied in Ref. 3 specifically to the problem of scattering of 
elastic waves by a free weakly rough surface of an isotropic 
solid. However, as pointed out in the Introduction, the re- 
sults of Maradudin and Mills3 are in error. Therefore, we 
have to determine why the use of this method gives incorrect 
results. We recall that the Green function method applied in 
Ref. 3 is based on the statement8 that surface states can be 
investigated in the theory of elasticity by two equivalent 
methods. If we consider a semi-infinite solid with a free flat 
surface, we can solve the equations of motion of an elastic 
homogeneous medium occupying the half-space x, > 0, 

a2ua a2u, 
P = C a ~ v  ax, ax, 

subject to the boundary conditions on the flat free surface 
x3 = 0, 

where u, (x,t) is the ath Cartesian component of the dis- 
placement field, p is the density of the medium (mass per 
unit volume), CaBpv are the elastic moduli of the medium, 
and x = (x,,x,,x,); alternately, we can solve the equations 
of motion for an infinite inhomogeneous space 

where the elastic moduli of the medium CaBpv (x)  are func- 
tions of the spatial coordinates. Following Ref. 8, the au- 
thors of Ref. 9 propose the use of coordinate-dependent elas- 
tic moduli in the form 

where B(x,) is the Heaviside step function, so that Eq. (4)  
can be used to rewrite Eq. (3)  in the form 

a2ua 3% a2u, 
P 7 = 6 ( 1 3 )  Ca,,v - + 0 ( x3 )  Ca,,, - a xV ax, dx, ' (5) 

where-as in Eq. (3)-p represents the ordinary coordi- 
nate-independent density of the medium. 

Following Ref. 8, the authors of Ref. 9 state also that 
one can show that the solution of Eqs. (5) or (3)  is equiva- 
lent to the solution of the system ( 1 ) satisfying the boundary 
condition (2) on thex, = 0 plane. However, this is not quite 
correct. The two approaches under discussion are equivalent 
if in Eqs. (3)  and (5)  the density of the medium is a function 
of the spatial coordinates together with the elastic moduli 
and in the case of a homogeneous elastic medium occupying 
the half-space x, > 0 is 

In the opposite case, as we go from a semi-infinite homoge- 
neous medium, bounded by a flat free surface x, = 0, to an 

infinite inhomogeneous space, we obtain a physically mean- 
ingless result p (x, < 0) # 0. 

If we use Eq. ( 6 ) ,  we find that the equations of motion 
in Eq. (5 )  become 

where Of(x3) = S(x,) and the equivalence of the two ap- 
proaches becomes obvious. Therefore, the system of equa- 
tions of motion (3)  can be written in the form 

dZua d 3% dZu,t 
P ( X )  y=- C a ~ p  (x) - + Cagw ( x )  - 

dt d l g  dx, ax, ax, 
. (8) 

We must stress that in Eq. (8) the density p (x)  is a function 
of the spatial coordinates, like the elastic moduli CaBpv (x) .  
We note that if this fact is ignored in the case of a flat free 
surface, the calculations still give the correct results (see, for 
example, Ref. 10). However, the situation changes funda- 
mentally in the case of a nonflat boundary. For example, if 
the boundary is rough and is given by the equation 
x, = f (x , ,~ , ) ,  then Eqs. (4)  and (6)  become 

In the case of a weakly rough surface considered in Ref. 
3 and here we can expand CaBpv ( x )  andp(x)  as functional 
Taylor series: 

Terms of higher order of smallness in f will be ignored. It 
follows from the system (1 1) that the expansion for p (x )  
contains not only a term to B(x,), but also a 
term proportional to S(x,), which alters fundamentally all 
the subsequent calculations. 

This is precisely the point ignored by Maradudin and 
Mills in Ref. 3, where it is assumed that only the elastic 
moduli of the medium described by Eq. (9) depend on the 
spatial coordinates, whereas the density p is constant in all 
space. We shall show later that this error led eventually the 
authors of Ref. 3 to incorrect results. 

We shall correct this error and use Eqs. ( 10) and ( 1 1 ) 
to represent the system of equations of motion (8)  in the 
form 

(1) 
L;:) ( x ,  t )  u,(x, t )  =-Lac ( x ,  t )  u,,(x, t ) .  (12) 

where L L: and L L: are differential operators defined by 

La, = - 
a 2  a ,,, a ( )  [ - P ( O )  ( x )  6ap - + - Capfiv (x) -  

P at2 ax, ax, 
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Using a Green function DM (x,xl;t - t '), defined as the so- 
lution of inhomogeneous differential equations (subject to 
the boundary conditions for the free surface) 

~ k l '  (x, t)D,,(x, x'; t-t') =6,,6 (x-x') 6 (t-t'), (15) 

we can reduce the system of differential equations ( 12) to a 
system of integral equations 

X L,:) (XI, t') U, (x', t') . ( 16) 

Here, u:' (x,t) is the solution of the system of homogeneous 
equations 

( 0 )  L::' (x. t) u, (x, t )  =O (17) 

and it corresponds physically to a Rayleigh wave traveling 
along a free flat (not rough) surface x ,  = 0 of an isotropic 
solid. 

Following Eq. ( 12) or ( 16), we shall find the displace- 
ment field from perturbation theory assuming that 

U(X, 1) =u(O) (x, t) +u(') (x, t) + u ( ~ )  (x, I )  + . . . ; ( 18) 

the term of the second order of smallness in f amounting to 
u"' in Eq. ( 18) represents, over an ensemble of realizations 
of the function f, the attenuation of the average field of a 
Rayleigh wave traveling along a rough surface when this 
attenuation is due to the transfer of energy into scattered 
waves (see Refs. 1 and 6 ) .  In determination of the energy 
flux, which is a quadratic function of the field, this term as 
well as the term u"' make contributions of the second order 
of smallness inf, proportional to ~(O)(U'~')  and equal in the 
absolute sense to the energy flux in the scattered wave u"', 
but with the opposite sign, i.e., this contribution represents 
the loss of energy from the original Rayleigh wave (this fol- 
lows directly from the law of conservation of energy). 

It is clear from the above discussion that in order to find 
the attenuation length of a Rayleigh wave traveling along a 
randomly rough surface we can use two physically equiva- 
lent approaches: 1 ) we can find the decreasing average field 
of the Rayleigh wave and use the dispersion law of this wave 
to calculate the attenuation length; 2) bearing in mind that 
the average field is attenuated because of the "transfer" of its 
energy into scattered waves, we can find the attenuation 
length directly using the energy flux in the scattered wave on 
the basis of the scattering theory. We shall adopt the second 
approach. Therefore, we shall be interested not in the aver- 
age field of a Rayleigh wave traveling along a rough surface, 
but in the displacement field and the energy flux in the scat- 
tered waves. Consequently, we shall limit Eq. (18) to just 
the term of the first order of smallness in respect off, which is 
u"', i.e., we shall adopt the Born approximation of perturba- 
tion theory for the displacement field and for the energy flux 
of the scattered waves. 

3. DISPLACEMENT VECTORSAND ENERGY FLUXES OF 
SCATTERED WAVES 

The displacement field of the scattered waves consid- 
ered in the Born approximation can be deduced from Eqs. 
(13), (14), and (16): 

where 

The action of the operator (20) on a function u:' (xl,t ') can 
be studied if after performing all the differentiations we as- 
sume that xi = 0. It should also be noted that the operator 
(20) is independent of time because the surface roughness is 
stationary. Consequently, the spectral component of the 
scattered field [representing the Fourier transform u'"' (x,t) 
with respect to time] is proportional to S(w - w,), i.e., the 
scattered wave has the same frequency as the incident wave. 

Following the method described in detail in Refs. 3 and 
11, we find that at large distances from a rough region of the 
surface the scattered field consists of three waves: volume 
longitudinal, volume transverse, and Rayleigh surface 
waves. The scattered volume waves are spherical and the 
scattered Rayleigh wave is cylindrical. The explicit form of 
the expressions for these scattered waves can be found in 
Ref. 1 1. These expressions can be used to calculate the ener- 
gy fluxes of the scattered waves (see Ref. 11 ) . In particular, 
the flux averaged with respect to time and over an ensemble 
of rough surfaces has the following form for a scattered Ray- 
leigh wave: 

where?(k,, ) is the Fourier transform off ( x , ,~ , ) ;  A is the 
complex amplitude of the incident Rayleigh wave; c,, c,, and 
c, are the velocities of longitudinal, transverse, and Ray- 
leigh acoustic waves, respectively; p, is the azimuthal angle 
(O<p, <2?r); k hO) is the wave vector of the incident Rayleigh 
wave; k, = (w/c, ) (cos p,; sin p,;O); P, R, a, and yare the 
constants that depend only on a. The correlation function of 
the surface roughness is of the Gaussian form: 

We note that in statistical averaging a distribution func- 
tion is used for an infinite rough surface, but this function 
differs from zero only inside the region between L ,  a ~ d  L,. 
The application of this distribution function in the case of a 
rough region of finite dimensions naturally gives rise to an 
error. However, if the dimensions of the scattering rough 
area are considerably greater than the correlation radius of 
the roughness a,  integration in the course of averaging can be 
carried out between infinite limits (see Ref. 12). The error 
inherent in this approach is estimated not to exceed 
1 0 ~ .  

In particular, it follows from Eq. (21 ) that the scattered 
field is absent for angles defined by the equations cos p, = 1, 
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and cos p, = - ( 1 - cL, /2c:). This is in agreement with the 
conclusions reached in Ref. 5, where the Born approxima- 
tion is used in a study of the scattering of surface waves by 
three-dimensional inhomogeneities of the boundary and 
where it is shown that the results of Ref. 3 are in error. [In 
contrast to Ref. 5 and to Eq. (21) in the present paper, it 
follows from Eq. (4.2 1 ) of Ref. 3 that there are no angles for 
which the scattered field vanishes.] 

4. ATTENUATION LENGTH OF A RAYLEIGH SURFACE 
ACOUSTIC WAVE 

In view of the random nature of the roughness, the scat- 
tered longitudinal, transverse, and Rayleigh waves contrib- 
ute additively to the total energy flux of the scattered field: 

On the other hand, it follows from the law of conservation of 
energy that the average energy flux in the scattered waves is 

where dE,/dt is the energy flux in the incident Rayleigh 
surface acoustic wave; dE  /dt is the energy flux in the Ray- 
leigh wave that has traveled a distance x, along the rough 
surface (see Ref. 6) : 

In the case of a weakly rough surface considered in the 
present study the influence of the roughness on the incident 
wave is not very great, i.e., L, <I. Since the energy fluxes of 
Eq. (23) are found in the present study to within the first 
nonvanishing term proportional to S2, we shall substitute 
Eq. (25) into Eq. (24) and expand Eq. (24) as a Taylor 
series in L,/I to within the first nonvanishing term, which 
gives the following expression for the reciprocal of the at- 
tenuation length: 

It follows from Eqs. (23) and (26) that 

where I '"'*R' is the attenuation length of a Rayleigh surface 
acoustic wave scattered into volume longitudinal transverse 
waves and into Rayleigh surface waves, respectively. We 
shall now give the final expressions for the reciprocals of the 
attenuation lengths: 

1 62a205 -- -- 
1") 4~~~ [- 1 4 (2) CR ' 1  j de. e(" (z, e., U) 

(30) 
where 

I ( a o / ~ R ) ~  ( cR /c l )  sin 0, for 1/1(L) ,  

z = ( U O / C R ) " C R / C ~ )  sin Os for l / l ( t ) ,  

( ' l z )  ( a o / c ~ ) "  for I / L ( R ) ,  

and I, ( z )  are modified Bessel functions of order n; the ex- 
plicit form of the expressions for @"), @(", and V, 
( i  = 1,2,3) can be found in Ref. 11. 

5. NUMERICAL CALCULATIONS. DISCUSSION OF RESULTS 

We shall continue the analysis of Eqs. (28)-(30) by 
introducing new notation: 

where the function fBl, f,, , and fR are dimensionless, where- 
as the factor S2a2w5/.rrci has the dimensions of the recipro- 
cal length. We shall consider the limiting cases of long and 
short Rayleigh waves incident on a rough part of the surface. 

In the case of long wavelengths a d c ,  =a/Xg 1, we can 
use expansions of the Bessel functions as a Taylor series for 
small values of the argument and we then find from Eqs. 
(28)-(30) that the functions f,,, f,,, and f, are independent 
of a/X and are expressed entirely in terms of the Poisson 
ratio a of the medium. In this limiting case we obtain from 
Eq. (3 1 ) the reciprocals of the attenuation lengths 
-S2aZw5/ci, in agreement with the results of Refs. 1,6, and 
7. 

In the limit of short wavelengths aw/c, 1, the Laplace 
methodI3 yields the following asymptotic expressions: 

where 

and GI and G, are constants dependent on a (see Ref. 1 1 ). 
It should be noted that the coefficients in front ofw4 and 

wZ in Eq. (34) vanish, G,, = G,,  = 0, so that the final 
expression for 1/I ( R )  is 
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from which it follows that an increase in the frequency 
causes the reciprocal of the attenuation length of a Rayleigh 
wave to approach a constant value CS2/a3, where the con- 
stant C depends only on the Poisson ratio o (for a medium 
with u = 0.25, we find that GR4/GR3 z 5.089). 

It is interesting to compare the frequency dependence 
given by Eq. (35) with results of other investigations. For 
example, the average energy flux in a wave is also calculated 
in Ref. 2, but in contrast to our results an allowance is made 
for multiple scattering. It is shown there that in the range of 
high correlation radii a the situation is quite complex and 
there are several limiting cases. In particular, if a < rc, (7 is 
the attenuation or decay time of a Rayleigh wave), the fol- 
lowing estimate applies: 

The attenuation was investigated in Refs. 1, 6, and 7 
using the dispersion law of Rayleigh surface acoustic waves 
on a free weakly rough boundary 

o (k) =oo(k)+Ao (k), 
(37) 

where w, = kc, is the dispersion law of a Rayleigh wave 
propagating along an ideally smooth surface. The imaginary 
part Aw (k) is known to govern the attenuation of a surface 
wave. Since the energy flux is a quadratic function of the 
displacement, the attenuation coefficient is defined as fol- 
lows: 

Then, in the limit of short Rayleigh wavelengths a/X, 1, the 
following estimate is obtained in Ref. 1: 

In Ref. 6 the asymptotic form of 1/I ( R '  was not investi- 
gated, but we carried out such calculations independently 
[using Eqs. (4.24)-(4.29) of Ref. 61 and we obtained an 
expression completely identical with Eq. (35). Finally, the 
same limiting case is considered in Ref. 7 and it is found that 

where Q is a constant (see Ref. 7),  whereas G, , and GR4 are 
given above [see Eq. (34) 1. In the limit of high frequencies 
both Eqs. (40) and (35) tend to a constant value C'S2/a3, 
but the constant C '  differs from the constant C used in the 
present study (for a medium with u = 0.25 we have C'/ 
Cz6.5) .  

Going back to an analysis of the asymptotic expressions 
(32)-(35), we note that whereas 1/I 'R' tends to a constant 
on increase in the frequency, both 1/1"' and 1/1"' decrease 
exponentially. Therefore, at high frequencies aw/c, % 1 the 
attenuation due to the scattering into secondary Rayleigh 
waves becomes the main process in respect of the parameter 

FIG. 1 .  Results of a numerical calculation of the functions f ,  and f ,  for an 
elastic medium characterized by c , / c  = 1 / 6  (i.e., by u = 0.25). The de- 
pendences off :, and f k are taken from Ref. 3. 

a/X, in agreement with the results given in Refs. 1 and 7. 
The relative contribution of the attenuation of surface 

acoustic waves due to the scattering into volume and second- 
ary Rayleigh waves throughout the frequency range was 
found by numerical calculation of the functions f, = f,, 
+ fBr and f, depending on aw/c,. In these calculations we 

used Eqs. (28)-(35) for an elastic medium characterized by 
a = 0.25 (c,/c, = 1 / 0 ) .  The results of these calculations 
are presented in Figs. 1 and 2. It is clear from these numeri- 
cal calculations that in the range of long wavelengths of Ray- 
leigh surface acoustic waves a /X4  1 the attenuation due to 
the scattering into volume waves is approximately 6 times 
stronger than the attenuation due to the scattering into sec- 
ondary Rayleigh waves, i.e., the attenuation coefficients are 
quantities of the same order of magnitude. However, at short 
wavelengths a/X% 1 the surface attenuation is the principal 
process in respect of the parameter a/X. These results are 
also in good agreement with the estimates given in Refs. 1 
and 7. In comparing our results with those of Ref. 6, we must 
bear in mind the following point. In the range of wavelengths 
0.1 <a/X< 10.0 (or A> 27ra/10 z0.6a) ,  which was the only 
range considered in Ref. 6, the results of the present work 
and of Ref. 6 were compared numerically and found to be in 
agreement. However, the range of wavelengths a/X> 10 was 
not considered in Ref. 6. It is in this range already when a/ 
XZ 70 ( A  ~ 0 . 0 9 a )  that the scattering into secondary Ray- 
leigh waves is an order of magnitude stronger than the scat- 
tering into volume acoustic waves (Fig. 2).  It should be not- 
ed that the values off, for a/X> 20 (Fig. 2) were calculated 

FIG. 2. Same as in Fig. 1 ,  but for higher values of ao/c, =a/X.  
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TABLE I. Dependences of functions f,,, f,,, and f ,  on the Poisson ratio a of a medium in the 
case of long ( a d d  1 ) Ravleieh waves. 

using an asymptotic expression ( 35 ) , which-as pointed out 
above-is deduced from analytic expressions in Ref. 6 in the 
limit a / X $ l .  Therefore, in the range a /X>  10 the results 
agree. Hence, we may conclude that the results of the present 
work and of Ref. 6 obtained by different methods agree for 
any wavelength of Rayleigh surface acoustic waves. The 
agreement between these results demonstrates that the con- 
clusion reached by Eguiluz and Maradudin6 on predomi- 
nant scattering of Rayleigh acoustic waves of any frequency 
into volume waves is not quite correct. 

Finally, a comparison with Ref. 3 demonstrates that the 
results obtained in the present study differ fundamentally 
from those given in Ref. 3 (compare dependences off d and 
f d in Fig. 1 ) and the latter are in error. The error of Ref. 3 
was admitted by the authors in Ref. 6 and they tried to ac- 
count for the errors made in the Green function m e t h ~ d . ~  
They compared the expression obtained for the displace- 
ment field of scattered waves with an analogous expression 
in Ref. 3 (Appendix B in Ref. 6)  and concluded that there is 
an "extra" term in Ref. 3. The reason for the appearance of 
this term is not established in Ref. 6. We demonstrated above 
that if the conditions (9)-( 11) are satisfied, this extra term 
is balanced out and the displacement fields become identical. 
This identity of the displacement fields of scattered waves 
obtained in the present study and in Ref. 6, and the agree- 
ment between the final results shows that the corrections 
introduced by us into the Green function method developed 
in Ref. 3  are appropriate. 

We can therefore conclude that the Green function 
method gives the correct results when dealing with the scat- 
tering of elastic waves on a weakly rough boundary if in 
going over from a semiinfinite homogeneous medium to a 
semiinfinite inhomogeneous space we assume that the den- 
sity of the medium is, like the elastic moduli, a function of 
the spatial coordinates. 

We also investigated the dependences of the attenuation 
coefficients of Rayleigh surface acoustic waves on the nature 

of the material. It follows from our numerical calculations 
that the attenuation coefficients depend strongly on the 
Poisson ratio o. At long wavelengths X $ a  in the case of 
media with 0  < o 5 0 . 2 5 ~  the attenuation due to the scatter- 
ing into volume acoustic waves and secondary Rayleigh sur- 
face acoustic waves is of the same order of magnitude (in 
agreement with Ref. 1 ). However, in the case of media char- 
acterized by 0.25 < a < 0.5 the attenuation due to the scatter- 
ing into volume waves is considerably (by an order of magni- 
tude) stronger than the attenuation due to the scattering 
into secondary Rayleigh surface acoustic waves (Table I ) .  
In the case of short wavelengths X<a, the scattering into 
secondary Rayleigh surface acoustic waves is the dominant 
mechanism in any elastic medium. 

The authors are deeply grateful to Yu. M. Kagan and L. 
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