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The density-matrix method is used to investigate the dynamics of a particle in a symmetric two- 
well potential. In second order of perturbation theory an expression is obtained for the relaxation 
rates and renormalization of the frequency of oscillations of the elements of the density matrix. 
The ground state of the system is investigated in the same approximation. It is shown that the so- 
called incoherent terms damp exponentially at large times. The simple picture of the 
renormalizations, leading to localization at T = 0 and for a sufficiently strong interaction with 
the thermostat, is also incorrect. 

The dynamics of a quantum particle in a two-well po- 
tential in the presence of interaction with a thermostat has 
recently been under active study. The main results were ob- 
tained in Refs. 1-3 and the review Ref. 4. Either the Hamil- 
tonian method for a two-level system is used,' or the assump- 
tion is made that there is a discontinuous solution in the 
path-integral method.' 

However, in the justification of the existence of a dis- 
continuous solution there arise certain difficulties associated 
with the fact that the amplitude of fluctuations about the 
extremal path grow as the temperature is lowered. The 
eigenvalue of the operator S'S[q]/Sq2 (S is the effective ac- 
tion and q is the particle coordinate), responsible for the 
growth of fluctuations in the symmetric two-well potential, 
tends to zero with decrease of the temperature, exponential- 
ly in the absence of viscosity and as a power in the presence of 
viscosity. Therefore, in the decay problem the method of 
instantons requires further improvement. To study the rate 
of relaxation in the approximation of a two-level system it is 
necessary to perform extremely laborious summations. Here 
one makes a number of additional assumptions, which, ap- 
par-, ore incorrect. With decrease of the temperature 
there is a sharp slowing of the rate of relaxation of a particle 
in a symmetric two-well potential.'-" The assumption that 
localization appears at T = 0 and at a value of the viscosity 
greater than a certain threshold value seems to us to be incor- 
rect. To verify this assertion we shall investigate the relaxa- 
tion process at a low temperature and low viscosity. Using 
perturbation theory we shall find corrections to the oscilla- 
tion frequency up to terms - $ a n d  shall show that the sim- 
ple picture of the renormalizations in Refs. 1-4, which leads 
to localization, is incorrect. We note also that even for com- 
paratively small values of the viscosity at low temperatures 
the ground state changes substantially. The difficulties in the 
calculation of the dynamics of a particle in a symmetric two- 
level potential are connected, apparently, with the change of 
the relaxation regime from a situation with weak damping, 
when the inverse relaxation time r is proportional to A-the 
splitting of the levels in the two-well potential (or  to the 
temperature T, if Ts A), to the situation when coherent pro- 
cesses are unimportant and r - A'. 

1. EQUATION FOR THE DENSITY MATRIX OF A PARTICLE 
INTERACTING WITH ATHERMOSTAT 

The dynamics of a particle interacting with a thermos- 
tat can be described using the density matrix b(t,  p, $) 
which depends on the time and the coordinates p  and @. The 
advantage of this method is that fast processes are taken into 
account exactly in the zeroth approximation. The value of 
the density matrix at time tf is expressed in terms of its value 
at time t, by means of the path integral 

Here the path integral is taken over all values of p and @ 
at the times from t ,  to t,. The effective action A  [p, $ 1  can be 
represented in the form 

where A,,[p] is the effective action in the absence of interac- 
tion with the thermostat: 

I, 

The functional A , [ p ,  $ 1  is determined by the interaction of 
the quantum particle with the thermostat. For a tunnel junc- 
tion, shunted by a normal resistance R ,  , the functional 
A2 [p, @] is equal toh 
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The functions g -  ' < ' ( t , t l  ) depend only on the difference of 
the times, and their Fourier components are equal to 

where Tis the temperature of the thermostat. In the follow- 
ing we shall need only the convolution of these functions: 

where 

For a linear interaction of the quantum particle with a set of 
oscillators".' the functional A, [ p ,  q ]  has the same form ( 4 )  
with the replacement 

sin2 [ -f - 
2 

( 8 )  

Below we shall assume that the interaction with the 
thermostat is effectively cut off at frequencies w,  -a,, 
where fl,, is the frequency of small oscillations about the 
minimum of the potential V ( p ) :  

We shall assume also that the potential V ( p )  is an even func- 
tion of p, having two minima lying at the points p,,. In 
this case, in the absence of interaction with the thermostat, 
the splitting of the levels is determined by the transparency 
of the barrier,' and for the particular case of a potential 
formed from two parabolas, 

themagnitudeSE, of thesplitting ofthe N th level is equal to 

where T ( N )  is the Euler gamma-function. 
The interaction with the thermostat leads to a rear- 

rangement of the ground state, to a change in the magnitude 
of the splitting, and to relaxation to the ground state. At low 
temperatures ( T < n ,  ) we can neglect the presence of the 
upper excited states and take only the transitions between 
the two lowest levels into account. Henceforth we shall de- 
note these lowest levels by the numbers 1 and 2. 

We represent the density matrixb in the form 

where 3,,, ( p )  are the eigenfunctions of the zeroth Hamilto- 
nian with potential V ( p ) .  The density-matrix elements p::' 
satisfy the condition 

Since we neglect the occupation of the upper levels, we have 

The probability W (  1 ) of finding the particle in the left well 
and the probability W ( 2 )  of finding it in the right well are 

expressed in terms of the density-matrix elements, with 
allowance for the formula ( 14), as follows: 

where the quantity A is the spacing between the levels 2  and 
1 : 

in the absence of interaction with the thermostat. 
To  understand the relaxation process it is useful to con- 

sider not only the situation in which, at the initial time, the 
particle was in one of the wells (in this case, p: ( 0 )  = p: 
( 0 )  = 1/2), but also the situation when, at t  = 0, there exists 
a nonzero flux from one well to the other. 

As follows from formula ( 15), the probability of find- 
ing the particle in one of the wells is determined entirely by 
the nondiagonal elementsp: and p: and does not depend on 
the magnitude of the diagonal element p i .  However, the 
character of the rearrangement of the ground state is deter- 
mined by the element p ; ,  and for this reason we shall also 
find this density-matrix element below. 

Substituting the expression ( 12) for the density matrix 
into formula ( 1 ), we obtain 

We shall seek an expression for the elements d.(tj ) of the 
density matrix using perturbation theory in the coupling 
constant of the quantum particle with the thermostat. 

2. PERTURBATION THEORY IN THE COUPLING CONSTANT 

In the formula ( 17) we shall substitute the expression 
( 2 )  for the quantity A [ p ,  $1 and expand the exponential in 
powers of A2 [ p ,  @ I .  As a result we obtain for the density- 
matrix elements 6 (t ,  ) a perturbation-theory series in the 
interaction of the quantum particle with the thermostat. In 
the perturbation-theory calculations it is necessary to bear in 
mind that with the time varying in the interval t2, t l  ( t 2  > t , )  
we have the equality 

where II; is an eigenfunction of the zeroth Hamiltonian and 
E, is the corresponding eigenvalue. 

After simple calculations, for the first-order terms in 
the right-hand side of formula ( 17) we obtain 

x [ J' dt enp I i (E,-L..) 

exp [it,(Ej-Ek-e) 1- exp it, (EJ-Ek-&) 1 + i 
Ej-Ek-E 

1075 Sov. Phys. JETP 67 (5), May 1988 Yu. N. Ovchinnikov 1075 



Setting tf - ti % A  ( A  is the spacing between levels 1 and 2 )  
and retaining only terms proportional to tf - ti in formula 
( 19), we obtain the well-known equation for the density ma- 
trix4.' 

where 
2 a=- 
nRNe2 

( l l cp12 )2  

is the effective coupling constant of the quantum particle 
with the thermostat, and 

From formula (2  1 ) we find the renormalization of the oscil- 
lation frequency and the magnitudes of the inverse relaxa- 
tion times y,,, of the density-matrix elements in first order in 
a: 

&=A ( 1 - a n 2 1 ) ,  ( 2 3 )  

y l = a n 2 M ( A ) ,  y , = a n 2 M ( A ) / 2  

( y ,  is the inverse relaxation time of the diagonal element of 
the density matrix, and y, is that for the nondiagonal ele- 
ment). 
It follows from formula ( 19) that, apart from the terms pro- 
portional to tf - t i ,  there appear terms that do not depend 
on t f  - ti and terms that damp as ( t f  - ti ) -' at T = 0. The 
latter have been named incoherent terms4 The time-inde- 
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pendent terms are important for the determination of the 
frequency correction of second order in a and of the damp- 
ing correction of first order in a. Rather cumbersome calcu- 
lations of the second-order terms lead to a qualitatively new 
phenomenon-the appearance of damping in the incoherent 
terms, and the appearance of incoherent terms of a new type. 
For the density-matrix element pi (tf ) we find 

+ (F'+F,') e x p  ( -2 iA t i )  e x p [ -  ( t f - t i )  ( y2 - i  ( A - A )  ) ] 

- D expI - iA  ( t j + t i )  I expI -y l  ( t t - t , )  I ) ,  (24) 

where the coefficients B ,,, , C ,,,,, , F, F,, and D are equal to 

+ 1 

(8 , - e -2A+iv )  ( e + A - i v )  ( E , - A +  i v )  
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+ M2 ( A )  th (A /2T)  I I AT ch2(A/2T)  ' 
(26) 

an2  
y2  = -- M ( A )  - * [ ~ A I M / ( A )  +M ( A )  

2 4 

d& M ( E )  exp [ i~ (ti-ti) ] 
"= [' % (e-A+iv)' 

At T = 0 the expression (26) for y2 coincides with the result 
of Ref. 4, but that for does not agree with Ref. 4. 
For the density-matrix element pf  in the same approxima- 
tion we obtain 

2AI-iM ( A )  th (A /2T)  I  + 
4A (e+A+iv) E-A+iv 

- i+ 
[ 1 + t h  (A /2T)  ] M' ( A )  

(8-A+~v)  

- i 
M ( A )  + i  M ( E )  +2M ( A )  

(E-A+iv) 2T ch2(A/2T)  2 (E-A+iv) 

x J ~ M ( ~ ) [  
exp ( i ( e -A)  ( t f - t i )  ) + exp (-i (E-6) ( t f - t i )  

n ( E - A + ~ V ) ~  ' (E-A-iv)' 1 
+ 1 

2(e+ri f  iv)  (E-h+iv) (ei+A+iv) 
exp ( i (e-A)  (t,-ti) ) exp (- i(e-a) ( t l - t i ) )  

X [  (e-A+iv)' + (E-A-iv)' I 
x exp - y z  (tr-ti) I .  (27) 

The equilibrium valuep; ( e q )  of the element pf  is equal to 

de M ( E )  esp [ ie ( t f  - t i )  ] D =  J -  
n  (e+b+iv) (E-A+iv) 

de 
- a n 2 j  - M ( E )  exy [ie (f,-ti) 1 

n 
To terms of order a' the coefficient y ,  is equal to 

y i = a n 2 ~ ( ~ )  -a2n'[ AIM' ( A )  M ( A )  I+M ( A )  (29)  

h 

The quantities A and y,, to within terms of second order in a, 
are equal to 

In ihe leading logarithmic approximation the functions B,, 
F, A, y ,, y,, and pl ( e q )  are equal to 
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+ AM' ( A )  A 

M ( A )  ( lith(F)) + 2T ohz 

It follows from these formulas that even at zero temperature 
the dependence on the coupling constant in the leading loga- 
rithmic approximation is different for the different quanti- 
ties. Physically, it is rather obvious that the function p; (eq) 
should remain greater than 0.5 with increase of the param- 
eter a. In this way, in the leading logarithmic approxima- 
tion, substantially different series arise. Evidently, localiza- 
tion should imply that at T = 0, at a certain value a = a,, , 
the quantity p;  (eq) becomes equal to 1/2 and does not 
change with further increase of a. Such behavior contradicts 
the analyticity ofpi (eq) as a function of a. 

We note also that at T = 0, even in the logarithmic ap- 
proximation, in the functions C, and D the second-order 
corrections do not reduce to a renormalization of the quanti- 
ty A. It follows from the formulas (30) that the coefficients 
in the expansion of the functions y,,, determining the rate of 
relaxation to equilibrium, and the coefficients in the expan- 
sion of the function pl ( e q ) ,  depend in a 2  essential way on 
the temperature, while for the functions A, B,,  and F i n  the 
leading logarithmic approximation, only the factor under 
the logarithm depends on the temperature. 

For sufficiently large values of the coupling constant a, 
when the coherent processes become unimportant, the relax- 
ation rate y can be found from the imaginary part of the 
partition function Z (Refs. 9, 10). For a potential of the form 
( 10) with V(p) = 0 for cp > cp,,, after straightforward calcu- 
lations we find 

y=B exp ( - A ) .  (31) 

The exponent A and the pre-exponential factor B are 
determined by the formulas 

(33) 
where 

in which 7 = 1/R,e2 is the viscosity coefficient, connected 
with the coefficient a by the relation 

As was noted above, one (negative) eigenvalue of the opera- 
tor S'S[cp]/G2cp tends to zero as T-0. This eigenvalue A -  
satisfies the equation 

and, at low temperatures ( T 4  R, ) and low viscosities 7 4 7, 
(7, = m a ,  ), is equal to 

The decrease of the negative eigenvalue with lowering of the 
temperature leads to growth of the fluctuations about the 
extremal path and to inapplicability of the method of instan- 
tons in its simplest form at low temperatures. 

At low temperatures ( T g f l ,  ) and low viscosities 
( 7  <7,), from the formulas (32) and (33) we find 

where C = 0.577 is the Euler constant. 
The splitting A of the ground-state level in the potential 

( 10) is equal to 

A=2QP (mrp,Qpln)'" exp (-mQprp,2).  (39) 

From the formulas (31 ), (38) ,  and (39) for T 4  a , ,  we find 

The formula (40) coincides with the result of Ref. 2 with the 
special choice of cutoff frequency a,. 

We shall compare the expression for the quantity y 
(formula (40) ), which is valid for sufficiently large values of 
the parameter a and not too low temperatures, with the 
quantity y ,  for small values of the parameter a. 

From the formulas ( 7 )  and (26) we find 

ia 
r,=cm2M ( A )  - a 2 n ' { A I M ' ( A )  + - M ( A )  

2n2  

where a = A/2aT and $(x) is the logarithmic derivative of 
the r-function. In the limiting cases of high ( T$ A )  and low 
( T 4  A) temperatures, from formula (41 ) we find 

Comparing the formulas (40) and (42; we see that sumrna- 
tion over the powers of a in formula (42) should reduce to 
zero the terms that do not depend on A, and should reduce to 
the appearance of an exponential dependence on a in the 
term proportional to A'. 

As noted above, as the temperature is lowered the nega- 
tive eigenvalue A -  tends to zero, fluctuations about the ex- 
tremal path grow, and the method of instantaneous becomes 
inapplicable. We shall find the value of A _  at which the 
fluctuations cease to be small. For this we compare the value 
obtained for the decay probability y, , ,  from formulas (32) 
and (33) for a = 0: 
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with its exact quantum-mechanical value 

where R, f,, /2 is the imaginary part of the energy of the nth 
level, equal to 

~ * * = Z X ~ + ~ ~  
r ( k - t l )  

exp ( - x Z )  
r2(2k+l)I ' (k+'12)  (4k+l) '" ' 

y z r + i = ~ ' + ~ ~  exp (-3') 
I'(k4-l) (4k+3) " 

2 r 2  (2k+2) r ( k P 1 2 )  ' x='po (2rnQp) ". 

It follows from the formulas (44), (45),  and (46) that 
there exists a critical temperature T,.,, determined from the 
condition 

such that for T <  T,., the fluctuations about the extremal 
path become large and the method of instantons it its sim- 
plest form becomes inapplicable. Equation (47) for the de- 
termination of the critical temperature remains valid even in 
the presence of a small viscosity 7 4 rnfl,]. Using for A - the 
expression ( 3 7 ) ,  we find that formula (40) for the relaxation 
rate y is valid only in the temperature range 

At lower temperatures in the region a %  1 the relaxation rate 
y evidently ceases to depend on the temperature. 

CONCLUSION 

In the problem of the dynamics of a quantum particle in 
a two-well potential there are several unsolved questions. 
First of all, the ground state at T = 0 for an arbitrary value of 
the coupling constant with the thermostat is not known. The 
density-matrix element pf characterizing the ground state 

has been found by us only in first order in the coupling con- 
stant a .  The transition from small values of a ,  when the 
relaxation rate y - a M (  A ) ,  to large values of a has not been 
investigated. In the region of values of the parameters a and 
T i n  which interference effects are unimportant, the relaxa- 
tion rate y is determined by the imaginary part of the parti- 
tion function. We note also that the cutoff frequency o, that 
needs to be introduced in a two-level model turns out to be 
related in a simple manner to the plasma-oscillation frequen- 
cy f2, (formula (40) 1: ln(R,/R, ) = C - 1/2 = 0.077. 
This question was considered in Ref. 11. It appears to be 
physically highly plausible that interference effects lead to 
an increase of the relaxation rate. In any case, this is so for 
small values of the coupllng constant a .  In the absence of 
interference effects the relaxation rate y is determined by the 
formula (40) ,  with emergence to a plateau at a temperature 
T,, determined by formulas (47) and (48).  In view of this, 
the conclusion that localization arises for T = 0 and a = 1 
appears to us to be incorrect. 

In conclusion, the author expresses his gratitude to A. I. 
Larkin for valuable comments and a discussion of the re- 
sults. 
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