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We suggest a method for solving the equations of ideal magnetohydrodynamics in the strong field 
approximation using the frozen-in coordinate technique. We study plasma flows near a varying 
magnetic dipole. We obtain exact analytical solutions for the case of a linearly varying magnetic 
moment. We discover a new mechanism for magnetic bunching caused by small fluctuations in 
the magnetic field. 

1. INTRODUCTION 

The strong-magnetic-field approximation is applicable 
when the magnetic force dominates the other ones: the gravi- 
tational force, the gradient of the gas pressure, and so on. It 
is of great interest, in particular for astrophysical applica- 
tions of plasma physics.' In the framework of this approxi- 
mation Syrovatskii developed the concepts of a neutral cur- 
rent layer24 and of magnetic b ~ n c h i n g . ~ , ~  

Notwithstanding the considerable simplification of the 
equations of magnetohydrodynamics (MHD) in the strong 
field approximation, their solution remains all the same a 
serious problem. Existing methods' allow one only to study 
two-dimensional problems. Analytical solutions are then 
only obtained by the small-perturbation method'.2 which is 
applicable at initial times for small changes in the magnetic 
field and under neglect of inertial effects. The authors are not 
aware of any analytical solution of a global nonlinear prob- 
lem with physically realizable boundary and initial condi- 
tions. As to three-dimensional problems, their solution is 
difficult even numerically. 

We propose in the present paper a new method for solv- 
ing MHD problems in the strong field approximation using 
the frozen-in coordinate method.'.' The proposed method is 
given in the second section. In Section 3 it is used to study the 
nonlinear problem of plasma flow near a variable magnetic 
dipole. We consider two-dimensional (planar) and three- 
dimensional (axisymmetric) statements of the problem. For 
the case of a linearly varying magnetic moment we obtain 
analytical solutions which are valid for arbitrary times. 

We study in Section 4 the plasma flow near a dipole with 
a dipole moment which fluctuates around a constant value. 
We show that on the background of fast vibrational motions 
there appears a systematic precession-type flow which leads 
to bunching of the plasma towards the dipole equator. We 
briefly discuss possible astrophysical applications of this ef- 
fect in the Conclusion. 

2. METHOD FOR SOLVING THE MHD EQUATIONS IN THE 
STRONG FIELD APPROXIMATION 

The dimensionless MHD equations for an ideal medi- 
um have the following form': 

div H=O, ( 2 )  

A= at  - div pv, 

Here v andp are the plasma velocity and densi ty;~ and H are 
the pressure and magnetic field strength; E = V/VA, 
yZ, = pdp,  Vf,  are dimensionless parameters characterizing 
the problem; VA = H,(4.rrp0) - ' I 2  is a characteristic value of 
the AlfvCn velocity; V, p,, p,, H, are characteristic values of 
the velocity, the density, the pressure, and the magnetic 
field, respectively; f l  is the polytropic index. 

The strong field approximation corresponds to the con- 
ditions' 

In zeroth order in E' and the set of MHD equations takes 
the form 

[H rot HI =0, (7 )  

div H=O, (8 

-- "- - div pv, 
at 

(10) 

The derivation and the conditions of applicability of these 
equations were discussed in detail in Ref. 1. Their solution 
has been split into two parts: a )  the determination of the 
magnetic field from Eqs. (7 )  and (8 )  for given boundary 
conditions which vary in time; b )  calculation of the plasma 
velocity and density from Eqs. (9)-( 11) for a known mag- 
netic field. In the present paper we restrict ourselves to the 
second part of the problem and assume that the magnetic 
field is known. 

We note that it is far from being possible to find contin- 
uous solutions of the set (7)-( 11) for arbitrary continuous 
deformations of the magnetic field.4 For instance, in the two- 
dimensional case such solutions exist only provided there 
are no singular zeroes of the magnetic field in which the 
electric field E #O. When such points exist it is necessary to 
introduce cuts (current layers) .4 

In order that a solution of Eqs. (9)-( 11) for a given 
evolution of the magnetic field be completely determined 
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inside some region, one must specify the initial conditions' 

Vl, (07 r )  = f i  ( r )  7 ( 1 2 )  

p(0, r )  = f z ( r ) ,  ( 1 3 )  

where ull is the velocity component along the field lines [the 
velocity component at right angles to the field lines is deter- 
mined from ( 9 )  ]. For the sake of simplicity we assume in 
what follows that the initial density distribution is uniform 
( f2 =po = const). 

The particular feature of Eqs. ( 7 ) - (  1 1  ) consists in that 
in the solution there can appear regions of mutual interpreta- 
tion of plasma fluxes.' The appearance of such regions is 
connected with the fact that in Eq. ( 1 ) the gas pressure gra- 
dient was neglected. As a result fluid particles moving along 
the field line tubes do not "feel" one another and their trajec- 
tories can intersect. In that case the results obtained in the 
approximation applied cease to be correct. 

The frozen-in coordinate method is useful for solving 
problems of ideal MHD.',' One introduces a doubly Lagran- 
gian system: with respect to a parameter along the line of the 
flow flux (the time t )  and with respect to a parameter a 
along the magnetic field line. As in any Lagrangian ap- 
proach (see, e.g., Ref. 9 )  the function required is the radius 
vector r  = r ( t , a , { , $ )  of the fluid particle, where t ,a , { ,$  are 
the frozen-in coordina'tes. The set of MHD Eqs. ( 1 ) - (5  ) can 
be written as follows in the frozen-in coordinates8: 

where r ,  , r ,  , r c ,  r, indicate partial derivatives with respect 
to the corresponding parameters. Equation ( 14)  is Eq. ( 1 ) 
written in the frozen-in coordinates. Condition ( 15)  guaran- 
tees that ( 2 )  and (4)  are satisfied.' The frozen-in condition 
( 3 )  is satisfied by virtue of the special choice of the Lagran- 
gian coordinates. It is shown in Ref. 7  that Eq. ( 3 )  is the 
necessary condition that we can introduce a twice Lagran- 
gian system of coordinates. This is just the reason why these 
coordinates are called frozen-in coordinates 

If we have solved the set ( 14)-(  1 6 ) ,  i.e., have found the 
functions r, p, and p, we can evaluate the velocity and the 
magnetic field: 

In order to write down the strong-field approximation 
MHD equations ( 7 ) - (  1 1  ) in frozen-in coordinates we must 
put E~ = 0 ,  = 0  in ( 14)  and add Eq. ( 1 1  ) written in fro- 
zen-in coordinates. As a result we get 

We shall work out in what follows a method for solving this 
set of equations. 

We have already noted that we are interested in plasma 
flow arising when there is a known continuous deformation 
of the magnetic field. We therefore assume that the solution 
H  ( t , r )  of Eqs. ( 7 )  and ( 8 )  with the appropriate boundary 
conditions is known at any time with, perhaps, the introduc- 
tion of necessary cuts. We write the magnetic field at any 
time in parametric form 

with the transition Jacobian 

po [RER:] R * = l ,  

wherep, is a constant. The function R ( t , a , l , $ )  thus intro- 
duced satisfies the equation 

( 2 4 )  

We shall look for a solution of the set ( 1 9 ) - ( 2 1 )  in the 
form 

r ( t ,  a, k, $ ) = R ( t ,  a( t ,  a, E, 11.1, E, $ 1 ,  ( 2 5 )  

where a( t , a , l , $ )  
verify by a direct 
density p ( t , a , l , $ )  

is an unknown function. One can easily 
check that if we relate a ( t , a , l , $ )  to the 
through the formula 

Eqs. ( 1 9 )  and ( 2 0 )  will be satisfied identically [if we use 
Eqs. ( 2 3 )  and ( 2 4 )  1. As pr,  = p,R, the transformation 
( 2 5 ) ,  ( 2 6 )  with an arbitrary function u leaves the magnetic 
field configuration unchanged. 

To  complete the construction of the solution of the set 
( 1 9 ) - ( 2 1 ) )  we must determine the unknown function 
a ( t , a , { , $ )  from Eq. ( 2 1 ) .  After substituting ( 2 5 )  into ( 2 1 )  
the problem reduces to solving one ordinary second order 
differential equation: 

with the initial conditions 

If we take ( 2 6 )  into account, condition ( 2 8 )  guarantees that 
( 1 3 )  is satisfied (for f, =p, = const) and ( 2 9 )  determines 
the velocity component along the field lines at t = 0 .  

We thus obtain the following algorithm for solving the 
set ( 9 ) - ( 1 1 )  under the conditions that H ( t , r )  is known. 

1 .  Representation of the field H ( t , r )  at  each time in the 
parametric form ( 2 2 ) ,  ( 2 3 ) .  

2. Determination of the function a ( t , a , c , $ )  from Eq. 
( 2 7 )  with the initial conditions ( 2 8 ) ,  ( 2 9 ) .  

3. Obtaining the solution ( 2 5 )  and evaluating the den- 
sity and the velocity using, respectively, Eqs. ( 2 6 )  and ( 1 7 ) .  

We apply the method developed here to solving an actu- 
al nonlinear problem. 
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3. PLASMA FLOW IN A VARIABLE DIPOLE FIELD 

The problem of the motion of a plasma in a strong mag- 
netic dipole field has been formulated and solved in the ap- 
proximation of small changes in the dipole moment and 
hence small displacements of the plasma in a two-dimen- 
sional planar statement of the problem in Ref. 1 and in a 
three-dimensional axisymmetric statement in Ref. 5. As 
there are no qualitative differences between them we shall in 
what follows consider the planar case. In the Appendix we 
give the results referring to the three-dimensional statement. 
In the two-dimensional case the set ( 1 9 ) - ( 2 1 )  takes the 
form 

where 

Writing the given two-dimension field H ( t , r )  in the pa- 
rametric form ( 2 2 )  with the transition Jacobian 

is made easier thanks to the following fact. Condition ( 3 3 )  
will be satisfied automatically, if we choose 

where A(t,x,y)  is the z component of the vector potential 
(the only one which is nonvanishing ). Indeed, the equations 
H, = dA /dy, H,, = - dA /ax and ( 2 2 )  enable us to evalu- 
ate the Jacobian 

where X, Y are components of the vector R. Therefore 

We consider the problem of plasma flow in the field of a 
dipole which varies with time and which is positioned at the 
origin with its axis along the x axis. The magnetic field is 

We introduce in the usual way polar coordinates 
x = r  cos p, y  = r  sin p .  Since the vector potential is 
A  = r- 'm(t )s in  p, we have 

* ( t )  sin2 (. ( t ,  a, E) ) , 01. = { ~ s i n ( 2 c p ( t , a 7 ~ ) ) ,  7 3 

( 3 6 )  

Substituting ( 3 6 )  into ( 2 2 )  we get the equation 

whence after elementary integration we find 

q-'/, sin 2~=2E3alpom2( t ) .  (38 

The last equation determines p ( t , a , { )  implicitly. Equations 
( 3 6 )  and ( 3 8 )  solve the problem of writing down the two- 
dimensional dipole field in parametric form. 

Following the algorithm expounded in the preceding 
section we look for a solution of the set ( 3 0 ) ,  ( 3 2 )  in the 
form 

where cr(t ,a,{)  is an unknown function. In the given actual 
case it is convenient to change to another unknown function 

where q,(t ,a,{)  is determined from ( 3 8 ) .  The function 77 has 
a simple physical meaning-it is the polar angle of a Lagran- 
gian particle with coordinates ( t , a , { ) .  It follows from ( 3 8 )  
and ( 4 0 )  that 

q ( t ,  a ,  E )  -'I2 sin 2q ( t ,  a ,  E )  =2E30(t, a ,  p)lpom2 ( t ) .  (41 

Using this relation we get from ( 2 6 )  an expression for the 
density: 

p=po/o.=E3/m2 ( t )  qa sin2 q .  ( 4 2 )  

In the given case Eq. ( 2 7 )  takes the form 

mqtt+2rntqt+'l2mtt sin 2q=0. ( 4 3 )  

The initial conditions follow from ( 2 8 )  and ( 2 9 )  

where ?;lo(",{)  is implicitly given by the equation 

q 0 - 1 / 2  sin 2qo=2~3a /p ,mz (0 ) ,  ( 4 6 )  

while ( 4 5 )  determines the velocity component along the 
field lines at t = 0 .  For the sake of simplicity we shall put 
j=O; this means that initially the plasma velocity has no 
component along the field lines. 

It follows from the results of the preceding section that 
if we have solved Eq. ( 4 3 )  the formulae 

m ( t )  sin2 m ( t )  sin 29, y ( t ,  a, = - x ( t , a , E ) = -  
2E E 

determine the solution of the set ( 3 0 ) - ( 3 2 ) .  The density and 
the velocity can be found from ( 4 2 )  and ( 17),  respectively. 
It is convenient for the calculations to use ( 4 6 )  and rewrite 
( 4 2 )  in the form 

We consider the motion of the plasma near the dipole 
axis ( 7  4 1 ). In that case Eq. ( 4 3 )  simplifies: ( m ~ )  tr = 0 .  Its 
solution with the initial conditions ( 4 4 ) ,  ( 4 5 )  has the form 
7  = q ,m(O) /m ( t ) ,  and ( 4 8 )  gives the expression for the 
density 

In Ref. 1 ,  Eq. (49) was obtained from other considerations. 
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I t  is valid for any function m ( t )  (for 7 < 1 ). 
One can also integrate Eq. (43) elementarily if the di- 

pole moment changes according to a linear law 

(see Refs. 1, 5 and 6 for astrophysical applications of this 
problem). The solution has the form 

mosin q, m (t) ' ( m t )  sin q mo cos 2q0+2m (f)  sin2 % ' (52) 

The density changes in this case on the dipole equator 
( 7  = 7, = in-) as follows 

We note that we can consider (5  1 ) as an implicit definition 
of the function 7, = v0(t ,7) and the density which is given 
by (52) is thus a function of merely two parameters: the time 
t and the polar angle 7. 

If the dipole moment decreases ( b  < 0 )  the quantity 7, 
becomes fort  > m,/21 b I a nonunique function of 7 ,  i.e., there 
occur intersections of the trajectories of the liquid particles. 
In that case the solution (5  1 ), (52) ceases to be correct. 

It follows from (49) and (53) that when the magnetic 
dipole increases the density increases on the dipole axis 
( 7  = 0)  and decreases on the equator ( 7  = in-). The oppo- 
site process occurs when the magnetic moment decreases. 
This effect was called magnetic bunching in Ref. 1. 

4. MAGNETIC FIELD FLUCTUATIONS AS CAUSE OF PLASMA 
CONDENSATION FORMATION 

Let the dipole moment change as follows with time: 

where m, and a are constant quantities, and f ( t )  is an oscil- 
lating function for which ( f )  = 0, (f  :) #O (the brackets 
indicate averages). Without loss of generality we can put 
( f :) = 1/2. Let the condition A r a/m, 4 1 also be satisfied. 
This means that we wish to study plasma flow in an almost 
constant weakly fluctuating strong magnetic field. In this 
case Eq. (43) and the initial conditions take the form 

(l+hf)qtt+2Aftql+1/2hflt sin 2q=0, (55) 

v = ~ o ,  (l+hf)ql+ilzhft sin 2q0=0 for t=O. (56) 

Equation (55) is weakly nonlinear, i.e., it contains a 
small parameter A such that when it is zero the equation 
degenerates into a linear differential equation with constant 
coefficients. This kind of equations has been well studied in 
the theory of nonlinear  oscillation^.'^ It is impossible to use 
for their solution the usual expansion in powers of the small 
parameter to obtain results applicable for large time inter- 
vals. However, using the averaging method'' we can get an 
equation for the smoothly varying part of the complete solu- 
tion. 

Following Ref. 10 we bring (55) to standard form, i.e., 
to a set of first-order equations in which the right-hand side 
is proportional to the small parameter A. To do this we intro- 

duce instead of the unknown function 7 two new functions y 
and R using the formulac 

q=y-'Izhf sin 2y, (57) 

qt=hQ-'12hft sin 2 7  (58) 

Differentiating (57) and comparing it with (58) we find 

(I-hf cos 2y) yt=hQ, 

Differentiating (58) and substituting it into (55) we get 

We can apply to Eqs. (59) ,  (60) the averaging principle 
according to which we must average the right-hand side over 
the explicitly appearing time. Since 
(fit) = - (f :) = - 1/2 we get to first approximate the 
equations 

with the initial conditions y = vo, R = 0. 
The function y changes slowly with time; the exact solu- 

tion 7 will contain additional small oscillating terms which 
do not affect the systematic change of 7.  

We determine the time dependence of the density on the 
axis and at the equator of the dipole. It follows from (49) 
that near the axisp = p, apart from small vibrational terms, 
i.e., there will be no systematic change in the density on the 
axis. The situation is completely different near the dipole 
equator. For y close to in- we get from the linearized set (61 ) 
y = in- - (;v - 7,)cos At. The density therefore has the 
form 

Hence it follows that there is a slow systematic bunching of 
the plasma towards the dipole equator. 

We consider this process in more detail. We get the 
qualitative behavior of the solutions most simply if we note 
that the set (61) can be written in Hamiltonian form: 

where 

The lines 2Y = const (Fig. 1 ) are the phase curves of Eqs. 
(61 ) . The solutions depend periodically on the time and par- 
ticles with y initially cloes to in- oscillate with the smallest 
period ( T = 2r/A ). When t > k/2A, intersections of the tra- 
jectories of liquid particles, which move along one force 
tube, will occur and the solution becomes incorrect. 

To obtain the density distribution at different times as 
function of the polar angle y we integrated Eqs. (61) nu- 
merically. The results are shown in Fig. 2. For high densities 
it is no longer possible to neglect the gas pressure gradient in 
Eq. ( 1 ) and therefore when t k r/2A we need other methods 
for studying plasma flows near the dipole equator. 

We emphasize the difference in principle between the 
magnetic bunching mechanism described in section 3 (see 
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FIG. 1. Phase plane of the set (61 ). 

also Refs. 1,5, and 6) and the one considered in this section. 
For the latter, in contrast to the former, one does not need 
large systematic changes in the initial magnetic field. 

5. CONCLUSION 

The use of the frozen-in coordinate technique enables 
us to simplify considerably the solution of the MHD equa- 
tions in the strong field approximation: as a result of the 
substitution of (25), (26) the problem reduces to solving an 
ordinary differential equation. For sufficiently simple field 
configurations one can find the parametrization (22), (23) 
and Eq. (27) in explicit form as we demonstrated by the 
example of a dipole field. The application of the method de- 
veloped here to more complicated three-dimensional fields 
can facilitate the numerical calculation procedure. 

The solutions obtained enable us to study the magnetic 
bunching mechanism which so far has been studied by the 
small perturbation method (at initial times) ' v 5  or numerical- 
l ~ . ~  Such a study revealed a new bunching mechanism 
caused by small magnetic field fluctuations and leading to 
the formation of a plasma condensation at the dipole equa- 
tor. 

The mechanism described here may be responsible for 
the formation of quiet protuberances in active regions on the 
Sun. A protuberance is formed in regions with a strong mag- 
netic field and has the shape of a stable dense curtain posi- 
tioned high in the corona along the lines of the inversion of 
the photospheric magnetic field, i.e., at the vertices of mag- 

FIG. 2. Density redistribution with time, caused by the fluctuations of a 
two-dimensional dipole field. 

netic loops." The matter flows continuously downwards 
from the protuberance and if it were not replenished it would 
be lost in the course of days. A protuberance is surrounded 
by regions with a lower density, called coronal holes. If a 
protuberance is destroyed for some reason, in two thirds of 
the cases it appears again after 1-7 days at the same place 
and most often it has the same shape. In that case the mag- 
netic field configuration does not suffer noticeable changes. 
The cause of the magnetic field fluctuations may be nonsta- 
tionary convection on the Sun. 

Taking into account magnetic field fluctuations also 
solves the old and confused problem of the stability of a pro- 
t~berance.""~ The situation here is analogous to the well 
known effect in the theory of nonlinear oscillations when 
vibrations change a statically unstable system into a dynami- 
cally stable one1' (e.g., an inverted pendulum with a vibrat- 
ing point of suspension). In the case when the magnetic field 
is sufficiently strong to dominate the gravitational forces a 
protuberance at the magnetic loop vertices is a dynamically 
stable system. 

APPENDIX 

In the three-dimensional case flows arising when the 
dipole moment changes do not differ qualitatively from the 
two-dimensional ones. In the case of an axisymmetric poloi- 
dal field (H, = 0)  it is convenient to choose as the frozen-in 
coodinates 

E=@(t, r, 0 ) = r  sin OA,(t, r,  0 ) ,  $=cp, 

where @(t,r,O) is the flux function,'*' and A ,  the only non- 
vanishing component of the vector potential. Condition 
(23) will then be satisfied identically. For a dipole magnetic 
field 

m ( t )  sin2 0 
@ ( t ,  r, 0) = 

r 
By analogy with (36), (37) we get 

m (t) sin2 0 
R(t, a, g, $) = {sin 0 cos 9, sin 0 sin g, cos 0 ) ,  

E 

The last equation determines the function 6 = 6(t,a,{). The 
substitution r(t,a,{,$) = R(t,a(t,a,{),{,$) into (21) leads 
to the equation 

sin  6 ( 3  cos2 6+1) ( m 6 , , + 2 m f 0 , )  
+2m6,' cos 6 ( 3  cos2 .(r-1)+2ml, sin' 6 cos 6=0 (A3) 

with the initial conditions 

6 (0, a ,  g )  =6, ( a ,  g )  , m6,  (3  cos' 6,+l) - im,  sin 26=0, 

where S(t,a,{) = 9(t,cr(t,a,{) ,{) [cf. (39)-(46) 1. 
Similar to (48) we get the three-dimensional case an 

expression for the density 

Close to the dipole ( 8 9 1 )  Eq. (A3) takes the form 
(ma2) , ,  = 0. Its solution with the initial conditions (A4) 
will be 9 = 9 0 [ m ( ~ ) / m  ( t )  ] ' I 2  and it follows from (A5) 
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that Eq. (49) remains valid also in the three-dimensional 
case. 

For a linear change of the dipole moment (5 )  one can 
integrate Eq. (A3)  by means of the substitution 

x=sin2 6 ( 3  cos2 6+1)tTl2, 

bringing (A3) to the form 

mx1+4m,~=0. 

The solution has the form 

1 
cos 6 (3 cos' 6+1) 'I' + ~ l n [ 1 / 3 c o s  6f (3 cos2 6+1) '" 1 

1'3 

- bt 4 sin2 6 cos 6 -- + cos 6, (3 COS%,+ I )  '" 
m (t) (3 cos2 6 f l )  '" 

1 + T ln [I" cos 6,+ (3 cos2 6,+ 1) ';'I, 
1'3 (A61 

sin 6 (3 cos2 6+1) '" 

2bt sin 6, (1,2 cos4 6,-3 cos' 6,-1) -- 
m (t) (3 cos2 6,f I )  

On the dipole equator (9 = 9, = in-) the density changes as 
follows 

If the dipole moment fluctuates [see (54) ] the averaged 
equations of the first approximation have the form 

3 sin y cos y 
Q 1 = h [  (1 - cos4 y) - 52' ~ C O S  y(3cos2y-1) 

(3 C O S ~  sin y(3 cosZ y+l)  I 
with initial conditions y = &, R = 0. Here, as in (61),  y is 
the smoothly changing part of the exact solution of (A3) .  
On the dipole axis the density has no systematic changes [see 
(49) 1, but on the equator we get, similar to (62) 

The nature of the density redistribution with time is the same 
as in the planar case (see Fig. 2 ) . 
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