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We study the feasibility of weakly turbulent Kolmogorov spectra in the case of drift-type waves in 
an inhomogeneous magnetized plasma. We consider the general problem of three-dimensional 
spectra produced by three-wave interactions between weakly dispersive waves and having a 
dispersive power-law correction in the equation for the frequency, and the similar problem for 
strongly dispersive waves. We show that two kinds of Kolmogorov spectra can arise in such 
problems, one ofwhich is connected with the wave energy flux and the other with the enstrophy 
flux. The general formalism developed in this paper is applied to the problem of short-wave and 
long-wave drift waves described by a Hasegawa-Mima kind of equation. We show that in the case 
of such waves the Kolmogorov spectra connected with the energy flux are local and those 
connected with the enstrophy flux are nonlocal. 

1. INTRODUCTION 

The idea of Kolmogorov (power-law) weak-turbulence 
spectra' has been applied before mainly to the case of waves 
in isotropic and anisotropic media (see the literature cited in 
Ref. 1).  However, drift-type waves in an inhomogeneous 
magnetized plasmaZ which are of interest from the point of 
view of anomalous transport in such a plasma374 do not fall 
into that category. The papers on Rossby waves5-' in a rotat- 
ing fluid are important in that connection. It was shown in 
those papers that under simplifying assumptions about the 
smallness of the parameter ky /k, (ky , k, are characteristic 
wave numbers in the meridional and zonal directions: we use 
a notation differing from that in Refs. 5-7) and about the 
fine-scale nature of the waves compared to the Rossby radius 
rR , k,  rR ) 1 ,  the dispersion law for the waves and the matrix 
elements for the interactions between the waves have scale 
invariance.' As a result, according to Refs. 5-7, two-dimen- 
sional stationary power-law turbulence spectra, simplified 
in the way indicated, can be realized in the Rossby problem, 
and one can use the factorization method1*' to find them and 
interpret them in terms of the appropriate fluxes. 

As Rossby waves are analogous to some variants of 
drift-type waves in a plasma,9.'0 one can use Refs. 5-7 as a 
starting point to develop an analytical theory of weak-turbu- 
lence Kolmogorov spectra in an inhomogeneous plasma. 
The development of such a theory is the aim of the present 
paper. In the first half (Secs. 2-4) we expound the general 
formalism of this theory and in the second half (Secs. 5-7) 
we apply that formalism to the simplest case of drift waves, 
described by a Hasegawa-Mima type equation.'' We discuss 
the results of the paper in Sec. 8. 

1. KOLMOGOROV SPECTRUM THEORY METHOD FOR DRIFT- 
WAVE TURBULENCE 

2. Statement of the problem and basic equations 

One of the objects of our analysis are weakly dispersive 
waves with a dispersion law of the form 

o k ~ " k ~ + p Q ~ ,  (2.1) 

wherep is a small parameter and Rk a power-law function of 
the wave numbers, which we write in the form 

Qk~lkylalkzlblkZlcsign k,. (2.2) 

Here a, 6, c are some numbers which are determined by the 
actual type of the wave. Together with (2.1 ) we shall also 
consider strongly dispersive waves with o, of the form 

The procedure given by us can also be applied through a 
simple change in the wave number indexes, to the case of 
waves with o, a k, + pR, and o, a R,, where R, 
a I k, Ia(k, I I ky I C  sign k, , which we shall discuss in more de- 
tail below. 

We assume that the turbulence is described by kinetic 
equations for the waves of the form" 

-NkXk, sign ( w k o k , )  16 (ok--o~,-wr,) 6 (k-kl-k~)dki dkz, 

(2.4) 
where N ,  is the "number of quanta," 

and V(k,kl,k2) are the matrix elements of the interaction 
which satisfy the symmetry properties indicated in Ref. 12. 
We assume that the matrix elements also possess scale invar- 
iance properties' so that 

where u, v ,  ware the invariance exponents determined by the 
properties of the actual type of waves. We write the quanti- 
ties N ,  in the form 

N*mIkuIaIkz(Rlkz17, (2.7) 

where a, p, y are the required exponents of the spectrum. 
To use (2.4) we need also have a way of determining the 

number of quanta N ,  and the matrix elements V(k,k,,k,). 
We find thequantity N ,  from thecondition N ,  a W ,  / l o ,  I, 
where W ,  is the energy density of the oscillations in k-space. 

1386 Sov. Phys. JETP 68 (1), July 1988 0038-5646/88/071386-07$04.00 @ 1989 American Institute of Physics 1386 



To find the matrix elements we shall introduce the "normal- 
ized potential" C, defined by the relation I C, l 2  a N, . The 
reduction of the dynamic equations for the corresponding 
types of wave to canonical form" 

idCk/dt - r, v (k, k,, kz)ck,Ct, eZXp[-i(ak,+ok2-wk) t ]  
k,+k,=k 

is at the same time the procedure to calculate the matrix 
elements. 

3. Transformation of the kinetic equation for the waves and 
calculation of the exponentsof stationary spectra 

Without loss of generality we assume that in (2.4) 
ky > 0. Changing in (2.4) to integration over positive k ,, , 
k,,, and using (2.1)-(2.3) we get (cf. Ref. 7) 

where 
x rn 

To simplify the notation we have introduced here the nota- 
tion: U, = U(k,k,,k2), U2= U(k,,k,,k), U, = (kl ,k ,k2) ,  
and the quantities N, N,, N2; fl, fl,, 0, denote, respectively, 
N,,N,,,N,,; flk, flk, ,  flk>. 

The quantities fl, fl,, fl, in (3.2) [see [3.3)] have the 
same sign, which we can assume to be the positive one with- 
out loss of generality. In other words, by changing to positive 
ky , k ,, , k ,, we have at the same time made the transition to 
positive 0 ,  0 , ,  0,. This fact is a consequence of the assumed 
ky-dependenceoffl, [see (2.1)]-(2.3)]. 

We now introduce dimensionless variables 
pi = kiy /ky , hi = k, /kx, qi = k,/k,, i = 1, 2 and change 
to integration over positive hi, q,. We have then 

where a = 1. We change similarly to dimensionless fre- 
quencies fli and numbers of quanta Ni, by introducing vi 
= fli/O and ni = Ni/N; i = 1,2. Moreover, using (2.6) we 
get dimensionless matrix elements. As a result, we write, for 
instance, the integral I, in the form 

N k 2  I ,  = - 1 k,, 1 2u+i  1 kx  1 "+' 1 kz  1 2w+i  z (Oh,, 09,; 0*2, 0 9 2 ) .  

I Q k l  

(3.5) 
Here 

A 

the quantity U,,, denotes 

We write the integrals I, and I, in similar form. In our 
problem there appear then the integrals J2 (a) ,J3 (akdefined 
by relations such as (3.6), and the quantities U, , U,,, de- P fined by analogy with ( 3 . 7 ) .  It is clear that each of the quan- 
tities Ji has in the case of three-dimensional waves the form 
of a sum of nine terms such as (3.6). In the case of two- 
dimensional waves we have instead a sum of three terms 
such as (3.6). 

As in the case of Ref. 7, we transform integrals such as 
J2 (a ) ,  J,(a) to integrals of the type J, (a) with the corre- 
sponding modification of the integrands. The procedure for 
such a transformation is explained in the Appendix. As a 
result Eq. (3.1 ) is reduced to the form 

Here 

I = Jdp, dp, n , n 2 ~ ~ ~ , ~ ( I - ~ i - v 2 ) 6 ( ~ - p i - ~ 2 ) .  (3.9) 

Equation (3.8) is the basis of our analysis which follows. 
In the framework of our formalism, the exponents of 

the stationary Kolmogorov spectra are found from the con- 
dition that, with allowance for the 6-functions in (3.9), 
K = 0. As a result we get two sets of exponents a ,  p, y for 
stationary spectra, which we shall denote, respectively by 
ah1), fl A", yA1) and a;,), B A*', yc ' .  These exponents turn 
out to be (cf. Ref. 1 ) . 

ao(2)=a/2- ( 3 / 2 + ~ ) ,  Po'2'=b/2- ( If  v), yo'2'=~/2- (ISw). 

To be specific, we call the spectra corresponding to (3.13) 
spectra of the first kind, and those corresponding to (3.14) 
spectra of the second type. It is clear that in the case of two- 
dimensional (k,, k, )-turbulence we must omit in Eqs. 
(3.13), (3.14) the expressions for yh", yh2), and in the case 
of (k,, k, )-turbulence the expressions for p  A", Bc'.  

4. Dynamic properties of the Kolmogorov spectra 

4.1. Conservation laws. We now assume that the turbu- 
lence is almost stationary, so that 

where the quantities a,, p,, yo correspond to stationary 
spectra [see (3.13), (3.14)], and6,,Sg, 6, aresomesmall 
corrections. We expand the integrand of (3.9) in a series of 
these small corrections and we find that in the case consid- 
ered, of almost stationary turbulence, the kinetic Eq. (3.8) 
for the waves takes the form 

and 1 is the vector with unit components, 1 = ( 1,1,1) 

1387 Sov. Phys. JETP 68 (I), July 1988 

Here 

Mikhanovskil etal. 1387 



1% = )ap,  dp, Q.6 (I-v ,-v ,)  6  ( l - p , - p , ) ~ K 1 ( n l n 2 R ) a - a o ~ ~ ,  
(4.3) 

AKi = (dK/da) a_u( i,, i = 1,2, (4.4) 
0 

and the vectors S and a stand for 6 = (6, , SB, S, ), a = ( a ,  
fl, B,) .  The integrals  ar are assumed to be finite (conver- 
gent). The convergence of these integrals must be verified in 
each actual case of turbulent spectra. 

Using (3.10) and (3.11 ) we find that the vectors  ar are 
AKl={v I 1 n p1+v2 In p2, v 1  In hI+v, In h,, v 1  In q,+v, In q z ) ,  

(4.5) 
A X z = { p ~  In p~+p ,  In p,, pi In hl+p, In h,, pi In ql+p, In q,).  

(4.6) 

In the case of two-dimensional (k, , k, )-turbulence we must 
omit from Eqs. (4.2) the factors with k, and the terms with 
13,. Similar modifications must be made in Eqs. (4.2) in the 
case of two-dimensional (k,, k, )-turbulence. 

Introducing the functions D L L '  = I R, I N, , D L2' 
r I ky 1 N,, using the relations 6x - + * = ax* /ax, and after- 
wards taking the limit as 6-0 (cf. Refs. 13, 14) we reduce 
Eqs. (4.2) to the form 

where 

(4.8) 
In the case of weakly dispersive waves the quantity D L L '  has 
the meaning of the enstrophy (or the "dispersive part" of the 
wave energy),while D F' is the main part of the wave energy, 
denoted by us by W ,  and called simply the wave energy (see 
Sec. 2).  In that case. Eq. (4.7) with i = 1 is the enstrophy 
conservation law, and with i = 2 the energy conservation 
law. For such waves P"'(k) corresponds to the enstrophy 
(or generalized enstrophy) flux, and P"'(k) to the energy 
flux. 

In the case of strongly dispersive waves the physical 
meaning of Eqs. (4.7) and the quantities occurring in it 
turns out to be the opposite. The quantities D L" and P"'(k) 
correspond in that case to the wave energy and the wave 
energy flux, and DL2' and ~ " ' ( k )  to the enstrophy and the 
enstrophy flux. For such waves, correspondingly, Eq. (4.7) 
with i = 1 is the energy conservation law and with i = 2 the 
enstrophy conservation law. 

The physical meaning of Eqs. (4.7) will in what follows 
be illustrated also by actual examples. 

The quantum-mechanical meaning of Eqs. (4.7) is 
clear: in the case i = 1 it is the quasiparticle energy conserva- 
tion law, and in the case i = 2 the conservation law for they- 
component of the quasiparticle momentum. 

In the case of two-dimensional (k,, k, )-turbulence we 
must omit from Eqs. (4.8) for the P"' ( k )  the factor k; ', 
and these factors themselves must be understood to be two- 
dimensional. Similar remarks hold for two-dimensional (k, , 
k, )-turbulence. 

We can also use instead of (4.7) conservation laws in 
( k,, R, k, )- or ( k, , k, , R )  -space. We consider the case of 
the (k,, R, k,)-space. Instead of N, we introduce 
N(ky , R, k, ) normalized such that 

WritingNin theformNa Iky 1' IaIS Ik, If, wherer,~, f havea 
meaning similar to a ,  fl, y, and using (2.2),  (2.7), we find a 
relation between r, s, f and a ,  fl, y: 

Correspondingly, one can introduce stationary values of r, s, 
f, denoted by r:), s:), f 2) and connected with a:', f l  r', yg) 
through Eqs. (4.10), and small corrections a,, S,, Sf to 
them, which characterize almost stationary spectra. Recog- 
nizing also that according to (4.9) 

we get instead of (4.1 ) an equation of the form 

where now 6 = (S,, 6, , Sf) while the vectors HK1 and HK2 
are defined by equations similar to (4.3): 

H K 1  = 9 dpl dp, QIG ( I - v I - v2 )  P (1 -pI-p2)  MKl(nin2R)(') .  

(4.13) 

Here 

where r r ( r ,  s , f ) .  Explicitly, the vectors  are [cf. (4.5), 
(4.6) 1 

From acomparison of (4.15), (4.16) with (4.5), (4.6) it is 
clear that 

Moreover, in accordance with (4.10) 

The integrals J ~ '  and H ~ '  are correspondingly connected 
with one another through the relations 

For spectra of the first and second kind we find hence from 
(4.12) the conservation laws [cf. (4.7) 1 : 

The functions D"' (k, , 0 ,  k, ) can be expressed in terms of 
N(k,, R, k, ) in the same way as the D F' were in terms of 
N,. The fluxes PLY, PE', PLj' are [cf. (4.8)] 

( P C ) ,  P$', P?:) W - ( H : i / l  Qkz 1 ,  l 3 f i / l  kykz 1, I I ; ~ / I  kvQ 1). 
Y 

(4.21 ) 
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When one uses k,, kx , 0 as independent variables one 
gets the corresponding conservation laws and formulae for 
the fluxes by an obvious change of notation in the equations 
given above. 

4.2. The problem of determining the signs of the fluxes 
and the localityproblem. According to (4.3 ), (4.13 ), (4.2 1 ) 
the signs of the fluxes are determined by the signs of the 
vectors A ~ ' ,  M ~ '  and the signs of R"' = (R):L ,, . We con- 
sider the problem of determining the signs of the fluxes in the 
case of two-dimensional (k, , kx )-turbulence. We shall work 
in the (k,, 0)-space. We are then dealing with the quantities 
M z, M g', i = 1, 2. Starting from (4.15 ), (4.16) and using 
the fact that ( p , ,  p,, Y,, Y ~ )  < 1 we conclude that all these 
quantities are negative: 

sign MKt=-1, i= l ,  2. (4.22) 

In the case of functions R") with a fixed sign we find, using 
(4.21), (4.19), that 

On the other hand, according to (3. lo),  (3.13 ), (3.14), 

In the case of R"' with alternate sign it is necessary to turn 
to (4.22) to find the sign of the fluxes. 

In agreement with Ref. 1 the locality condition of the 
Kolmogorov spectra is equivalent to the condition that the 
spectral fluxes are finite, i.e., the condition that the integrals 
in JK' or H~~ converge [see (4.3), (4.13) 1. 

We also note that in the case of divergent integrals JKi 
Eqs. (4.2), (4.8), (4.12), and (4.20) are invalid. 

iI. DRIFT WAVE TURBULENCE DESCRIBED BY THE 
HASEGAWA-MIMA EQUATION 

5. lnitlal canonical equations 

We consider two-dimensional (k, , k, ) waves with a 
dispersion relation of the form 

where V ,  is a scale velocity and p, some scale length. The 
best known representatives of waves of the kind (5.1 ) in a 
plasma are the electron drift waves in a plasma with cold 
ions. In that case V .  = V,, , where Vne = - cTe H ,  /eB, is 
the electron drift velocity along the density gradient, 
H ,  = dno/dx, no is the equilibrium plasma density, Te the 
electron temperature p: = T e / m i w i i  the square of the ion 
Larmor radius with respect to the electron temperature, 
oBi = eBo/mi c the ion cyclotron frequency, e and mi the ion 
charge and mass, and c the light velocity. In the case of 
Rossby waves V ,  andp, are, respectively, the Rossby speed 
and the Rossby radius (see, e.g., Refs. 9, 10 for the definition 
of these quantities). 

We assume that the dynamic equation describing the 
interaction of these waves with one another has in the Four- 
ier representation the form (cf. Ref. 4).  

(5.2) 
where q, is the potential of the field of the waves considered. 
Equations (5.1 1, (5.2) are the consequence of the well 
known equations for Rossby waves and also of the Ha- 
segawa-Mima equation." We use also the fact that the wave 
energy, apart from a constant, equals (see, e.g., Ref. 4) 

so that 

We can therefore use for the normalized potential C ,  the 
quantity 

Taking (5.5) into account and also the fact that the 
"phase mismatch" w,, + wk2 - o, ~0 is small we reduce 
(5.2) to the form (2.8) with matrix elements of the form (cf. 
Refs. 5-7) 

(5.6) 

Thereby we have all that is necessary to use the kinetic equa- 
tion for waves of the form (2.4). 

6. Short-wavelength turbulence 

Letk:p;%l, k,%k,.Itfollowsthenfrom(5.1), (5.6) 
that 

According to (2.2), (2.6) this corresponds to the case 

6. I .  Stationary Kolmogorov spectra. It follows from 
(6.3) and (3.13), (3.14) that the exponents ofthestationary 
Kolmogorov spectra of short-wavelength turbulence are 
equal to 

These exponents correspond to the energy spectra 

The spectra (6.6), (6.7) are the same as two of the three 
found in Refs. 5-7 for the case of short-wavelength Rossby 
waves. In those papers is given yet another spectrum 
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W, cc k; 'k ; 7'2, corresponding to the exponents a = - 2 
and p = - 3/2. However, in finding such indexes one must 
neglect S (  1 - h, + h,)S( 1 + h, - h,) and retain only 
S( 1 - h, - h,) in Eq. (3.12) for Q,. By a direct substitution 
into these S-functions of the quantities h,, h,, expressed in 
terms of the p i ,  vi ( i  = 1 ,2 ) ,  one can check that this nelgect 
is inadmissible. The "additional" spectrum is thus not real- 
ized. 

According to Refs. 4 and 9, numerical experiments 
about short-wavelength turbulence described by the Ha- 
segawa-Mima equation give forms of spectra close to 
W, oc k , 4. At the limits of applicability of our analysis, i.e., 
when ky z k ,  z k l ,  it follows from (6.6), (6.7) that 
Wk a ( k  ; 7/2, k 1 9 / 2 ) ,  SO that the numerical value of W k  
lies between the two Kolmogorov values. 

6.2. Dynamical properties of short-wavelength Kolmo- 
gorov turbulence. Using (4.24), (4.25) we find that in the 
case considered 

As O< (p,, v, ) < 1, it follows from (6.8) that R ' I '  is a function 
with a fixed sign and that 

sign R ' I '=I .  (6.9) 

Hence, according to (4.23), 

This means that in the (k,, a)-space the spectrum (6.6) 
corresponds to an energy flux towards larger k, and S1. Us- 
ing (4.19) we note that in the (k,, k, ) space the energy flux 
is directed towards larger k, and smaller k, . At the limit of 
applicability of our analysis when ky -- k, and w, a l/k, , 
these results mean qualitatively that a spectrum of the type 
(6.6) corresponds to an energy flux in the direction of larger 
frequencies and smaller wave numbers. A similar behavior is 
observed also in the numerical calculations of Ref. 9. 

Using (6. I ) ,  (6.2), (3.12) we find that the function Ql 
in the integrals (4.3), (4.13) are in the case considered 

Moreover, according to (6.1 ) 

Using (6.12) we change from the variables h, to the vari- 
ables v,. After that we use the fact that h, is of the form 
(6.12) and that O<(p,, v j )< l ,  S ( l  - hl  - h2)=0,  so that 
the first term in the square brackets of the right-hand side of 
Eq. (6.1 1) drops out. The integral of the two remaining 
terms in Q, reduce one to the other through a change of 
variables. Moreover, we recognize that 

As a result, the integrals  reduce, for instance, to the form 

(6.14) 
where 
FK1= {(pip2)-'(v1v2)-' R O M ~ I ,  ( p 1 p 2 ) - 1 - ( ~ ~ 1 \ ~ 2 ) - 1 R ( Z i M h ~ ) .  

The quantities R "', R "' are given by Eqs. (6.8) and the vec- 
tors MK1,  MK2 by Eqs. (4.15), (4.16). 

Our problem is, firstly, to study the problem of whether 
the integrals (6.14) are finite, which means as we noted in 
Sec. 4.2 clarifying the locality problem, and secondly, to de- 
termine the sign of the integrals H ~ '  in cases when these 
integrals are finite, which is necessary, according to what has 
been said earlier, to elucidate the direction of the fluxes. 

"Dangerous" regions of integration occurs as (p , ,  
v , )  -0 and (p,, v,) -0. In the case (p,, v,  ) -0  the S-func- 
tional connection between p and v of (6.14) gives 
p ,  = ~ : ' ~ / 4  and the contribution from the corresponding re- 
gion to the integrals H ~ '  is given by the expression 

(HX1). rn FKl dv,. (6.16) 

Taking into account that for the indicatedp, and v, we have 
R " ' a v ~  and M [ ; a M ~ ' a v ,  lnv , ,  we find, using (6.15), 
that in that region 

so that ( H K 1 ) ,  -0. On the other hand, in the case i = 2 we 
 have^"'= l n v , ,  ME?cc -v , . In tha tcase  

so that ( H K 2 )  I - CC,. 

In the region (p,, v2) -0  we havep, = 4v, and the con- 
tribution from that region to the integrals  ca can be written 
in the form 

(IIX1) V,FKI dv2. (6.19) 

Moreover,nowR"' a v , , ~ E ; a ~ k  c v 2  1 n v 2 , i =  1,2,and 
in that case [cf. (6.17)] 

Hence ( H ~ ' ) ,  - 0. 
The integrals H K 1  thus turn out to converge. Hence, the 

spectrum (6.6) connected with the energy flux is local. The 
integral HK2 turns out to diverge as (v , ,  p , )  -0. In that 
sense, the spectrum (6.7), connected with the enstrophy 
flux, is nonlocal. The nonlocality is caused by the long-wave- 
length part of the spectrum with k, a k :. This part of the 
spectrum corresponds to "zonal flows." " It is clear from 
physical considerations that the ideas expounded here about 
the turbulence are no longer applicable to such waves. 

7. Long-wavelength turbulence 

We now consider the case of long waves, k pi < 1, 
again assuming that k, $ k,. The frequency of the oscilla- 
tions can in this case be written in the form (2.1 ) with 

Qkmku/~z2,  

so that 
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The matrix elements (5.6) under the given assumptions take 
the form 

V ( k ,  ki,  k,)mI kyktukZVI'h (k12f  kz2-kX3).  (7.3) 

Hence it follows that 

We then get, similarly to (6.4), (6.5), the following two 
pairs of exponents a, 8: 

As in the case considered w, - ky , we have 

Wkml k,l Nk-kUi+"k,". 

The energy spectra 

follow from (7.5)-(7.7) 
By analogy with Sec. 6.2 we consider the dynamic prop- 

erties of these spectra. We have now according to (7.1 ) in- 
stead of (6.12) 

h ( v / p j )  j = l ,  2, (7.10) 

and the functions R'" are in accordance with (4.24), (4.25) 

~ ( ~ ) = l - p l ~ ~ y i ~ - p z 1 ~ y , 2  , R(z)=l -p iv~-pzv2 '1a .  (7.11) 

Similar to ( 6.1 1 ), we find an expression for the function Q, 

Qi=pipa [ (  l - h i ' - h ~ ~ ) ~ 6 (  l-hi-ha) 

+(l+his-hz")"6(1+hi-hz) 

+ (l-h1+hz">"6( 1-hi+hz)l (7.12) 

Using (7.10) we note that, as in the case of short-wavelength 
turbulence (see Sec. 6),  S (  1 - h, - h,) =O. Using (4.13), 
(7.12) we write down, similarly to (6.14), the integrals HK: 
We then get 

4 

where 

~ K ' = { ( ~ i v Z ) - 5 ' z H ( 1 ) M K ~ ,  (p1p2)-'1g(vlv2)-2R(2)MK~). (7.14) 

As in Sec. 6, the "dangerous" regions of integration corre- 
spond to the cases (p,, v , )  - + 0  and (p,, v,) -0. In the first 
case v, = p:/4 and the corresponding contribution to H ~ '  
can be written in the form [cf. (6.16) ] 

( H K t ) ,  J ~ . ' F K ~  dp,. (7.15) 

Using (7.11), (4.15), (4.16) weget 

It then follows from (7.14) that 

FK1mpi-"'2(-l,  piZ In p i ) .  (7.17) 

Itisclearfrom (7.15), (7.17) that (Hf;),-OC~, (HE1),+O. 
Similarly, we have for i = 2 

FK*mpi-"2 In p , .  (7.18) 

Substituting (7.16) into (7.15) we find that (HK2) I-O. We 
now consider the region (p,, v,) - 0. In that case p, = v2/4, 
and the corresponding contribution to HK' has the form 
(6.19) while F ~ '  is given by Eq. (6.20). Therefore, as in Sec. 
(6.21, ( H ~ I ) ~ - + O .  

Thus, the spectrum W:" turns out to be nonloca1,and 
the spectrum Wp)  to be local. The region (v,, p ,  ) -+ 0 with 
v, ap: , causing the nonlocality of the enstrophy spectrum, 
corresponds to waves with k ,, =: k ,, . However, according to 
the assumption which we have made, k, ) ky, such waves 
must be excluded from our analysis. This indicates that in 
principle it is possible to regularize the integral H z  and, 
correspondingly, that it is possible to realize the spectrum 
W:". On the other hand, the insensitivity of the spectrum 
WF' to waves with v, ap: , i.e., with k ,, =: k ,, indicates that 
our initial assumption k, % ky is adequate, when applied to 
such a spectrum. According to Ref. 9 a numerical simulation 
and experimental observations of Rossby waves with 
k, p,4 1 also indicate that the main part of the energy is 
contained in waves with k, ) ky . In this connection the ideas 
presented above about the spectrum Wi2' are in agreement 
with the picture following from numerical and real experi- 
ments. 

According to (7.11 ) the function R "' has a fixed sign 
and sign R "' = 1. We then conclude in accordance with 
(4.25) that the energy flux in the Wi2' spectrum is in the 
direction of larger frequencies (in the direction of shorter 
waves). 

8. Discussion of the results 

We have considered the problem of three-dimensional 
weakly turbulent power-law spectra which are established 
when weakly dispersive waves with a dispersion relation 
such as (2.1 ) interact, and the similar problem of strongly 
dispersive waves with a dispersive relation of the form (2.3), 
assuming that the matrix elements are scale invariant. We 
have shown that in this kind of problem two kinds of Kolmo- 
gorov spectra can be realized with power-law exponents 
(3.13), (3.14). One of those spectra is connected with the 
flux of the wave energy and the other with the enstrophy 
flux. 

The formalism expounded above can be used for a wide 
class of problems of drift-type waves in an inhomogeneous 
plasma. By applying this formalism to the problem of drift 
waves described by a Hasegawa-Mima type equation, we 
have established that short-wavelength drift turbulence is 
characterized by stationary spectra of the form (6.6), (6.7) 
and long-wavelength turbulence by spectra of the form 
(7.8), (7.9). From the analysis of the locality of these spec- 
tra it follows that the spectra connected with the energy flux 
are local and those connected with the enstrophy flux are 
nonlocal. 
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The local spectra ( 6 . 6 ) ,  ( 7 . 9 )  can be interpreted as 
spectra connected with the energy flux. The problem of the 
interpretation of the nonlocal spectra ( 6 . 7 ) ,  ( 7 . 8 )  requires 
an additional analysis. 

The authors are grateful to S. V. Nazarenko and A .  I. 
Smolyakov for useful discussions. 

APPENDIX 

Derivation of Eq. (3.8) 

To begin with, to be specific, we consider the integrals 
Jj ( a )  = 1,2,3 for a= (a,,, uq,) = 1 ,  i = 1,2. The initial ex- 
pressions for these integrals with N ,  of the form ( 2 . 7 )  are 

- 
x (1  i Pl + P, )  6 (1  

- - / 

+ v1 ? v 2 )  6 (1  t hlTh2) 6 (1  7 Q I  + qJt  

( A l l  
where 

We give here the procedure toJransform the integral J , ( u ) .  
We change the expression for U,, ,  which occurs in that inte- 
gral for the given values of u,,, a,, to the form 

where we have used ( 2 . 5 ) ,  ( 2 . 6 )  and the appropriate S func- 
tions. Hence, performing an obvious change of variables 
(Cf. Ref. 15) ,  

we get 
~ , , , = ( l - p l ' ) - 2 " ( l - h ~ ' ) 2 u (  l -q i ' ) -Zw 

x ~ i ( 1 ;  h i 1 ,  q l ' ;  I -p i1 ,  I-hi', 1-91'). ( A 5 )  

The Jacobian of the transformation ( A 4 )  equals 

D ( p l ,  h, .  q l ) l D ( p l r ,  h l r ,  q l l )  =[ ( I - P I ' )  (1-hi ' )  (1-91') I-'. 
( A 6 1  

Moreover, using ( 2 . 2 ) ,  ( A 4 ) ,  we transform the S function of 
the frequencies which occurs in J , ( u ) :  

where Y ;  , V; are the same functions of the primed variables 
as Y,,  v2 are of the unprimed ones. Finally, we transform R,: 

where R  ; is the same function of the primed variables as R ,  
is of the unprimed ones. Dropping the primes of the corre- 
sponding integration variables we get 

where A, is given by Eq. ( 3 . 1 1 ) .  
One can transform J, ( a )  also to a form similar to ( A 9 ) .  

The only difference with ( A 9 )  consists in the substitution 
A, -A ,. As a result we get with the given a 

Similarly we transform also the sums of integrals with other 
values of a. We then get formulae such as ( A 1 0 )  with appro- 
priate modifications of the values U ,,, and the substitutions 

Taking into account what we have said and using Eq. ( 3 . 5 )  
and similar relations for I,, I, we bring ( 3 . 1 )  to the form 
( 3 . 8 ) .  
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