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We examine possible solutions of the equations of quantum cosmology for the wave function of 
the universe. One minisuperspace model is employed to analyze the generality of inflationary 
regimes, and the other is used to analyze the quantum creation of the universe. We show that there 
exists a large class of wave functions corresponding to classical solutions with prolonged inflation 
which at the same time can be interpreted as wave functions describing the quantum creation of 
the universe. 

1. INTRODUCTION 

The basic requirements for a complete cosmological 
theory were formulated in Ref. 1. In our opinion, such a 
theory should describe both the present state of the universe 
and its quantum creation. 

The idea of a quantum origin of the universe seems to be 
a mandatory feature of one recently proposed cosmological 
scenario, the scenario based on a model incorporating eter- 
nal inflation.*~"ithout going into detail, we wish to empha- 
size that although the possibility of the quantum creation of 
the universe may not in fact be mandatory, it has not been 
ruled out within the context of this new theory. 

In quantum cosmology, the past, present, and future of 
the universe are described by a wave function satisfying the 
Wheeler-De Witt ( W D )  equation. In  a quasiclassical re- 
gion, the quantum treatment provides only minor correc- 
tions to the equations of classical cosmology. But the cre- 
ation of the universe, related as it is to tunneling and decay, 
can only be described by an essentially quantum cosmology. 

One well known feature of the equations of classical 
cosmology is that they require initial conditions of one kind 
or another. Rather than eliminating the uncertainties of 
classical cosmology, the equations of quantum cosmology 
carry them to a new level-that of choosing boundary condi- 
tions for the wave function. A boundary condition that is 
frequently chosen is the one that leads to the well known 
Hartle-Hawking ( H H )  wave f ~ n c t i o n . ~ - ~  That wave func- 
tion possesses a number of attractive features, but it is 
neither unique nor obligatory. Furthermore, it seems to us 
that such phenomena as quantum tunneling and decay can- 
not be adequately handled by the H H  function. At the same 
time, it would be desirable to construct just such a wave 
function, which on the one hand is consistent with present- 
day cosmological observations (or  at least gives a reasonably 
long period of inflation), and on the other describes the 
quantum creation of the universe. A comparison of theoreti- 
cal predictions with the cosmological data for the present 
epoch (for example, the spectrum of gravitational-wave per- 
turbations) might even enable one (if the inflationary period 
is not too long) to either confirm or refute the very hypothe- 
sis of the quantum creation of the universe experimentally.' 

In the present paper, we examine the role of boundary 
conditions for the wave function in two simple minisuper- 
space models. Both can be treated as limiting cases of one 
basic model, that of a massive scalar field in a closed 
(K = + 1 ) Friedmann universe. In other words, we consid- 
er models with two degrees of freedom: the scale factor R ( t )  

of a uniform, isotropic Friedmann-Robertson-Walker 
(FRW) metric, and the homogeneous scalar field p ( t )  with 
mass M. With the appropriate changes of variable 

the W D  equation for the basic model takes the form5 

(1.1) 
The preferred choice of operator ordering factor in this 
equation is p = 1. 

In the first limiting case, we neglect the term Ka2 
(which accounts for spatial curvature) in ( 1.1 ) . The result- 
ing equation can be viewed as a flat ( K  = 0) but topological- 
ly nontrivial FRW model; an example would be a flat torus 
with finite volume (see Refs. 5 and 8 for discussions of such a 
model ) . 

For the second limiting case, we consider a scalar field 
that varies slowly in time. To this end, we neglect the square 
of the a-field momentum in ( 1.1 ), i.e., the term a-'d '/a@', 
and replace m2Q2 by H 2. The resulting equation can be con- 
sidered exact for a closed universe with cosmological con- 
stant A = (9n-/2G)H (in this instance, the preferred value 
for the ordering factor is p = - 1/2). 

Analysis of these two limiting cases enables one to pro- 
duce a simplified but detailed description of two important 
stages in the possible evolution of the universe, namely the 
period of inflation and the quantum creation process. In the 
first, we will show that a broad class of wave functions (and 
not just H H  functions) corresponds to the classical solution, 
given a long enough inflationary period. In the second, we 
will show that in some sense the H F  function is close to 
unique. I t  gives a coefficient D > 1 ( to  be defined below) for 
the decay probability, which we believe casts doubt on the 
interpretation of the H H  function as a description of the 
quantum creation of the universe. But small perturbations of 
the Hawking boundary condition give a set of wave func- 
tions with D <  1. I t  should be emphasized1' that the over- 
whelming majority of wave functions corresponds to D < 1, 
rather than D > 1. 

Thus, we now raise the issue of the systematic study of 
all possible wave functions. It is possible that along the way, 
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we will find the concept of a "secondary" wave function in 
the space of all possible wave functions to be a useful one. 

Recall that in the classical regime, the model in ques- 
tion is homogeneous-the scale factor a and the scalar field 
@ are functions of time only. But it is well known that inho- 
mogeneities play a very important role. Zero-point quantum 
fluctuations are amplified during the inflationary stage, and 
they lead to various kinds of inhomogeneities. Perturbations 
with wavelengths less than the current Hubble radius r, 
may be responsible for producing the observed structure of 
the universe. Perturbations with wavelengths longer than r, 
can make the universe significantly irregular on scales much 
greater than the Hubble radius r,. One pertinent question 
has to do with the range of applicability of the simplest mini- 
superspace models. 

Let us consider the "dangerous" long-wave perturba- 
tions, A >  r,. We now show that the minisuperspace ap- 
proach employed in the present paper is very widely applica- 
ble, since long-wavelength perturbations are not 
immediately enhanced. The mean squared amplitude of met- 
ric fluctuations produced during the inflationary stage is giv- 
en by the integral of a "flat" spectrum: 

where vH = c/r,, and H is the Hubble parameter (in Planck 
units) during the inflationary stage. The most important 
contribution to the integral ( 1.2) comes from law frequen- 
cies, Y,, 4 Y,, . The quantity ( h  2, attains values of order unity 
if the integration is carried out down to low enough frequen- 
cies Y,  , corresponding to wavelengths A, z r ,  exp( 1/H * )  . 
(For H z  lo-', we get A, z r ,  exp(lO1').) Starting with 
(1.2), we can also estimate the duration of the inflationary 
period At = t, - t ,  needed to obtain such a broad spectrum. 
Since 

the requirement that ( h  ') z 1 leads to the condition 
#At=# - 2 ,  We thereby obtain for At a much longer period 
of inflation, H A t z 7 0 ,  than the minimum necessary, This 
implies that minisuperspace models are widely applicable, 

The possible inhomogeneity of the universe on scales 
greater than r,, and the constraints imposed on this possible 
inhomogeneity by the observed isotropy of the microwave 
background radiation, A T / T <  were investigated in 
Ref. 12 (see also Refs. 13 and 14) before the idea of inflation 
came upon the scene. It was shown there that larger pertur- 
bations, of order unity, were consistent with the A T / T  data 
only if the typical wavelengths of these perturbations were 
large enough; specifically, they should satisfy A 2 102rH. 

The model of a highly inhomogeneous universe consist- 
ing of a collection of almost noninteracting parts has become 
a popular topic of recent r e ~ e a r c h . ~ , ~  The assertion is that 
individual regions in which inflation has come to an end are 
essentially isolated from a huge inflationary volume filled 
with a fluctuating scalar field whose amplitude takes on very 
high values. The proponents of this view stress that within 
the scope of such a hypothesis, one can manage without any 
assumptions about the quantum origin of the universe. In 
our opinion, this alternative approach more likely indicates 

that a minisuperspace model can be used only as a so-called 
intermediate asymptote, while in general a full superspace 
treatment is required. As a first step, we can examine a mini- 
superspace in which only one or a few degrees of freedom 
characterizing the inhomogeneities are taken into account. 
We hope to return to this problem in the future. 

With these prefatory remarks, let us proceed to a de- 
tailed study of these two minisuperspace models. 

2. FLAT MODEL (K=O) WITH A MASSIVE SCALAR FIELD 

Neglecting the KaZ term in Eq. ( 1.1 ), we obtain the WD 
equation 

i a  a l a z  
{-a a aa a- da --7 a' ad, f m 2 Q 2 a V  1 (a, Q)=O, p=-kl. 

In a K = 0 model there is no potential barrier separating 
classically distinct regions. We will therefore investigate Eq. 
(2.1 ) with the aim of studying inflationary and noninflation- 
ary solutions, and not in order to analyze the problem of 
creation. The problem of quantum creation (by tunneling or 
decay) will be examined in the next section. Reference 15 
contains a detailed analysis of all classical solutions of the 
present model (see also Refs. 16-18). 

In the quasiclassical approximation, the wave function 
V ( a ,  @) is of the form 

Y ( a ,  @ ) = e s p  [iS(a,  @ ) + i o ( a ,  @)+. . .], (2.2) 

where S and a satisfy the equations 

Equation (2.3) is the Hamiltonian-Jacabi equation far the 
action S. A real solution of (2,3 1, which describes the classi- 
cal dynamics of the model, can be represented in the form 

An unimportant additive constant has been omitted here, 
The function f (9) satisfies the ordinary differential equa- 
tion 

The classical equations of motion are obtained from 
(2.5 ) and the system Lagrangian 

in the usual way: 

This then gives the relations 
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The prime here signifies differentiation with respect to @, 
and the dot denotes differentiation with respect to time. We 
have used the dimensionless time t (i.e., the time expressed 
in Planck units), which is related to the physical time T b y  

We make use of the definitions (2.7), and assume that 
we have expansion; i.e., we have f > 0, S < 0 corresponding to 
a > 0. But the functions f < 0, S >  0 can also describe expan- 
sion if we make the change of variable t-. - t in Eq. (2.7). 
Differentiating (2.7) with respect to t and using (2.6), we 
can obtain the equations of motion in the usual form: 

These equations of motion are invariant under the 
transformation t- - t. The three equations of motion can 
be combined to give one, in which the time parameter t does 
not appear: 

(For the sake of convenience, we use the variable a = In a 
from here on.) This equation completely describes the clas- 
sical trajectories. The direction of motion is determined by 
the choice of direction of time. 

All trajectories of the model (2.8) in the (@, @ )  phase 
plane have previously been found," and it has been shown 
that in the case of expansion (i.e., a > O), the trajectories all 
start out from two ejecting nodes. Apart from these trajec- 
tories, there are also two attracting separatrices that origi- 
nate at two saddle points. The solutions of Eq. (2.6) have the 
following asymptotic behavior for trajectories that start out 
from the nodes: 

and for the separatrices 

fx*'I3m@, 9m2>I. 

Different values of C select different trajectories leaving the 
nodes. Consequently, the choice of a definite solution of Eq. 
(2.6) gives a definite function S a n d  a definite classical tra- 
jectory. 

We will distinguish different solutions of Eq. (2.6) by 
the subscript n, which varies continuously and takes on two 
values, corresponding to the separatrices. By virtue of the 
linearity of the W D  equation, we can symbolically write a 
more general solution of Eq. (2.1) to lowest order in the 
form 

* = erp ( i~ .+ i~ . ) ,  S.=--eap(3a) f., d.=eonst. 

One important property of the classical equations for the 
case in which K = 0 is their scale-invariance; that is, the 
function a ( t )  itself does not appear in Eq. (2.8). This prop- 
erty has its counterpart in the lowest-order approximation to 
the quantum version of the theory. In fact, every quasiclassi- 
cal wavefunction Y,, = exp(iS, ) can be put into correspon- 
dence with a family of normals to the surfaces S, = const. 
These surfaces are constructed in the minisuperspace 
( a ,  @), with metric tensor 

Gw=e-" diag(-1, + I ) ,  p, v=I ,  2, 
xl=a,  x"@. (2.9) 

The vector normal N,, to S, = const can be obtained by 
acting on Y, = exp(iS, ) with the momentum operators 7i, 
and 7j* : 

In  the case at hand we have K = 0, and the family of normals 
and associated tangent vectors N "  = 3J; N *  = f '  are inde- 
pendent of a ,  and transform back into themselves under 
a +a + const. 

Since the vector (N", N*)  points in the same direction 
as the momentum vector (+, T'@ ), the normals trace out 
classical trajectories in ( a ,  @) space. Therefore, invariance 
of the family of normals under the displacement 
a-a + const signifies that for a given S,, , the curves traced 
out by the normals are all copies of the same classical solu- 
tion in the (@, @) plane. This is a manifestation of the fact 
that the classical solutions are independent of a ( t ) .  

Integrating the relation da/d@ = NU/N* = - 3f/f1 
along every classical path in the ( a ,  @ )  plane, we obtain 
z ( a ,  @) = const, where z = a  + 3JCf/f ')d@. 

It will also prove useful to introduce the expression for 
the square of the normal vector, 

For the solutions f=. Ce "*, the normal vector becomes iso- 
tropic, with N k O .  

Our most immediate problem is to construct a quantity 
that is conserved along every classical trajectory in the 
(@, @ )  phase space. We might be able to integrate the quan- 
tity thus constructed as a relative weight along a given classi- 
cal trajectory, thereby comparing the extensibility of the in- 
flationary and non-inflationary solutions. With this in mind, 
let us return to Eq. (2.4). The general solution for g,, can be 
expressed in terms of the function fj, (@): 

IS, ( a ,  @) = (i/2) (3a+ln f,') +B, (z)  , 
whereB, is an arbitrary function of its argument z, satisfying 
the condition that Y, be quasiclassical. Taking advantage of 
this arbitrariness, 5, (z) can incorporate the constant A,, 
from the solution of ( 2 . 5 ) ,  giving B,, (z)  = B,, (z)  + A,, . In 
what follows we shall assume that this has been done. 

In the present approximation, the general solution of 
the W D  equation can be written in the form 

For each Y, , we define a current: 

For every n, the current jy' (the superscript n will be omit- 
ted where this will not be confusing) possesses two impor- 
tant properties. First, it satisfies the continuity equation 
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which is fully covariant in ( a ,  @) space; using (2.9), this 
equation reduces to 

Second, in ( a ,  @) space, curves of current j p  are identical to 
the normal curves N p  to the surface S, = const. The compo- 
nents of the current j, take the values 

f 
ja=3 - x' (z)  , f' 

I f ' l  io =-x2(z) ,  I f  I 
where ~ ( z )  = exp( - Im B(z) ). 

Let us now write down the integral form of Eq. (2.11 ): 

The region of integration Win  ( a ,  @) space is chosen as 
follows. Its boundary d W consists of the two current curves 
z, = const, z, = const and the two straight lines @ = @, and 
@ = @, (see Fig. 1 ). The lower current curve corresponds to 
z = z, ,  and the upper to z = z, = z ,  + S. Proceeding then to 
the limit 6-0, we find from (2.12) that we can obtain a Q 
characterizing any given solution Y,, and any given current 
curve z = const: 

f' 
= io (zi ,  =xZ(z)-. 

I f ' l  
Restoring the subscript n, we may write more accurately 

fn' 
Q n = x n 2  (2) - 

I f n ' I  

The number Q,, is conserved along any current curve 
z (n )  = const. The particular value of Q,, is determined by 
the chosen boundary conditions for the wave function, and 
specifically by the function x,, (z). 

Recall that to lowest order, i.e., when Y,, = exp(iS,, ), 
the curves z ( n )  = const are all copies of a single phase tra- 
jectory in (@, @) phase space. Since Q,, depends in general 
on z, the curves z ( n )  = const now become different, carry- 
ing as they do different values of Q,, . This is consistent with 
the fact that even to only the next-highest order, i.e., when 
Y,, = exp[i(S,, + u, ) 1 ,  the scale factor a acquires a sizable 
absolute value. Compactification of a flat three-dimensional 
space, as by reduction to a flat torus, introduces length scales 
that are related to a. These quantities do not change the local 
classical evolution of the system [Eq. (2.8) remains the 
same], but they do change the absolute value of the action, 
and they have an effect on quantum corrections. 

Over a limited class of boundary conditions for the 
wave function Y,, , namely when one assumes that X, is inde- 
pendent of z (but not of n!), all trajectories z = const for 
given n take on the same value Q,, . In this special case, which 

FIG. 1. Region of integration Win (a, @) space. 

we will consider below, a certain value of Q, is ascribed to a 
given phase trajectory in the (@, @ )  plane, and is conserved 
along that trajectory. The number Q, can therefore be speci- 
fied at any point on the trajectory, in particular where it 
crosses a quantum boundary given by the condition 
Q2 + m2@' =: 1. l 5  I t  was precisely on the quantum boundary 
that the inflationary and noninflationary solutions were 
equated in Ref. 15, where it was assumed that all points on 
the quantum boundary were equally likely. 

The assertion that Q, is conserved along an entire clas- 
sical trajectory in the (@, @) plane must be refined if either 
of the functions f, (@) is multiple-valued. Each branch de- 
scribes its own section of a classical trajectory between two 
adjacent turning points CfA = 0 ) ,  or in other words between 
neighboring points at which @ = 0. We assume that Y, in- 
corporates all branches of the function f, needed to specify 
all oscillatory modes of the field @ and any trajectory. 

Up to this point, we have only considered individual 
functions Y,. We now embark on a discussion of an arbi- 
trary wave function 

n 

This can be represented in the form 

n ' 
where the functions Y,. specify phase trajectories with a fair- 
ly long inflationary period (as in Ref. 15, we call such trajec- 
tories favorable), and the functions Y,.. specify all the rest 
(unfavorable). There are infinitely many phase trajectories 
overall, but we will start out by discussing a finite number N 
(although N can be as large as we please). In Eq. (2.13), 
there will then be N '  terms, O(N1<N, describing favorable 
trajectories, and N - N '  describing unfavorable ones. 

We can justify the consideration of a finite number of 
classical trajectories in the following manner. Assume that 
for some reason (related, perhaps, to the fairly low accuracy 
of astrophysical observations) the difference between near- 
by trajectories is not too important for our purposes. Then 
an entire bundle of our neighboring trajectories (where the 
thickness of the bundle depends on the accuracy of the theo- 
retical predictions or experimental results) can be replaced 
by a single trajectory from that bundle-the mean, for exam- 
ple. Since each bundle has a finite thickness, we ultimately 
obtain a finite number of trajectories characterizing the 
problem at hand. 
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Since both favorable and unfavorable trajectories con- 
tribute to Eq. (2.13), every wave function can be character- 
ized by a number that expresses the "degree of inflation" of 
that function, and that number should satisfy the following 
requirements: 

a )  O<P< 1, with P = 1 if Y contains only favorable solu- 
tions, and P = 0 if it contains only unfavorable ones; 

b)  Pis  the same for wave functions differing only by an 
overall normalization factor. A reasonable definition of P is 

It can readily be shown that this expression satisfies both of 
the foregoing requirements. 

So far we have been discussing the degree of inflation of 
some single wave function, but of course we do not know 
which of the functions (2.13) will actually be realized. We 
may therefore ask what the mean value of Pis when the wave 
function is chosen randomly. Answering this question 
would enable us to assess the extent to which inflation is a 
typical property of wave functions of the universe. 

In order to do so, we introduce the solution space of the 
WD equation. Recall that we are considering those wave 
functions Y that describe an ensemble of data from N classi- 
cal trajectories. Every point in this space is characterized by 
coordinates { X , ) ,  where by virtue of requirement (b)  above, 
the value of P is independent of the radius of the sphere 

N 

If we take a unit sphere for the sake of definiteness and as- 
sume that there are no preferred points on the sphere, we 
obtain 

N' 

for the mean value of P, where dw  is an element of area on the 
sphere S defined by 

Y 

n- l  

Thus, if P is chosen in the form (2.14) and we assume 
equal likelihood for all points on S, the mean degree of infla- 
tion is simply the ratio of the number of favorable trajector- 
ies to the total number of trajectories. Trajectories can be 
chosen in the following way: partition the quantum bound- 
ary in (@, 6) phase space into N individual sections, and 
replace each bundle of trajectories traversing a given section 
by a single one. Then for sufficiently large N, 

P = l - b  (mlm,), 

where b = const is of order unity; in other words, we revert 
to the result obtained in Ref. 15. 

As a second example, let us now consider a wave func- 
tion analogous to the Hartle-Hawking function. The HH 
function itself was constructed for the case K = + 1. Neg- 
lecting terms with spatial curvature, we obtain 

exp ( -3d l2 )  m y - -.---. 
m112 [ e x p ( - i - , ~ e ~ a ) + e x ~ ( + i " ~ e ' p ) ] .  3 

for K = 0. The function (2.16) differs somewhat from the 
corresponding expression in Ref. 6, since for the latter it was 
assumed that @ = const. Both terms in (2.16) describes se- 
paratrices. In the present instance, we immediately obtain 
P = 1, since we have chosen a single unique (favorable) tra- 
jectory. However, we know that many other trajectories ex- 
ist that are not separatrices but that are perfectly suitable 
from the standpoint of the duration of the inflationary peri- 
od. Thus, in that regard, the HH function is no better than 
many others. 

We can generalize the preceding equations to the case of 
arbitrary P and to a treatment of the continuum of classical 
trajectories as follows. We replace the sum over n and n' by 
integration over the continuous versions of these param- 
eters. The solution space then becomes infinite-dimensional, 
and the sets {n) and {n'} take on the cardinality of the con- 
tinuum. A value of P is specified at every point in this space, 
and requirement (b)  separates out the set of surfaces on 
which the numbers Pa re  distributed in the same way. For 
definiteness, we choose one of these surfaces and specify a 
metric thereon. The expression for Pon  this surface is a con- 
tinuous integral, instead of the integral (2.15). The specifi- 
cation of P in one form or another reflects the extent of our 
information about the correspondence between the theoreti- 
cal predictions for some choice of Y and the observational 
data for the actual universe. 

In the present section, we have examined the case 
K = 0. However, difficulties will ensue if one attempts to 
carry out this procedure for computing Q, when K #O, due 
to a lack of shift invariance in the a-coordinate. Rather than 
the function f (a), one then has a function of two variables 
(a, a). But these may well be merely technical difficulties. 

For K $0, the modulus of the current 1 jl takes on the role of 
the charge of the classical trajectory, and is a function of the 
boundary conditions. 

3. CLOSED MODEL WITH A A TERM 

Neglecting the momentum of the @ field, we may write 
Eq. ( 1.1 ) in the simplified form 

I d  d 
a p  - - az+H'ah} Y ( a )  =o, {yda d a  

where 

and the value of p has yet to be fixed. As will be explained 
below, this model is a suitable one for discussing the quan- 
tum tunneling process. 

It can be shown that if Y ( a )  is a solution ofEq. (3.1 ) for 
some p, then @(a )  = a '  - P  Y ( a )  is a solution of the same 
equation f o r j  = 2 - p. The present authors have previously 
found exact solutions forp = 3 andp = - 1 (the latter was 
first discussed in Ref. 20). Forp = - 1, the general solution 
of (3.1 ) takes the form 

(-u)" 
Y ( a )  = ( -U)  " (-1% 

[ Z ~ I .  (T) + .&KI,( 3X-)] , 
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,,, are respectively where u = H  'a2 - 1, I ,,,, K ,,,, and H '"."' 
modified Bessel functions and Hankel functions, and A, ,  A,, 
andz, ,  2, are the two pairs of arbitrary complex coefficients 
of the two linearly independent solutions. The continuity of 
Y (a )  and dY (a)/da at a = 1/H, gives the relations between 
these coefficients: 

From here on we will deal mainly with the exact solution 
(3.2), (3.3) for p = - 1, but the principal results remain 
valid for otherp as well. 

In order to make the subsequent treatment more acces- 
sible, let us briefly discuss an auxiliary model that includes, 
along with the A term, a certain amount of the conformally 
invariant massless scalar field p. The total wave function 
will then depend on both a and p, but it is factorizable: - 
Y (a, p) = x (p) Y (a ) .  The part that depends solely on a 
then satisfies the equation 

I d  d 
ap - - a2+H2a'+e} Y (a) =0, 

where E is a constant that represents the addition made by 
the massless scalar field. Equation (3.5) can be looked upon 
as the Schrodinger equation for a particle of energy E, mov- 
ing in an external potential V(a) = a2 - H 'a4. The potential 
barrier for 0 < E < 1/(4H 2 ,  separates two classically distinct 
regions with turning points a ,  and a, (see Fig. 2). In the 
quantum version of the theory, there is a possibility of tun- 
neling between these two regions. 

Returning to our case with E = 0, we should probably 
speak of quantum decay rather than quantum tunneling, 
since for E = 0 there is only one classically allowed region, 
a > l/H. (This situation could be called quantum creation 
"out of nothing.") 

In conventional quantum mechanics, the tunneling 
probability is given in the quasiclassical approximation by 
IY (a,) 1 2 / 1  Y (a1  ) 1,. In this expression, one uses a wave func- 
tion appropriate to the specific problem at hand.19 

We may define the probability of decay as 

D=(Y ( I I H )  12/(y (0)  IZ, pel. 
For the given wave function to be interpretable as a descrip- 
tor of quantum decay, it must at least give D < 1, rather than 
D >  1. 

An exact expression for D is readily obtained for the 
casep = - 1, using Eq. (3.3). We introduce the notation 

The expression for D simplifies when H <  1. To leading order 
in H, then, we obtain 

where y is a constant of order unity. Since - 1 <cos fl< 1, D 
essentially depends only on x. 

Now consider the plane with coordinates y = tan-Ix 
andp  (Fig. 3 ) .  The straight line y,=exp( - 1/3H2) sepa- 
rates the regions D > 1 and D < l. Every specific choice of 
coefficients A , ,  2, determines a specific wave function and 
an associated value D. For example, the Hartle-Hawking 
function entails the choice2, = 0, y = 0, giving D = exp(2/ 

FIG. 2. The form of the potential V ( a ) .  

3H2)  % 1, and that is why the HH function can scarcely be 
interpreted as the describing process for tunneling or decay. 
But Eq. (3.6) and Fig. 3 make it clear that a minor change in 
the Hawking boundary condition 2,  = 0 is all that is needed 
to obtain y2exp( - 1/3H2), with a corresponding wave 
function having D < 1. It would be reasonable to presume 
that there are no preferred values of y or We can there- 
fore introduce the idea of a probability for the realization of 
wave functions with D < 1 and D > 1. Taking that point of 
view, the probability Pof finding a wave function with D > 1 
is very low: 

inasmuch as it is determined by the very narrow band 
Ay z exp ( - 1/3H ,) in the (y, fl) coefficient space. Figure 3 
shows directly that the vast majority of wave functions have 
D < 1, rather than D > 1. (There is one wave function among 
those with D < 1 that corresponds to the boundary condition 
described by Vilenkin2': A, = 0, Dzexp(  - 2/3H ,) .) 

The result we have obtained is valid for other values ofp 
as well. This becomes obvious if in the definition of D, we 
replace (3.3) by the quasiclassical approximation for the 
wave function. In this approximation, the wave function is 
well known to be independent, in general, of the ordering 
factor p: 

We assumed above that all values ofy andfl were equal- 
ly likely. We now give up this assumption and consider a 
more general case. Let us introduce a measure p(y, fl) in 

FIG. 3. The regions D <  1 and D >  1 in the ( y ,  B)-plane. 
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(y, 8)-space; this is essentially a measure in the solution 
space of (3.2) and (3.3). Let the function p (y, 8 )  be nor- 
malized by 

n/z zn 

0 0 

Then in the general case, the probability of realization of a 
solution with D < 1 is given by 

where 

The case of uniformly distributed y and B considered 
above corresponds to choosing a measure of the form 
p(y,  P) = l/a2. The introduction of a measure in wave- 
function space is a manifestation of our ignorance of the ac- 
tual state of the universe. One reasonable approach to reduc- 
ing the extent of this ignorance, and thereby bringing p to 
some definite form, would be to examine the evolution of 
fluctuations given different choices of boundary conditions. 

4. CONCLUSION 

In Sec. 2, we considered a model with K = 0 as an ap- 
proximation to the realistic model K = + 1 in a region 
where we could neglect the curvature of space. Introducing 
the idea of the "degree of inflation" of a given wave function, 
we determined the probability of occurrence of an inflation- 
ary stage, given a random choice of solution for the WD 
equation. We then found that a fairly extended period of 
inflation is typical of a broad class of wave functions. 

In Sec. 3, we examined the quantum creation process, 
employing for this purpose an approximate model with a A 
term. We introduced the concept of a realization probability 
for a wave function having some value of D, and showed that 
under the simplest assumptions about p(y ,  B), the over- 
whelming majority of solutions corresponds to D < 1. 

We may conclude, then, that at least within the frame- 
work of the minisuperspace models that have been consid- 
ered, the wave function describing both the inflationary 
stage and quantum creation is in no way overly exotic. 

We feel duty-bound to note the support and interest in 
this work shown by our teacher Ya. B. Zel'dovich to the very 
end of his life. We also thank L. V. Rozhanskii for critical 
remarks and advice. 
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