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We discuss the angular features contributed by cyclic diagrams to the multiply-scattered light 
intensity in a bounded randomly inhomogeneous medium occupying a three-dimensional semi- 
infinite space with a plane boundary. Ignoring wave polarization effects, the cyclic-diagram 
contribution may be expressed in terms of the Green's function for the transport equation 
governing the radiation leaving the medium. This Green's function can be calculated in the 
diffusion approximation, with boundary conditions specified for the normal logarithmic 
derivative of the radiation intensity. Our main result is a demonstration of the existence, within 
the scope of the assumptions, of three regimes for the cyclic-diagram contribution to the radiative 
intensity as a function of the angle 8measured from the backwards direction. These three regimes 
are described for a number of different values of the mean cosinep of the scattering angle from an 
effective inhomogeneity in the medium. All three cyclic-diagram regimes have been confirmed 
experimentally, with a positive triangular peak at 9 = 0. I f p  <p,, = f ,  the cyclic-diagram 
contribution decreases with increasing 8 ,  tending to zero as 8 -2. F o r p  = p,, , this contribution 
goes to zero as 9- 3 .  Finally, fo rp  >pc,, the cyclic-diagram contribution passes through zero as 8 
increases, reaches a negative minimum, and ultimately tends to zero through negative values as 
- 9 - 2 .  

1. INTRODUCTION 

The coherent enhancement of back-scattered electro- 
magnetic or acoustic waves in a randomly inhomogeneous 
medium is presently of great interest by virtue of its impor- 
tance in the general theory of multiple scattering. The effect 
was first noticed in a theoretical treatment of back-scattered 
electromagnetic waves in a turbulent plasma in the second 
Born approximation,' and to all orders of perturbation theo- 
ry among pairwise correlated electrons in a plasma.2 The 
enhancement of back-scattered radiation superposed on a 
background of multiply forward-scattered radiation was 
demonstrated in Ref. 3 for the special case of a turbulent 
medium with large-scale inhomogeneities. This result was 
subsequently i n t e r ~ r e t e d ~ - ~  to be the physical result of a sin- 
gle wave traversing the same large-scale inhomogeneities 
twice. Barabanenkov7 established the fact that the enhance- 
ment of back-scattered radiation is independent of the statis- 
tical properties of the fluctuations in the dielectric constant 
of either a continuous medium or one consisting of arbitrary 
size scattering centers in a discrete medium, and developed a 
method based on radiative transfer theory for computing the 
angular distribution of amplified scattered intensity close to 
the backward direction." 

Backward scattering enhancement is characteristic of a 
variety of wave fields and a number of randomly inhomogen- 
eous media for which the Green's function of the field is 
time-reversal invarianL9 An analogous phenomenon in the 
theory of mixture conductivity lo  is known as weak localiza- 
tion. The phenomenon is manifested as a discrepancy be- 
tween the conductivity of a disordered system and the value 
predicted by classical kinetic theory. ' I s L 3  Optical and acous- 
tical experiments enable one to detect weak localization of 
waves through enhancement of the back-scattering of light 
in a dense aqueous suspension of submicron latex or polysty- 
rene particlesL3-l6 or in a disordered solid medium contain- 

ing submicron  particle^,'^.'^ and through back-scattering of 
sound in an ensemble of hard scatterers.I9 In the optical ex- 
periments, one measures the angular distribution of the scat- 
tered luminous intensity from the suspension or the disor- 
dered solid medium close to the backward direction; the 
dependence of the measured angular distributions on the po- 
larization of the incident and scattered light is then investi- 
gated. A theoretical interpretation of the measurements is 
given in Refs. 20-24, and is based on a calculation of the 
contribution of cyclic diagrams,' also known as maximally 
connected or fan diagrams, l o + '  ' 3 2 5  to the lumimous intensity 
of the radiation scattered by the medium. In this calculation, 
the contribution of a second-order cyclic diagram can be 
computed directly," while the sum of higher-order contri- 
butions from such can be obtained7 using a 
diffusion approximation. Note that the proposed theoretical 
interpretation of the measurements is limited to a model 
consisting of point scatterers (effective inhomogeneities). 
However, taking the experiment described in Ref. 14 as an 
example, the size of the polystyrene particles in aqueous sus- 
pension is comparable to the wavelength of light. In compar- 
ing their calculations with the results of that experiment, 
Akkermans et a1." had to replace the extinction length for 
light in their final formula with the transport length for ex- 
tinction. 

In the present paper, we calculate the contribution 
made by cyclic diagrams to the luminous intensity of radi- 
ation scattered by a finite, randomly inhomogenous medium 
with an arbitrary ratio between the effective inhomogeneity 
scale and the wavelength. For simplicity, we solve this prob- 
lem by starting with the scalar Helmholtz wave equation, 
which is in satisfactory agreement with the optical experi- 
mentsI4-l8 if the incident and scattered radiation have the 
same polarization. The contribution of the cyclic diagrams is 
represented as a Fourier transform of the solution of the 
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transfer equation along the boundary of the medium, corre- 
sponding physically to the scattering function of a collimat- 
ed beam of finite width. Close to the backward direction, the 
main contribution to the transform comes from well-sepa- 
rated entry and exit beams. This forms the basis for use of the 
diffusion approximation in solving the radiative transfer 
equation in an optically thick medium. The boundary condi- 
tions for the diffusion equation are formulated to make use 
of the requirement that there be no incoming scattered radi- 
ation at the boundary of the medium.26 We discuss other 
versions of the boundary conditions, specifically those asso- 
ciated with the vanishing of the radiative intensity at the 
effective boundary of the m e d i ~ m , ' - ~ . ~ ' - ~ ~  as well as those 
derived from an exact solution of the transport equation for a 
semi-infinite space. We perform actual calculations for a me- 
dium with such a geometry. We show that for sufficiently 
large-scale inhomogeneities, the contribution made by cyclic 
diagrams is responsible for the enhancement of "almost 
backward" scattering (O< (8 ( < a o ) ,  and the diminution of 
scattering in the adjoining cone (a0<  179 I < 1 ) . This result is 
consistent with the usual interference-pattern approach and 
with the prediction made by Vinogradov et al.' 

2. THE CONTRIBUTION OF CYCLIC DIAGRAMS TO THE 
SCATTERED LUMINOUS INTENSITY 

Let a monochromatic plane wave exp(ik,por) with 
wave number k, and directional unit vector so be incident 
upon a randomly inhomogeneous medium. The correlation 
function of the field scattered by the medium will be gov- 
erned by the incoherent scattering operator7 U, which obeys 
the relation 

Here G(r,r l)  is the Green's function for the wave field, 
G,(r) = exp(ikor)/( - 4n-r) is its value in a homogeneous 
medium, (...) represents an ensemble average, and the aster- 
isk denotes complex conjugation. We introduce the Fourier 
transform 

0 (p, p'; q, q') = 1 d3r1 d3rlf d3r2 d3r2'U(r1, r,'; r2, r2') 

exp [-i (prl-p'r,') + i  (qr2-q'r,') ] (2)  

and denote by fi(s,sl) its diagonal elements on the k sur- 
face, 

where s and s' are unit vectors. In addition, we denote by 
n,,,, (r)  the mean energy flux vector obtained by subtracting 
off the energy flux vector of the mean field. According to 
( 1 ) , in the Fraunhofer zone of the bulk medium, 

This signifies that the quantity fi(s,sl) makes its appearance 
as a differential cross section for incoherent (or partially 
coherent) scattering by the m e d i ~ m . ~  Besides the Fourier 
transform ( 2 )  of the kernel of the incoherent scattering op- 

erator with respect to its four arguments, it is also conven- 
ient to employ its Fourier transform with respect to the two 
differences ( r ,  - r,) and ( r ;  - r; ), taking 

In particular we find that 

U (s, I!) = j d 3 ~  d3R' U(R. k0si Rr, kOsf) .  

Let us now suppose that the medium occupies a plane 
layer 0 < z  < L. Within this layer, the kernel of the incoher- 
ent scattering operator is translationally invariant in any 
plane perpendicular to the z-axis. The right-hand side of (5  ) 
is then proportional to the cross-sectional area Z of the layer, 
which enables us to put 

u" (s, so) 
I (s)  = ---- 

u (s, so) 
, U" (s, so)  = --- 

I S ~  I (4n) '): ' 
Of these two dimensionless quantities, the first is the lumi- 
nous intensity of radiation scattered outside the layer,7 and 
the second is essentially the albedo in a given scattering di- 
re~tion.~. ' '  

The integrand on the right-hand side of ( 6 )  can be 
found by solving the radiation transport equation. To check 
that this is the case, we first denote the mean bilinear combi- 
nation of Green's functions (G  X G *) and the bilinear com- 
binations (G  ) X (G *) and GoX G ,* by @, @,, and @,,, re- 
spectively. The mean Green's function ( G )  satisfies the 
Dyson ( D )  equation with mass operator M(r , r l ) .  The quan- 
tity <P is a solution of the Bethe-Salpeter (B-S) equation, 

with intensity operator K(r, ,  r ; ;  r,, r;); for conciseness in 
(8 ) ,  we have omitted arguments and convolution integrals 
of the type ( 1 ) . The Feynman diagrams contributing to the 
kernels M and K may be decomposed into single-group and 
multigroup diagrams.7 The single-group diagrams are con- 
structed from scatterers belonging to a single correlation 
group which are joined by a single correlation function. The 
contribution they make to the kernels M and K falls off in the 
same way as the correlation functions of the scatterers as 
their arguments become more widely ~ p a c e d . ~ '  Multigroup 
diagrams, containing several scatterer correlation groups, 
contribute to M and K i n  a manner that falls off with argu- 
ment spacing as some power of the Green's function. Multi- 
group diagrams include cyclic diagrams. 

In the kernels M and K, let us first retain only single- 
group diagrams: M-  M,, K- K , .  We then make use of the 
Fraunhofer approximation27 in solving the D and B-S equa- 
tions, taking the effective inhomogeneities in the medium to 
be in the Fraunhofer zone relative to one another and to the 
source and observation points. 

In the Fraunhofer approximation, the mean Green's 
function can be written out with the aid of the effective com- 
plex wave number. Take the Fourier transform of the kernels 

11 18 Sov. Phys. JETP 67 (6), June 1988 Yu. N. Barabanenkov and V. D. Ozrin 11 18 



@, @,, and Qo0 with respect to coordinate differences of the 
type (5), introducing a factor ( 2 ~ ) ~ '  on the right-hand 
side. In the Fraunhofer approximation, these spectral densi- 
ties are concentrated about p and p' on the k :-surface28, 

(@, @ o ,  @oo)iR, p; R', P ' )  

= (F ,  Po, Foo)(R, s;  R', sf)k0-'6(p-k,)6(p'-k,) ,  

s=p/p, s'=p'lp'. 
(9) 

The B-S equation (8) then reduces to the radiative transfer 
equation: 

(sVR+d-I) F (R,  s;  R', s') = (4n) -26'3' (R-R') 6 (2 )  ( s - s f )  

+ j 6 s"  W(s , s" )F(R , s" ;R1 , s ' ) ,  (10) 

W (s ,  s') = (4x )  -' 9 d 3 ~  d3r d3r' exp[-ik, (sr-s'rr) ] 

Barabanenkov et have given an explicit expression for 
the scattering coefficient W(s, s') in terms of the plane-wave 
scattering amplitude for clusters with N> 1 scatterers, and in 
terms of cluster correlation functions. The kernel FO satisfies 
Eq. ( 10) without the term containing the scattering coeffi- 
cient; if we also discard the term with the extinction coeffi- 
cient d - I ,  we obtain the equation for Foo. Substituting (9)  
into ( 1 ) gives 

The subscript 1 here indicates the single-group approxima- 
tion; arguments R and s  have been omitted, as well as convo- 
lution integrals over these arguments. The operator 
( ~ T ) ~ s V ~ ,  which functions as the inverse of Foo, enables one 
to solve Eq. ( 12) for U, (Ref. 7). Substituting the result into 
(6) and (7), changing notation I -  I , ,  and performing some 
rearrangement, we have 

The solution of the transport equation (10) without the 
source term defined by the identity (12) may be written as 
Fs (R, - R;; z,s; z', s'), where R, and R; are the compo- 
nents of R and R' perpendicular to the z-axis. In the inte- 
grand of Eq. (13), this solution characterizes scattering by 
the medium of a narrow beam incident upon the z = 0 sur- 
face at the point R; = 0, z' = 0 in the direction s' = so, and 
leaving the same surface at the point R,,  z = 0 in the direc- 
tion s. Making use of the transport equation, ( 13) may be 
brought to the form 

I l=I( l )+I i ' ,  

1 ,' ( s )  = 2n i4a)2  J R, dRL 5 J dz erp (-az-o'z') 
Is21 0 0 

This representation of the luminous intensity of the scat- 
tered radiation, where I"' is associated with simple scatter- 
ing, is less transparent than (13), but it is computationally 
more convenient, as it contains the complete solution of the 
transport equation (10) right in the integrand. 

In the present approach to solving the Dyson and 
Bethe-Salpeter equations, when their kernels retain only sin- 
gle-group diagrams, the latter reduces to the transport equa- 
tion. For a narrow scattering cone in the backwards direc- 
tion (SZ -so), however, it has been found7x8 that the 
single-group approximation is not sufficient, and the opera- 
tor must also incorporate the contributions of cyclic dia- 
grams, whose sum we denote by K c .  Perturbation theory 
gives the solution of the Bethe-Salpeter equation with inten- 
sity operator K, + Kc as UZ U, + U,, where U, is the con- 
tribution of cyclic diagrams to the incoherent scattering op- 
erator. Based on the reciprocity relations between the 
kernels M I  and K,, we obtain7 

where U ; is the incoherent scattering operator U, minus its 
value in the single-scattering approximation. Using (5), we 
can reduce this equation to the form 

U l f  ( R ,  -xsi;  R', I ~ s , ) ,  

The quantity U ;  here is analogous to the expression in the 
integrand of (6), and it can be determined by solving the 
transport equation. Successively substituting Eqs. ( 16) into 
(7), with I - I , ,  we have 

The prime on F: signifies that the single-scattering contribu- 
tion has been taken out of F,. Just as ( 13) is transformed 
into (14), the contribution of cyclic diagrams to the scat- 
tered luminous intensity ( 17) may be brought to the form 

J j h s '  SS" W ( - s i ,  s f )  F (R,: z, s f ;  z l ,  s") W (s", s , )  , 

If we restrict our attention in the kernel M to single-group 
diagrams, and in the kernel K to single-group and cyclic 
diagrams, then the total scattered luminous intensity will be 

It is clear from (14) and (18) that when s = -so, I ;  (s) 
and I, (s) will have identical values, which is a manifestation 
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of back-scattering enhancement. As the scattering deviates 
from the backwards direction I, (s) should decrease, due to 
oscillations in the Bessel function J,(pR, ) appearing in the 
integrand in Eq. (18). The specific nature of this decrease 
will be discussed in the following sections. 

3. DIFFUSION APPROXIMATION 

When the parameterp is small, the main contribution to 
the integral ( 18 ) comes from large R, . It is natural then to 
make use of the diffusion approximationz6 to solve the trans- 
port equation ( lo),  with 
F(RrRL1; Z, S ;  z', s')  

= ( 4 n ) - Z [ 1 - 3 D ( s V - s ' V ' )  ]F(R,-R,'; z, 2'). (20) 

Here D is the diffusion constant 

wherep is the mean of the cosine of the scattering angle for a 
plane wave scattering from an inhomogeneity in the medi- 
um. The function F(R,; z, z') satisfies the equation 

with boundary condition 

the sign of the second term is reversed at the other surface, 
z = L. The parameter y is introduced here to account for 
different boundary conditions: y = 1 when the total inward- 
directed flux at the surface z = 0 tends to zero, for an iso- 
tropic source located at z', with 0 <z' < L; y = is obtained 
when one considers the behavior of the solution to Eq. ( 10) 
in integral form in the diffusion limit R, , z i%d for the near- 
boundary region O(z 5; d, with an isotropic scattering coeffi- 
cient; for y = z0/2D, the asymptotic solution of (22), (23), 
where z0z0.71d is the extrapolated length in the Milne 
problem,26 is of the same form as in the case of the boundary 
condition F(R, ; z = - z,, z') = 0 used in Refs. 7,9, and 2 1- 
24; finally, one of the authors (V.D.O.) has obtained an ex- 
act solution to ( 10) for a semi-infinite space (L -. cc ), which 
for R ,  -. cc and z, z'-d behaves in the same way as the 
asymptotic solution of (22), (23) when y = 2,/2D, where - 
zo/d is a number for which a crude estimate is (4z0 - d) /  
3 <2, <zo. 

We should also point out that in contrast to the problem 
in an unbounded medium, the gradient terms in (20) are not 
small in comparison with F in the near-boundary region 
O<z, z' 5 d, which in fact provides the main contribution to 
the integral ( 18). The problem posed for the Laplace equa- 
tion (22) is solved by Fourier transformation in the trans- 
verse coordinates. Using the resulting solution, the quadra- 
tures of ( 18) are calcualted in final form. 

We can also generate the value of ( 14) in the diffusion 
approximation (20)-(23 ) . For a semi-infinite medium, we 
find that 

Y S o z  3 It' ( s )  = - 
2n 2~ soz+ I S ,  1 

Ic (s) = - 
1-p-2pslZpd 3  ; ;  I-p+2yp,, + (1+p)s t z ]  

4. ANGULAR DEPENDENCE OFTHE CONTRIBUTION FROM 
CYCLIC DIAGRAMS 

Let us analyze these results for the simplest case, that of 
normal incidence at the boundary of the medium, and small 
angles 9 :  so, = 1, s, = - cos 9,19 1 4 1. We begin by assum- 
ing that I,(9) =I ; (0).  Then (24) and (25) yield 

In the limit of small q, we then obtain 

6(f ' )=2(1-q14q,) ,  q K l - y ,  
(27) 

4ql!,= ( 1 - p )  ( l + 2 y / 3 ) 3 [ 2 y  ( l + y / 3 )  I- ' .  

The curve for S ( 9 )  therefore has a triangular peak at 9 = 0 
with halfwidth q,/, at the half-power level. In the event that 
we have fine-scale irregularities, p 4 1, Eq. (27) is the same 
as the result obtained in Ref. 21 if y = 3zo/2d. For large- 
scale inhomogeneities, 1 - p ( 1, 

4ql!,= ( 1 - p )  ( 1 + 2 y / 3 ) 3 [ 2 y  (1+y /3 )1 - '  

and up to a numerical factor of order unity, the correspond- 
ing value of the angular variable a,/, is (k,J)-', where 
2 = d /( 1 - p) is the transport length for extinction. Over- 
all, the behavior of S ( 9 )  is a strong function of the mean 
cosine. For p = p,, = 4, it takes the form 

For p <p,, , 6  still falls off monotonically with increasing q, 
but displays a different asymptotic behavior: 

Finally, forp >p,, , the contribution of cyclic diagrams 
(25) at sufficiently large scattering angles is negative, and 
the curve for S ( 6 )  crosses the S = 1 axis at q = q,, attains a 
minimum at q = q, , and proceeds to the asymptote (29), 
where S < 1. The value of q, and a crude estimate for q at the 
minimum are 

q o = 2 ( l - p )  ( 1 + 3 ( 1 + p ) / 4 y )  ( 3 p - I ) - ' ,  
(30) 

qm=[ ( 3 t - y )  ( l - p ) / 2 y 1 ' 1 2 ,  1 - p K 1 .  

For y = 1, the three behaviorial regimes for S ( 9 )  are 
illustrated in Fig. 1, where from top to bottom, the curves 
correspond to p = 0, 4, +, 0.93, 0.99, and 1. In Fig. 2, we 
have plotted the function (26) as applied to the experimen- 
tal conditions described in Ref. 14, where A = 633 nm, 
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I(O), which in particular contains a contribution from single 

FIG. 1. 

d = 2.6pm, andp = 0.93. If we substitute these parameters 
into (27) and (30), we obtain 6,,,=1.2 
mrad(q,/,=0.03), 6,=7.4 mrad(qo=0.19), and 
9, = 15 mrad(qm = 0.37). The experimental curve for the 
back-scattered intensity is given in Ref. 14 over the angular 
range 0 < 6 < 10 mrad, and gives a conical half angle at half- 
maximum of (6,12),,, = 1.6 mrad. 

In closing, we point out that the triangular peak in the 
back-scattered intensity is directly related to the P-R F3 
asymptotic behavior of the solution of the diffusion equation 
(or the diffusive asymptotic behavior of the exact solution of 
the transport equation) as R, + a, which in turn is due to 
the presence of a single sharp boundary, where2' FzO. For a 
plane layer with boundary condition (23), the behavior goes 
asymptotically as F-exp( - bR, ) /R !I2, and from ( 14) 
and ( 18), we obtain 

A simplified treatment of the boundary conditions30 
yields a similar result. Equation (3  1) makes it clear that the 
narrow maximum in S ( 6 )  has been rounded off; the finite 
thickness of the layer produces an analogous effect. We 
further note that although the diffusion approximation 
makes an exact calculation of the linear dependence of S (6) 
possible at small 19 1, it also lowers the maximum intensity 

I I I I 

YO BO mrad 

scattering. 
The authors are grateful to L. A. Pokrovskii, and they 

thank S. M. Rytov and V. I. Tatarskii for discussions of this 
work. 

" According to Refs. 2 and 7, phenomenological radiation transport theo- 
ry does not take the enhancement of backwards scattering into consider- 
ation. Nevertheless specific properties of this effect can be calculated 
using the transport theory machinery (see also Ref. 8). 

" We should mention that the single-group approximation for the kernels 
Mand K includes terms characteristic of an independent-scatterer mod- 
el, which fall off with argument spacing as the potential of an isolated 
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