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The nonlinear gyration vector and the tensor of the cubic susceptibility are determined for an 
isotropic gaseous resonant medium that has both natural and nonlinear optical activity. The 
nonlinear gyrotropy and nonlinear dichroism are investigated with allowance for the 
dopolarizing atomic collisions and for the Doppler effect. The possibilities are examined of 
directly applying the obtained nonlinear relations which are governed by self-rotation and 
deformation of the light-wave polarization ellipse. 

Nonlinear optical activity of condensed medial4 and of 
gases5-l2 is being extensively investigated of late in view of 
the great promise of its use in spectroscopy, so that the devel- 
opment of a rigorous quantum-mechanical theory of this 
phenomenon is relevant. Nonlinear optical activity consti- 
tutes polarization self-action of a light wave, which reduces 
to self-rotation of the polarization ellipse (nonlinear gyro- 
tropy) and to deformation of its shape (nonlinear dichro- 
ism). For a gas, these phenomena were considered in Ref. 5 
for resonant transitions 0 e  1 and 1 - 1 with small angular 
momenta, and in Refs. 6-1 1 without allowance for the ther- 
mal motion of the atoms. In the case of large angular mo- 
menta, the polarization self-action of a light wave was inves- 
tigated in Ref. 12 by semiclassical theory. In practice, 
however, interest attaches to results for arbitrary angular 
momenta, with allowance for the depolarizing atomic colli- 
sions and for the Doppler effect. 

A rigorous quantum-mechanical approach is used in 
the present paper to investigate optical phenomena in a gase- 
ous medium that has natural and nonlinear optical activities 
and contains various admixtures in addition to the resonant 
atoms. These nonlinear phenomena set in when the light- 
wave frequency is close to the frequency of a transition of the 
atom between states with arbitrary angular momenta. They 
come into play under conditions of thermal motion of the 
atoms in the presence of depolarizing collisions and of relax- 
ation due to spontaneous emission on the excited levels. Res- 
onant interaction adds to the gyration vector indicative of 
the natural optical activity a nonlinear gyration vector that 
describes the nonlinear polarization-ellipse rotation that is 
superimposed on the usual rotation in an optically active 
medium. As it rotates, the polarization ellipse is simulta- 
neously deformed-a manifestation of nonlinear optical ac- 
tivity induced by the light wave. The direction of the linear 
rotation of the polarization ellipse depends on the signs of 
the detuning from resonance and of the occupancy, on the 
electric-vector rotation direction, and also on the type of 
resonant transition and of the relaxation constants of the 
orientation and alignment of the atom. This makes it possi- 
ble to separate in the experiments the contributions of the 
nonlinear and usual polarization-ellipse rotations. In addi- 
tion, it permits a determination of the of the collisional shift 
of the central line and identification of the type of resonant 
transition, as well as a verification of the validity of the as- 
sumed atomic-collision model, since nonlinear rotation and 
deformation of the polarization ellipse on the simplest atom- 
ic transitions 0s 1 and 1 + 1 are results of depolarizing colli- 
sions. In contrast to natural optical activity, the direction of 

the nonlinear rotation of the polarization ellipse is reversed 
after specular reflection, but the direction of its deformation 
is preserved. In multiple specular reflection, the cumulation 
effect causes the polarization-ellipse rotation angle and 
shape to change in such a manner that the light-wave polar- 
ization becomes ultimately linear or circular. These station- 
ary regimes are reached much more rapidly on homogen- 
eously than inhomogeneously broadened transitions. The 
regularities derived are described by simple equations that 
can be readily verified by experiment. 

1. NONLINEAR GYROTROPY AND DlCHROlSM 

Consider an isotropic gas having natural optical activ- 
ity and containing resonant atoms in addition to various im- 
purities. We determine the optical-activity change induced 
by the electric field 

E=a esp [ i  (kr-ot) ]+ C.C. (1)  

of a monochromatic light wave, where a is a slow function of 
the coordinates compared with exp(ik*r), and the connec- 
tion between the wave vector k and the frequency w will be 
established below. The frequency is close to the frequency 
oba = ( E b  - E, ) f i - I  of the atomic transition between two 
states of a resonant atom with zero nuclear spin; these states 
are characterized by energies E, and E, (E, > E, ) and also 
by total angular momenta J, and J ,  and their projections M, 
and M, on the quantization axis. This reasoning is valid also 
for atoms with nonzero nuclear spin, if only one hyperfine 
sublevel, of either the upper or lower resonance levels, par- 
ticipates in the interaction with the wave ( 1 ). Moreover, 
The results are valid for vibrational-rotational molecular 
transitions vJKM- u ' J  'K 'M ', where u and J are vibrational 
and rotational quantum numbers, and K and Mare  projec- 
tions of the total angular momentum on the molecule and 
quantization axes, respectively. It  is assumed here that the 
K-degeneracy is lifted, i.e., the distance between neighboring 
K-split sublevels exceeds the homogeneous and inhomogen- 
eous widths of the spectral line. 

The induction D takes in the presence of resonance lev- 
els the form 

D=D,I4nP. 
D , , = [ ~ ( ~ ) a + i [ a g ~ ]  ] e s p  [ i (kr -o t )  ]+c.c., (2 )  

where Do is the induction in the absence of resonance levels, 
E ( W )  is the dielectric constant that takes into account the 
influence of the impurities and of the nonresonant levels of 
the active atoms,I3 P is the gas dielectric-polarization vector 
due to the resonance levels, g, = b k/k is the gyration vector 
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that characterizes the natural optical activity, and the con- 
stant b is independent of k. 

To calculate P = Ssp( pd)dv it is necessary to solve an 
equation for the density matrix p in the electric field ( I ) ,  
viz., 

i (;i?, t v V  )p = T [ p ( ~ - ~ d ) - ( ~ - ~ d ) p ] + ~ p ,  ( 3 )  

where H is the Hamiltonian of a free active atom moving 
with velocity v, d is the dipole-moment operator, and Tp is 
the collision integral. The latter takes a simple form if the 
density matrix p is expanded in irreducible tensor operators 
(3j-symbols), thereby transforming ( 3 )  for E = Ointo a sys- 
tem of independent equations: 

Herepix' ( J , J ,  ) is a multipole moment of rank 7:, relates the 
states of the atom with the angular moment J ,  and J,, , and is 
of the form 

where p,w,,w,, is a component of the density matrix and 
- x<q<x. The multipole moments pZ"'(Jl,Jl,) and 

p:;:'(J, J, ) characterize the polarization state of the atom on 
levels El, and E,. The first is obtained from ( 6 )  by making 
the substitutions J, -J, and M, -MI,, and second by the 
substitutions J, -- J, and MI> -Mu.  The quantities yb;:', yb;:' 
and yt;:' are the relaxation constants of these multipole mo- 
ments, and A:: describes the contribution from the shifts of 
the levels E ,  and El, by the elastic depolarization collisions. 
The relaxation constants y,, , y,, and y ,  are due to sponta- 
neous decay and to inelastic gaskinetic collisions. Next, N, 
and N,  are the stationary atom densities on the levels E ,  and 
E,, in the absence of the field ( 1 ), f ( u )  a Maxwell distribu- 
tion, u the most probable velocity, c the speed of light in 
vacuum, y the probability of spontaneous emission of a pho- 
ton k,, by an isolated atom, and dl,, the reduced dipole 
moment of the atomic transition J, - Jh . I 4  The quantities 
r;,"), I-(;:) a nd TL;" are due to elastic depolarizing collisions, 

with ry '  = r?) = 0. They have been calculated for small 
angular momenta in Ref. 15. If the impurity-atom mass does 
not exceed that of the resonant atom, the quantities I-?:', 
r;::), r;::) are smooth functions of the velocity u com- 

pared with u2f(u) in the vicinity of the most probable veloc- 
ity u ,  and can be regarded as constants. In the opposite case it 
is necessary to take into account the dependences of these 
quantities on the velocity. The terms containing f ( u )  in Eqs. 
( 4 )  and ( 5 )  are due to the Boltzmann distribution of the 
atoms over the levels, or to a constantly applied pump that 
saturates with equal probability the Zeeman levels. The last 
term in the right-hand side of ( 5 )  describes the influx of 
atoms to the lower level on account of spontaneous emission 
on the upper one. 

We solve Eq. ( 3 )  by perturbation theory in the reso- 
nance approximation, assuming the field ( 1 )  to be weak 
enough: 

(1) A = O - O ~ ~ - A L ~  , 
where A is the detuning from resonance, A;:' the collisional 
level shift, yba' the homogeneous half-width of the J, - J,, 
atomic transition line, and ku the inhomogeneous Doppler 
width. 

In the stationary regime and in the cubic approximation 
in the field ( l ) ,  the solution obtained for Eq. ( 3 )  yields the 
dielectric-polarization vector 

P (r, t )  =[PL (61, k)  fP~'(61, k )  ] exp [ i (kr-at)  ]+c.c., 

where PL ( c L ) , ~ )  and P" ( o , k )  are the linear and nonlinear 
parts, which are described by the equations 
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where x = 0, 1,2, the indices i, j, k, and 1 take on values x ,  y, 
and z, with l,, I,, and 1, the unit vectors of the Cartesian 
axes. The spatial dispersion of the dielectric susceptibility 
( 7 )  and of the cubic susceptibility ( 8 )  is due to the Doppler 
effect. The last term in ( 9 )  is due to atoms going to the lower 
level on account of spontaneous emission on the upper level. 
I t  makes a noticeable contribution in a rarefied gas, when y 
and y r '  are of the same order. In a dense gas, the collision 
width of the level E, is large (yk '"%y)  and the indicated 
term can be neglected. In addition, in the expression ( 8 )  for 
the tensor it is assumed that y!"' and y:"' do not depend on 
the velocity u. In the opposite case the quantities C,,, C ,  ,and 
Cz in the tensor ( 8 )  are under the integral sign in the factor 

Q. 
Substituting the obtained dielectric polarization vector 

P(r,t)  in expression (2)  for the induction D, we get 

D=[ (e (o ,  k ) +  eN)a+[a(ig-h) ] ]exp[i(kr-ot) ]+ c.c, 
e ((11, k )  =E (0) + 4nx ( o ,  k ) ,  ( 1 0 )  

eW=8n (Co+2C,)Qla1'/3, C, t2C2>0, g=go+f, 

- (21-1) (2J t5 )  
for J,=J+J,=J+ 1, 

7':r(:' 

where Q '  and Q "  are the real and imaginary parts of 
Q = Q '  + iQ ",while y!"(ybL')  and y12' (yF' )  are the relax- 
ation constants of the orientation and alignment of the atom 
on the E, ( E ,  ) level. 

Relation ( 1 0 )  between the induction and the electric 
field contains besides the tensor ie,,,,,g,,, that describes the 

gyrotropy, another tensor - e,,,, h ,  that takes into account 
the difference between the energy exchange of the resonant 
gas with two light waves having orthogonal circular polari- 
zations. The ability of an isotropic substance to have ab- 
sorbed differently light waves with orthogonal circular po- 
larizations is called dichroism." In contrast to linear 
dichroism, the energy exchange with a resonant gas is the 
same for right- and left-polarized circular waves if they have 
different propagations, and a difference occurs only when 
they propagate jointly. Nonlinear dichroism sets in therefore 
in a resonant gas when the incident light wave is elliptically 
polarized, while in the case of linear and circular polariza- 
tions they must be unstable. Dichroism manifests itself by a 
deformation of the shape of the polarization ellipse. Nonlin- 
ear dichroisim in a resonant gas is always accompanied by 
gyrotropy and is characterized by an antisymmetric tensor 
- e,,,, h,, or by dichroism vector h which is its dual. 

It follows from ( 10) and ( 1 1  ) that the nonlinear gyro- 
tropy and dichroism depend on the type of the resonant tran- 
sition J, - J, , on the depolarizing collisions, on the detuning 
from resonance A, and on the Doppler width ku. At the 
resonance Ah = 0 ,  the former is optimal and the latter van- 
ishes. If the wave ( 1 ) is linearly polarized, there is no nonlin- 
ear gyrotropy or dichroism, since the vectors a and a* are 
collinear and f = h = 0.  As this wave propagates, th: polar- 
ization plane rotates just as in the absence of resonance lev- 
els. The latter influence only the connection between k and w 
owing to the term E' in the dielectric constant. If g,, = 0 ,  
relation ( 10) describes nonlinear optical activity character- 
ized by the axial vectors ( 1 1 ). 

2. POLARIZATION SELF-ACTION 

To simplify the equations we choose the connection 
between k and w in the form ( ~ ' E ' ( c L ) , ~ )  = k :c2, and denote 
the absorption coefficient by a = o ' ~ "  ( w , k ) / k c 2 ,  where the 
prime and double prime mark the real and imaginary parts 
of the dielectric constant ~ ( c d , k )  = ~ ' ( w , k )  + i ~ "  ( o , k ) .  In 
addition, we omit the second derivatives of the slow func- 
tions. We obtain then from the Maxwell equations, with 
allowance for the orthogonality of a  and k in an isotropic gas, 

A = ------ 
2 I (2no) 

(2no)2 (- c.+c, + - CJ Q, B = -(CrCi) Q. 
kc3 3 3 kc" 

To study the polarization self-action of wave (1  ), we 
express a in the general form 

a=llalexp(i@), l=l, cos cp+i12 sin tp, 1112=0, 

where the polarization vector 1, the amplitude a l ,  and the 
phase @, as well as the lengths of the polarization semiaxes, 
equal to /cos p I and /sin p I, areslow functions of the coordi- 
nates compared with exp(ik.r). As the light wave ( 1 ) propa- 
gates, the mutually orthogonal unit vectors 1, and l2  can 
rotate around k, describing the rotation of the polarization- 
ellipse axes. For convenience, we direct the Z axis along k ,  
and then the angle = R(z) of the rotation of the polariza- 
tion-ellipse axes of wave ( 1 ) is given by 

1,=1, cos Q+l, sin 61, 11=-1, sin R+1, ens 0, 
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where the positive direction of 0 is clockwise when viewed 
along k. Multiplying Eq. ( 12) by a or a' and separating the 
real and imaginary partsA = A ' + iA " and B = B ' + iB " of 
( 13), we arrive at a closed system of equations: 

d 
-sin 2q-2BNI sin 2q (I-sin2 29) =0, 

(15) 
dz 

d o2g0 
-Q=- + B'I sin 2q, 
dz 2kc2 

where T =  cla12/2~istheintensity ofwave (1  ) ,go = k*go/k, 
and sin 2 p  is expressed in terms of the respective intensities 
I+ and I- of the right- and left-polarized circular waves: 

sin 2rp= ( I+ -1 - ) / I ,  I,= (cos q*sin (p)'I/2, 
I=I++I-, E=E++E-, 

E,=1,2-'"(cos cp*sin 9 )  laIexp[i(kr-at+@,) ] + c.c., 
I 

( 1 8 )  

Here @ (0 )  is the value of the phase at the point z = 0 at the 
entrance to the resonant gas, and the solutions of Eqs. ( 16) 
and ( 17) are used in the expression for Q, , . 

We denote by Sp(z,,) the small deviation from p(z,,) 
resulting from an arbitrary perturbation at the point z , .  For 
linearly (p(z,,) = m ~ / 2 )  and circularly 
(p(z,,) = (2m + 1)~- /4 ,  m = 0, + 1 ,... ) polarized waves 
we obtain from (15) the course of the evolution of the per- 
turbation along the wave propagation direction 

where the plus and minus signs pertain respectively to linear 
and circular polarizations. Therefore circular polarization is 
stable in a resonant gas if B " > 0, and linear if B " < 0, for 
arbitrary values of go. According to ( 18), the polarization 
plane of a linearly polarized wave rotates when z is varied, 
just as in the absence of resonance levels. In the stable regime 
there is no polarization self-action in these waves, and their 
variation with intensity is given by 

wherefl = 2A " for linear polarization andfl = 2(A " + B " ) 
circular polarization. This equation is valid for a gas popula- 
tion Nu, < 0 in the region (a(  > 2flI(z). For a = 0 Eq. ( 14) 
yields I ( z )  = I ( 0 )  [ 1 + flZ(O)z] -'. 

Ifthe waveincident on the pointz = Oat theentry to the 
resonant gas is not circular, we obtain from ( 15 ) 

I 

(2m-l)n/4<q (z)< (2m+ l)n/4,  m=O, *1, . . . . (22) 
On the other hand, for an incident wave that is not plane- 
polarized, we get in place of (2 1 ) and (22) 

a 

ctg 2 q ( ~ )  -ctg 2q1[0)ex~ ( - ~ B X  I dm), (23) 
0 

mn/2<9 (z) <(m+I)  n/2, m=O, *I, . . . . (24) 

It can be seen that the polarization ellipse initially elongated 
along a certain axis approaches continuously a circle if 
B " > 0, whereas for B " < 0 it becomes even more elongated. 
This deformation of the polarization ellipse is much faster on 
a homogeneously broadened ( 1 < v 2 )  transition than on an 
inhomogeneously broadened (7 < 1 ) one, since Z2 ( 6 , ~ )  
takes on in (20) essentially different values in these cases. 
For example, at resonance 6 = 0 we have 

~ ~ ( 0 ,  T,) = f  for l ~ $ "  Z2(0, 11) =n"11/2 for rlKl. 

In addition, relations (21)-(24) show that in the case of 
elliptic polarization the value of p ( z )  varies monotonically 
and does not go outside one of the sectors 

(2m-1) n/4<(p(z)<mn/2, m=O, *I, .  . . , 
which is specified at the entry into the gas. The direction of 
rotation of the vector E remains therefore unchanged as the 
wave ( 1 ) propagates, i.e., the sign of the difference I+ - I -  
is constant. 

A measure the polarization-ellipse deformation per unit 
length of the optical path is the derivative of the ratio of the 
lengths of the minor and major axes: 

where e = 2 ( 1 + 1  ) ' I 4 ( I  + 1'/2)-1 is the eccentricity of 
the polarization ellipse. If the major and minor semiaxes are 
respectively Isin p / and Icos p 1, the substitution tan p 
-+cot q~ is made in (25). The sign of B " in (25) governs the 
direction of the polarization-ellipse deformation, towards a 
circle (e -0) or towards a segment (e- 1 ) , in full accord 
with the condition ( 19) for the stability of the circular and 
linear polarizations. Since the derivative (25) does not re- 
verse sign following specular reflection, the direction of the 
polarization-ellipse deformation is not changed by specular 
reflection, i.e., a cumulative effect takes place. Multiple 
specular reflection, in view of the cumulation, causes the 
elliptic polarization to turn continously into circular or lin- 
ear, which are stable in a gaseous resonant medium. 

Relation (25) can also be expressed in terms of the di- 
chroism vector h: 

d ok2 (kh) 2cZB" (I+-I-) 
-tgcp= -, h=k 
dz 2kZc2 o2 
The polarization-ellipse rotation angle dfl/dz per unit 

length is expressed in terms of the summary gyration vector 
g =go + f by the simple equation 

where the nonlinear gyration vector f is given by 

The total rotation angle f l ( z )  - R ( 0 )  takes the form 
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(C2-C,) 1 ( I+- I - )  dz. ( 2 8 )  
0 

In the absence o f  resonance levels we have d,,,, = 0  and 
Eqs. (26 ) - (28)  describe the known rotation o f  the polariza- 
tion ellipse in an active medium without deformation o f  its 
shape. The presence o f  resonance levels leads to polarization 
self-action that alters both the rotation angle ( 2 8 )  and the 
shape o f  the polarization ellipse. Reversal o f  the sign o f  the 
nonlinear rotation angle SZ(z) - R ( 0 )  - g,? with change o f  
the sign o f  A  or o f  I ,  - I  agrees with experiment.' Equa- 
tion ( 2 8 )  differs from that obtained in Ref.  10 for the particu- 
lar case o f  a homogeneously broadened transition 1 <v%nd 
g,, = 0, in view o f  computation errors in this reference. 

In contrast tog,, , the nonlinear gyration vector ( 2 7 )  has 
opposite directions for positive and negative populations 
N,,,, and also for right-hand ( I +  > I  ) and left-hand 
( I  I  ) rotations o f  the vector E. It depends strongly on 
the type o f  the resonant transition J,, - J , ,  on the depolariz- 
ing atomic collision, and on the ratio 2ybf,'/ku o f  the homo- 
geneous to inhomogeneous widths. In addition, the vector 
( 2 7 ) ,  as a function o f  A, reverses sign when the the detuning 
from resonance passes through zero. All this makes it possi- 
ble in experiment to separate the contributions o f  the optical 
activity from the natural optical activity. 

In a gas with natural optical activity we have f = h  = 0  
and the rotation direction o f  the polarization ellipse is not 
changed by specular reflection. On passing forth and back 
along the same path in such a gas, the polarization ellipse 
returns to the same position. In a gas with nonlinear optical 
activity g = f, h#O and g,, = 0, however, specular reflection 
transforms right-hand rotation o f  the ellipse into left-hand 
and vice versa, i.e., cumulation is produced in the nonlinear 
rotation angle upon specular reflection. In the general case 
o f  a gas with both natural and nonlinear optical activities, 
g = g,, + f, the contributions from g,, cancel out after specu- 
lar reflection and forth and back passage along the same 
path. After returning to the initial point, the polarization- 
ellipse axes are rotated only by the polarization self-action 
connected with f. In the case o f  multiple specular reflection, 
the nonlinear rotation angle is increased by cumulation and 
tens to its limiting value. 

3. DISCUSSION 

The peculiarities o f  the polarization self-action depend 
essentially on the sign o f  the difference C, - C , ,  which de- 
pends on the type o f  the resonance transition J ,  -- J ,  and on 
the values o f  y:,"(ybl') and y ~ " ( y ~ , " ) .  For the simplest 
atomic transitions we have 

for J,='/2-+Jb='/2, ( 2 9 )  

c,=cl=(yb(i)--yb(2))/gyb(1)yb(Z) for Ja=O+Jb=I.  ( 3 0 )  

C~-C,=(yo('1-ya(2))/9ya(11ya(2) for J,=l-lb=O, ( 3 1 )  

T o  be specific, we put first g,, = 0  and N o ,  > 0. Since the 
derivative d Z ,  ( g , v ) / d (  is positive for { = A = 0  is positive, 
the signs o f  Z ,  ( 6 , ~ )  and A are the same near resonance. 
Consequently, in the case ( 2 9 )  at A  > 0  polarization-ellipse 
axes rotate to the left i f  I+ > I  and to the right i f  I+ < I ,  
and since ( 2 0 )  is positive the stable polarization is circular. 
The  sign o f  the difference C ,  - C ,  in (30) - (32)  is the same 
as for y;" - yL2' and yb" - y?'. Theoretical  calculation^'^ 
for the atomic transitions 0 s  1 and 1 - 1 yield yS1' > yS2' and 
ybl' > yy', which corresponds for A > 0  to  right-hand rota- 
tion o f  the polarization ellipse axes at I +  > I and left-hand 
i f  I ,  < I  , the stable polarization being the linear one. W e  
emphasize in this connection that in the absence o f  depolar- 
izing collisions the atomic transitions OF? 1 and 1 - 1 are po- 
larizationwise neutral, since the axial vectors ( l l  ) vanish. 
An  experimental confirmation o f  the obtained polarization 
rules for the transitions OF? 1 and 1 - 1 verifies the validity o f  
the model o f  depolarizing collisions. 

In the case o f  J, = J-- J,  = J transition ( Q  mode) and 
J> 1 we have C-, - C ,  > 0, SO that the left-hand polarization 
is the stable one, and the polarization-ellipse axes are rotated 
to the right in this transition i f  A  > 0  and I  + > I .  For the 
transitions J,  = J-- J,  = J + 1 (R-mode)  and 
J ,  = J + 1 -- J,, = J (P-mode) and for J >  0  the opposite in- 
equality C2 - C ,  < 0  holds. The result is left-hand rotation 
o f  the ellipse axes under the previous conditions A > 0  and 
I ,  > I _ ,  and it is the circular polarization which is stable. In 
all cases, the rotation o f  the polarization-ellipse axes reverses 
direction i f  the changes A-  - A or I+ > I  - I+  < I  is 
made. These rules permit experimental identification o f  the 
type o f  the resonant transition J, - J , .  It must be remem- 
bered here that the very simple atomic transitions (29) -  
( 3 2 )  are different from all others with respect to the laws o f  
pelarization o f  the propagating wave ( 1 ). 

The examples presented pertain to an absorbing gase- 
ous medium with N u ,  > 0. In a gas with inverted population 
Nu,, < 0  the rotation direction o f  the polarization-ellipse axes 
is reversed, and the linear and circular polarizations in the 
stable regime change places. 

I f  g,, = 0 ,  the rotation direction o f  the polarization el- 
lipse axes is reversed for any transition J,  - J,  i f  the frequen- 
cy w passes through the resonance A  = 0 in the course o f  
scanning. Since w and w,, are known in this case, the equality 
A  = w - w,, - ALL' = 0  permits an experimental determina- 
tion o f  the collision shift ALL' o f  the resonance levels. By 
varying the pressurep o f  the buffer gas at fixed temperature, 
one can also obtain the derivative dAbf,'/dp. 

In the case g,, # O ,  the value o f  g,, is determined experi- 
mentally from the rotation o f  the polarization plane o f  a 
linearly polarized waves. This makes it possible to determine 
experimentally, for propagation o f  an elliptically polarized 
wave, the nonlinear rotation angle R  ( z )  - R ( 0 ) .  The latter 
can yield the same information and by the same methods as 
in the case go = 0. 

The stationary regime considered above sets in after a 
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rather long time interval 1 4 y r ' t  and 1 4 y r ' t  for x = 0, 1 ,  
2. This should be kept in mind in the case of a highly rarefied 
gas. 
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