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An effect of the earth's gravitational field on the diffraction of thermal neutrons in an elastically 
curved quartz single crystal has been observed experimentally: As the crystal is bent, the contrast 
of the pendulum pattern decreases more rapidly if the apparatus is oriented in such a way that the 
effective force due to gravity adds with the Kato elastic force. A theoretical description of the 
effect is offered. 

INTRODUCTION In undertaking work in this direction we decided to be- 
In Bragg diffraction by a there is a gin with thegravitational interaction, in particular, by build- 

and unusual amplification effect (see the review by Batter- ing On the begun in Ref. 4. 
man and Cole,' for example): Small changes (within the 
Bragg width he, ) in the angle between the wave vector k,, of 
the incident radiation and the system of reflecting planes 
(i.e., the planes which are near the orientation satisfying the 
Bragg condition A = 2d sin 8, ) alter the propagation direc- 
tions of the rays (Bloch waves) in the crystal over a range 
much greater than the angle 26,. The gain involved here, 7, 
can reach 10"1Oh: 

Here V is the volume of a unit cell of the crystal, F is the 
structure factor of the reflecting planes, and d is the distance 
between these planes. More specifically, in the case which we 
will be discussing below, that of the diffraction of thermal 
neutrons ( A ~ 2 . 1 0 - '  cm) by the 1070 planes of a-quartz 
(F= 8.05.10-'"m, V =  1 12.10-'4 cm7, d = 4.255.10-' 
cm, 88, ~ 0 . 8 "  ), we have 7- 1.2.10" For particles which 
have a charge of some sort (in the case of neutrons, this 
would be a gravitating mass, a magnetic dipole moment, and 
possibly an electric dipole moment) it would be extremely 
tempting to make use of this amplification to study the inter- 
action of the particles with corresponding fields. 

There is also the substantial possibility that an interac- 
tion will occur directly during the diffraction process, i.e., in 
the stage of Bloch waves in the crystal, where the field may 
be very strong. For example, let us consider the diffraction 
which occurs in a crystal of a-quartz, whose symmetry 
group does not contain the inversion operation. The posi- 
tions of the maxima of the neutron density distribution in the 
crystal are determined primarily by a nuclear interaction. If 
the reflecting planes are chosen appropriately, these maxima 
can be put in regions affected by very strong electric fields 
($IE I$), ranging up to 3X 10' V/cm, i.e., ranging up to 
values some lo4 times the fields attainable in the laboratory. 
These fields would correspondingly amplify the effects in a 
search for an electric dipole moment of the neutron.' 

One can add to the possibilities here by introducing the 
elastic curvature of the crystal and thereby changing the 
symmetry of the problem. For example, a new vector-the 
so-called Kato elastic force3-will arise. By varying the di- 
rection (sign) of this force with respect to the force under 
study, one can in principle obtain a new measurable quanti- 
ty. 

1. STATEMENT OF THE PROBLEM 

We consider a plane-parallel plate; (a rectangular par- 
allelepiped; Fig. 1 ) which has been cut from a high-quality 
single crystal of optical a-quartz in such a way that the hkl 
crystallographic planes, whose diffraction is to be used, are 
normal to the large faces and parallel to the lateral faces. The 
hkl planes are slightly deformed (curved) by an elastic cur- 
vature of the plate (in our case, by forces which are concen- 
trated along the "knives" p and pi ) .  A horizontal beam of 
unpolarized thermal neutrons is incident on the crystal. The 
Bragg condition is satisfied for neutrons with a wavelength 
near 2 A. Rays (Bloch waves) corresponding to two modes 
(a andfl)  propagate in the crystal. These two modes span a 
certain area Sn8 and form direct and reflected diffracted 
beams at the exit from the crystal. The measurable beam 
intensity (the measurements are made by detector D) under- 
goes oscillations as the crystal is rotated with respect to the 
incident beam (the angle 8, A is changed): One observes 
a so-called pendulum pattern. 

We need to describe the changes which occur in the 
pendulum pattern as the apparatus as a whole is rotated 
around an axis which coincides with k,,, i.e., as a relative 
change ( a  reversal) is made in the direction of the vector g, 
the acceleration due to gravity. A similar problem for a 
planar (undeformed) crystal was analyzed and solved in 
Ref. 5. We need to generalize that solution to the case of a 
deformed crystal. 

The magnitude of the deformation required in the re- 
flecting planes of the crystal is set by the curvature of the 
orbit of neutrons in a gravitational field with a radius of 
curvature R,, on the order of 1/16 of the earth's radius, i.e., 
400 km. At such small deformations, the diffraction by the 
crystal can clearly be described in the so-called eikonal Kato 
approximation.' In practice, however, it is more convenient 
to use a slightly different formulation of the eikonal approxi- 
mation, as set forth in Ref. 6, among other places. We intro- 
duce a parameter 

which characterizes the deviation from the Bragg condition 
( h  here is the reciprocal-lattice vector of the hkl planes of 
interest, and k,, is the wave vector of the incident radiation). 
In a deformed crystal, the reciprocal-lattice vector is some 
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FIG. 1 .  Schematic diagram of the experiment 

function of the coordinates, h = h( r ) .  In our case, the wave 
vector ko = ko(r) ,  which rotates and changes in modulus as 
the gravitational field acts on the neutrons, is also a function 
of the coordinates. The deformations Ah = h(0)  - h(r)  and 
Ako = ko(0) - ko(r)  are small, so we can ignore (Ah)', 
( Ak,,)', AhAk,,, i.e., a is a linear function of the deforma- 
tions. In principle, the known relationsh for the effective 
Kato force, for the paths traced out by rays in the crystal, 
and for the phase acquired by the reflected beam at the exit 
from the crystal furnish the solution of our problem," in a 
generalized treatment of the parameter a ( r ) :  

Here y and z are the ordinary (dimensional) coordinates 
(Fig. 1) ;  c = tan 8,; m,, = 2Fd /Vis the effective Kato mass 
[see (1 )  regarding the parameters F, d, and V]; L is the 
thickness of the crystal; A and B are the initial and final 
points of a path, at  the entrance and exit faces; the upper 
signs refer to the a mode; and the lower signs refer to the f l  
mode. 

2. ELASTIC DEFORMATIONS AND KATO FORCES 

The forces pp' (Fig. 1 ) create a constant bending mo- 
ment 

(constant in the region between the inner knivespp), where 
b is the width of the plate, and I is the distance between 
neighboring vectors p and p'. The plate is bent cylindrically 
to a radius of curvature7 

where I = bL "12 is the moment of inertia, and a,, is the zz 
component of the elastic-constant tensor. The bending radi- 
us of a plate is measured (by means of the deflection A of a 
cylindrically curved reference surface between inner knives 
pp)  with an optical interferometer (Ref. 8, for example). I t  
was necessary, however, to arrange a bending of the reflect- 
ing planes in the range estimated above which could be var- 
ied and measured in the course of an experiment. This 
range-radii of curvature on the order of 100 km-lies far 
beyond the sensitivity of an optical interferometer, as can 
easily be seen. A solution to this problem was developed on 
the basis of the circumstance that the normal cross sections 
in an anisotropic crystal are generally curves, in contrast 
with those in a isotropic plate. The coefficient which relates 
the radius of curvature of a cross section (the reflecting 
planes) to that of the plate, 

however, which is determined by a combination of the com- 
ponents of the elastic-constant tensor a,., (Ref. 9 ) ,  

can be made extremely small. It can be varied after the se- 
lected crystallographic planes have been brought into coin- 
cidence with normal cross sections of the plate, by rotating 
the cut away from the position corresponding to R,,, - oo, 
through a small angle 4 around the longitudinal axis z, dur- 
ing the fabrication of the plate. In our case we have 
4 = 1.5 + 0.1" and C =  7.8.10-$0 we find R,,,--100 at 
R -- 1 km. The latter values are now amenable to measure- 
ment with an optical interferometer. 

The limited dimensions (length) of the crystals avail- 
able (80 mm in our case) lead to limitations on the value of I 
[29.25 mm in our case; see relation (6 )  1 and thus to fairly 
large values of the concentrated forces I p 1 = I p'l . This cir- 
cumstance seriously complicates the simple strain pattern 
which would have prevailed in the case of bending by mo- 
ments alone: 

where u is the elastic displacement vector, and e, is a unit 
vector along the z axis. 

We solved the problem of incorporating the concentrat- 
ed forces pp (and p'p') in a model of an elastic half-plane 
which was assumed to be isotropic in the calculation of the 
stresses. In polar coordinates we have7 

2 p  cos 0 
0 =-- , ( S ~ = T ~ ~ = O ;  

3t r 

i.e., the stress contour lines are circles (Fig. 1 ), and the mag- 
nitude of the stress cr, at the points on a circle are inversely 
proportional to its diameter. In Cartesian coordinates (y, z )  
(Fig. 1 ), we have 
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where 

and 2a = pp (2 1.5 mm in our case). Using Hooke's law, we 
find the strains: 

We are now considering a plate which is anisotropic, with 
coefficients au  converted from the tabulated values for a- 
quartz (Ref. 9, for example) to our cut by means of the 
standard conversion rules. Using relation (3) ,  or the equiva- 
lent relation expressed in terms of displacements, the Kato 
relation (Ref. 3,111, relation 3) 

2n d2u, 
f ( ~ , z ) = -  d sin 20, 

~ o s ' 0 ~ - - s i n ~ 0 ~ ] .  (13) 
d zz 

and the definitions 

8 u, 
&: = - u, au, au, 

d z ,  E l , = - ,  y,:=-+- 
8 Y d y  d z '  

we find explicit expressions for the Kato forces. Omitting the 
trivial but laborious calculations, we write the results: 

8 p ( L - y )  a+z 
jpl ( Y ,  2 )  = - 

d sin 20B {T [ (a+z)'A,- ( L - Y ) ~ A , I  

where 

The moments M themselves give us [see (9 ) ]  the Kato 
force: 

8p 3nl - 
fnr = - d sin 20, ~3 

Cuss COS' 0,. 

Substituting in our numbers, we find (in units of 
- 8p cos' 8,/d sin 28, = - 4p/dc) 

f p i  ( 2 )  =60.4-10-sz kg-: fp2=1.0.  10-8 kg-,' 

fna=6.8.10-' kg- ' .  (17) 

The most important point is the appearance, when the con- 
centrated forces are taken into account, of a variable force 
f,, (y, z ) ,  which depends on the coordinates y and z. The 
dependence on the coordinate z is essentially linear at the 
small values (z/a 1 ) typical of our problem. This point is 
illustrated, in particular, by relation ( 14'), which was found 

by averaging ( 14) over the coordinate y and by retaining the 
most important terms. The physical origin of this compo- 
nent of the force is understood; put somewhat crudely, the 
reason is the "overstressing" of the cross sections (the re- 
flecting planes) which reproduces circles of a, = const 
(Fig. 1 ) under the influence of the concentrated forces. This 
overhang changes sign halfway between the forces p. The 
componentf,, arises only as a result of the anisotropy (in an 
anisotropic object we would have a coefficient a,, = 0)  and 
is relatively small. We are giving its average value (overy) in 
( 15); it is this average value which we will use below. 

The resultant Kato force due to the elastic deformation 
can be written 

where 

[see endnote 2) 1. Incorporating the concentrated forces pp 
also causes a substantial change in the shape of the reference 
surface and, correspondingly, a change in the relation 
between the measured deflection of this surface, A, and the 
concentrated forces lpl = lp'l which are to be determined. 
This new relation can be derived easily for the problem dis- 
cussed above: 

3. EFFECTIVE FORCE DUE TO GRAVITY; RAY PATHS IN THE 
CRYSTAL; PHASE DIFFERENCE BETWEEN THE 
INTERFERING REFLECTED BEAMS; PENDULUM PATTERN 

The wave vector k ,  in a gravitational field can be writ- 
ten 

mn2 + mn2y 
k .  ( r )  =k.,+k,=ko ( 1  + ----,gr ) 

2n2A2ko 4nzfi%o cos eB 8. 

Here m, is the mass of a neutron, and Ci is Planck's constant. 
The first term in (20) incorporates the change in the modu- 
lus of the vector k ,  (the gravitational "reddening" of the 
neutrons); the second incorporates the change in the direc- 
tion of k ,  due to the appearance of a neutron velocity compo- 
nent as a result of the acceleration g. Expression (2)  for a(y, 
z)  can be written as follows in this case: 

h2 - 2koh sin 0,  
a(y ,z )=  

ko21.' ( Y - Z / C )  k: [ F  ( y - z / c )  1'" 

where 

The particular geometry in Fig. 1 was taken into account in 
(21). 

Calculating& (y, z)  from (3),  we find that the first two 
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terms in (21 ) do not contribute to f, in our case, since the tion of the apparatus (which simply amounts to a change in 
application of the operator a /dz + c- 'a /ay to the function the sign of g in Fig. 1 ) corresponds to the minus sign in (23 ). 
F(y  - z/c) gives us zero. As a result we find The paths z(y) of the a and B rays in the crystal, which 

are described by the differential equation (4) ,  unfortunately 
m 2g mn2g 

f g = - ~  / [ i+2--(y--$)sin~a].  cannot be expressed in quadratures with the complicated 
A2 K AzKZ functional dependence P(y)  calculated above. We thus pre- 

Ignoring the term - m,,'/fi2K =: lo-* in the denominator, fer to replace P(y )  by a value averaged over the crystal 
thickness. After this replacement is made, Eq. (4)  becomes 

we finally find 
linear with constant coefficients and can be solved quite easi- 

fL=-rnn2g/h2K=const, (22) ly: 
d2z c 

where K = 2?rk,,. Along with force ( 18), caused by the elas- -= 

d y 2  
7- [fo(l.t(3z) *!,I 

tic deformation, the effective gravitational force f, (which is no 

constant) forms the complete effective force of our problem: or 

f=fo (l+Pz) f f-. (23) -- dZz AoZz=Ao2Bo, 

The plus sign in front off, corresponds to the situation in 
d y 2  

Fig. 1, in which the bending of the reflecting planes and the where the f , which correspond to the a andBmodes, have 
rotation of k,, in the gravitational field cause additive been incorporated in m (i.e., we have assumed 
changes in the diffraction angle. The situation after the rota- m,, = Im(,m, < O,m, > 0, and where we have introduced 

zo=B, 
(l+a,iB,) sin ( I A ,  I y )  + (l+z,lB,) sin[ I A, ( (L-y) ] - sin( 1 A, I L) 

sin(lA0IL) 

for A ' < 0, i.e., for the B ray in Fig. 1, with m, > O,A, < 0; or 

zo=Bo - (~+z,~Bo)sh(IAaI~)+(l+zilBo)~h[IA,I (L-y)I--sh(IAoIL) 
sh(lA0IL) 

for A ' > 0. Solutions were found under the boundary condi- 
tions 

which require a "creation" of the rays at the point z, at the 
entrance face and their "annihilation" into diffracted beams 
at the point zf at the exit face of the crystal. 

Turning to the calculation of the quantity of direct in- 
terest here, the phase difference between the interfering re- 
flected beams which have passed through the crystal in the 
form of the a or P mode, 

is the Lagrangian, Tis the kinetic energy, and Uis the poten- 
tial energy. Since a variation of the action (phase) (5 )  leads 
to equations of motion (24) with force (23), the potential 
energy corresponding to this force in (27), 

agrees with the potential term in (5 )  to within an inconse- 
quential second derivative with respect toy.  

Using (26), we thus find the following result from the 
conservation law: 

we note that the replacement B(y) -8 is equivalent to the 
introduction of an energy conservation law T +  U =  
E - const in equation (4),  if we think of this equation as an 
analog of the equation of motion of a particle of mass m/c in 
a time y - t .  In this case, expression ( 5) for the phase can be 
rewritten as 

I. 

I p ( ~ . ~ ) = ~ ( ~ . ~ ) =  J ~ d g ,  (27) 
0 

where 

As a result, allowing for the different signs of the masses m 
for the a and B modes, we find 

Finally, we can write an explicit expression for a char- 
acteristic which can be observed experimentally: the behav- 
ior of the intensity of the reflected beam, measured by a de- 
tector, as a function of the neutron wavelength II to which 
the instrument is tuned. This expression is 
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In this case the wave function of a neutron is the reflected 
beam is a superposition of the waves which have passed 
through the crystal in the form of a and B modes: 

YaSB ( 5 )  =C,,B exp [-P(~~,,,-x)~l EXP [i(Khx+~u.,,)l (30) 

(X is the coordinate along the reflected beam). In other 
words, it is expressed in terms of wave packets (or  trains) of 
Gaussian shape which are filled with a "carrier" of wave 
vector K ,  = 2?r/A. The difference between the positions of 
the centers of the trains is x,, - x , ~  = Ap,,/K,. The pa- 
rameter P i s  determined by the total relative width at half- 
maximum (p  = AA, ,,/A = 1/280 in our case) of the spec- 
tral "line" selected by the diffractometer. The shape of this 
"line" is also assumed to be Gaussian: 

The exponential factor in (29) thus reflects the degree of 
overlap of the interfering trains. The cosine which is deter- 
mined by ApaP (zi,zf) describes the pendulum pattern. The 
integrations incorporate the finite widths of the entrance slit 
(2z,, = 0.8 mm) and theexit slit (2zh = 0.8 mm)  (Fig. 1).  

4. EXPERIMENTAL APPARATUS, PROCEDURE, AND 
RESULTS 

A necessary condition for observing effects of the dy- 
namic theory of diffraction, on which the entire discussion is 
based, is that the single crystal be of high quality. As a quan- 
titative characteristic of the quality required we can use the 
condition 

where w, is the "mosaicity" of the crystal: a measure of the 
width of the diffraction line and the integral reflection coeffi- 
cient in the well-known model of an ideally mosaic crystal. 
In practice, the parameter w, can be measured in the diffrac- 
tion of sufficiently hard y radiation. In our case, a selection 
of single crystals on the basis of the parameter w, was car- 
ried out with the help of a y diffractometer at the y line at 412 
keV (Ref. 10). As a result of these measurements, it was 
found possible to prepare a plate of the necessary orientation 
with dimensions of 80 x 48 X 19.99 mm, with a w ,  value in 
the interval 0.1-0.2" in the central part of the plate. The 
orientation of the cut was set during the preparation. The 
final position of the reflecting planes (parallel to the lateral 
faces of the parallelepiped) and the rotation angle 4 = 1.5", 
which determines f, (see the discussion above), were 
checked on an x-ray diffractometer by the Bragg method. 
They were found to satisfy the requirements to within an 
error on the order of an arc minute. 

The ends of the crystal ( to  a depth 1 = 29.25 mm from 
each side) were squeezed between plane bronze mirrors. A 
lower pair of mirrors was held fixed. A bending force was 
applied to an upper pair by means of a lever arm and a micro- 
meter screw. As a result, forces distributed correspondingly 

along the corners of the mirrors (p )  and the edges of the 
plate (p') were applied to the crystal. The exposed concave 
surface (pp in Fig. 1 ) was used as one of the mirrors of an 
optical (laser) interferometer. The second mirror was a 
high-quality plane mirror, which was inclined at a small an- 
gle with respect to the generatrix of the cylindrical surface of 
the crystal which was the object of the measurements (the 
reference surface). A pattern of interference fringes arises; 
the fringes reproduce the shape of the reference surface in 
enlarged scale [see relation ( 19),  for example]. The deflec- 
tion of the interference fringes 6, measured after photogra- 
phy, makes it possible to determine the unknown deflection 
A : 

[H is the distance between neighboring (similar) interfer- 
ence fringes on the photograph, and A,,,, = 0.63 p m  is the 
wavelength of the light from the laser]. From relation (19) 
we also find the force I p 1 = I p' 1 .  

We used a neutron beam from the horizontal channel of 
a VVR-M reactor, which was formed by a polarizing neu- 
tron duct3' in the channel and a single-slit collimator. On the 
crystal the beam produced a spot with dimensions of 30 mm 
(the horizontal dimension) and 0.8 mm. Figure 2 shows 
some typical experimental curves of the pendulum pattern. 
The intensity of the reflected beam (the number of counts at 
detector D in Fig. 1 over 500 s )  is plotted along the ordinate 
axis; plotted along the abscissa axis is the number L of turns 
of the drive which sets the diffraction angle 8,, i.e., the 
wavelength A (which increases toward the right along the 
axis) to which the instrument is tuned ( 1 turn corresponds 
to 8", i.e., to a wavelength increment of 0.0192 A). As the 
angle 8, is changed, the detector moves, tracking the angle 
28,. We recorded and compared curves in the lower posi- 

FIG. 2. Examples of the pendulum patterns observed experimentally for 
the upper and lower positions of the instrument. (The background levels 
are 200 and 135 counts over 500". respectively.) 
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FIG. 3. Theoretical behavior of two quantities as functions of the extent of 
curvature of the crystal. a-Phase difference between the pendulum co- 
sine waves; b-contrast of the pendulum cosine waves in the lower 
( A ,  + f, ) and upper ( A ,  -f, ) positions of the instrument. 

tion of the instrument (with the detector at the bottom) and 
in the upper position as the instrument as a whole was rotat- 
ed 180" around an axis coinciding with the direct beam. The 
position and intensity of the direct beam were monitored by 
monitor M. The adjustment which was carried out brought 
the rotation axis of the instrument into coincidence with the 
center of gravity of the beam (in the vertical plane) with an 
error no worse than 0.1 mm. For each pair of pendulum 
curves corresponding to a given bending of the crystal (the 
bending was calibrated with the help of an optical interfer- 
ometer), we found the phase difference 

(A,,* and /I,,* are the positions of the equal-phase points on 
the pendulum curves for the lower and upper positions of the 
instruments, respectively; Ad, is the period of the pendulum 
cosine waves). We also determined the contrast 

where I , , , ~  ,,,,,,,,,, is the intensity at the maximum (minimum) 
of the oscillations minus the background, which was deter- 
mined by displacing the detector from the 20,, position. The 
dashed lines in Fig. 3, a and b, show the results which we 
initially expected, as calculated from relations of the form 
(281, (291, (34).  and (35)-the ordinates-and ( 18)-the 
abscissas. Specifically, we intended to trace the gravitational 
effect 6q7 / 2 ~ ,  which increases linearly with the curvature of 
the crystal (with the forcef;,) up to values Sy /27;= 1. 

The first experimental results were discouraging: The 
pendulum pattern, which could reliably be observed on a 
plane crystal or a crystal curved very slightly, inevitably dis- 
appeared (the contrast dropped to zero) as the curvature 
was increased. The gravitational phase difference S p  which 
could barely be detected before (which was nearly within the 
error) also returned to zero. On the other hand, we noted 
that as the curvature of the crystal was increased the con- 
trast would disappear first when the instrument was in the 
lower position (the casef;, + f, in the situation in Fig. 1) .  
Figure 2 shows one example of this situation. There was the 

possibility that this was some unusual manifestation of a 
gravitational effect. 

In a search for an explanation we carried out a more 
detailed analysis of the conditions prevailing during the cur- 
vature of our crystal (Sec. 2 ) ,  and we examined the role 
played by the concentrated forces pp'. The most important 
result of this analysis was the observation of a forcef,, ( y ,  z )  
[or x,, (z)  ] which depends on the coordinate z-relations 
( 14) and ( 14') and, correspondingly, a parameter f i  [see 
( 18) 1 ,  which we had originally ignored. (The dashed lines 
in Fig. 3 were calculated fo rB= 0 ) .  We also varied the cali- 
bration of the forces pp' through the deflection of the refer- 
ence surface, i.e., the&, scale along the abscissa axis for the 
experimental data. [During bending by pure moments, the 
second term in square brackets in (19) is absent.] The re- 
sults of the calculations for 8 = 7.8 cm- ' [see ( 18) ] are 
shown by the solid lines in Fig. 3. We recall that although the 
calculations are approximate, they do not contain any adjus- 
table parameters. Figure 4 summarizes the results of series of 
experiments. The horizontal error bar on one of the points 
shows our estimate of the error in the calibration of the ex- 
perimental abscissa scale in terms of A ( -- + 10% ) .  

Comparing Figs. 3b and 4, we conclude that the theo- 
retical and experimental curves definitely do agree qualita- 
t i ~ e l ~ . ~ '  At a quantitative level, there is a completely satisfac- 
tory agreement (=: 10%) in terms of the scale along the 
abscissa axis (the abscissas corresponding to a 50% decrease 
in the contrast are 14.1 and 12.9, respectively). This agree- 
ment is evidence that the description of the reference sur- 
face, the force calibration procedure, the calculations, and 
the overall calibration of the Kato forces are all quite good. 
The theory correctly reproduces the absolute value and gen- 
eral behavior of the contrast with increasing deformation. 
As would be expected on the basis of general considerations, 
the effect vanishes when the crystal is straightened out. 
However, the gravitational effect-the difference between 
the contrasts in the positions &, -& and f;, + f,-looks 
slightly larger, on the average, in the experiments (by a fac- 
tor of 1.8 + 0.6, where 0.6 is the mean square error of the 
experimental result) than that predicted by the theory. The 
mean experimental value found through an approximation 
by straight lines (the dashed curves in Fig. 4 )  is 6 -+ 2%. The 
maximum theoretical value is AK = 3.6%. The mean theo- 
retical value, corresponding to the experimental mean value, 

FIG. 4. Experimental results on the contrast of the pendulum patterns 
versus the curvature of the crystal. @-Upper position of the instrument; 
0-lower position. The distance between arrows corresponds to 6 t 2%. 
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is5' 3.3%. If we seek the reason for the possible discrepancy 
in the theory, we would estimate that the crudest of the ap- 
proximations which we used is ignoring the presence of the 
rear face of the plate (the model of half-plane) in calculat- 
ing the effect of the concentrated forces6' pp. 

CONCLUSION 

Let us summarize the progress which has been made in 
this study. 

1. We have demonstrated that it is possible to select 
samples of a-quartz (the only material of which we are 
aware which is available as a high-quality single crystal and 
whose point group lacks a center of symmetry) which are of 
quality high enough to allow the observation of a pendulum 
pattern during thermal-neutron diffraction. This is true even 
when the elastic deformation of the single crystal is small. 
This circumstance raises the possibility of a future experi- 
mental study of the interaction of a neutron with strong elec- 
tric fields (up to 3.10'). 

2. We have shown that the dynamic theory of diffrac- 
tion by slightly deformed single crystals, in its present form, 
can also be applied directly to the case in which external 
forces (more specifically, a gravitational force) are applied 
to a particle being diffracted. 

We have pointed out that a deformation (bending) of a 
crystal will, by changing the symmetry of the problem, make 
it possible in principle to see effects which do not occur in a 
planar (undeformed) crystal. 

3. We have experimentally observed and theoretically 
described a new effect: an effect of the force of gravity on the 
diffraction of thermal neutrons in an elastically curved sin- 
gle crystal. 
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"Since the deformations, the effective forces, and the "velocities" are 
small [(dz/cdy)'< I ] ,  we are using the nonrelativistic version of the 
equation of motion, (4) .  

"The forces p'p' have also been taken into account by replacing 2a = 21.5 
mm with 2a = 80 mrn and L - y-y in (14).  Their contribution in- 
creasesflby = 7%. The effect of p'p' on f,, and the reference surface can 
be ignored. 

' T h e  polarization of the neutrons is unimportant in this experiment. We 
tested this point by recording certain points with a filter in the beam 
which definitely depolarized the neutrons. 

"In the region in which the gravitational effect is approximately constant 
in Fig. 4 we carried out a control experiment, in which we rotated the 
crystal with the bending apparatus 180" around they axis (Fig. 1 ). The 
gravitational effect-the difference between the contrast values in the 
upper and lower positions of the instrument-measured by the standard 
procedure, changed sign after this rotation, as expected. 

"We carried out calculations on the trivial gravitational effect due to me- 
chanical deformations from the change in the direction of the force of 
gravity during the rotation of the instrument. We estimate this trivial 
effect to be -- 1/25 of the effest of interest here (i.e., insignificant). 

h'The replacement of B(y) by 0 [relation ( 18) ] is of minor importance. 
Our numerical calculations showed that the particular functional depen- 
dencefl(y) has essentially no effect on the results, provided that p i s  kept 
the same. 
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