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An explicit solution is obtained for the relationship between the amplitudes of incident and 
outgoing waves in the region of the three-wave parametric decay resonance in a plane-layered 
medium. 

1. INTRODUCTION AND FORMULATION OF THE PROBLEM 

The spatial inhomogeneity of a medium has a consider- 
able stabilizing effect on parametric decay instabilities excit- 
ed in the medium by a monochromatic pump. l s 2  The convec- 
tive transport of wave energy out of the narrow region of 
interaction, in which the decay conditions are satisfied for 
the projections of the wave vectors onto the direction of the 
gradient (the z axis), i.e., 

leads not only to a higher instability threshold, but also to 
saturation, even in the linear approximation in the ampli- 
tudes of the excited waves 2 and 3 [we shall refer to them as 
secondary waves; the pump will be designated wave 1 1. An 
absolute parametric instability is not excited in this process. 
Instead, there is convective spatial amplification of the sec- 
ondary waves incident on the three-wave resonance region 
z-z.. The parametric interaction is incoherent, the wave 
amplification occurs in a wide frequency range, and the 
phases of different-frequency waves are uncorrelated. 

When the convective amplification factor is large 
enough, the increase in the secondary-wave amplitude gives 
rise to a significant loss ofenergy by the pump wave and to its 
depletion. This process was examined in Ref. 3 on the as- 
sumption that the interaction was incoherent and the spec- 
trum of secondary waves was sufficiently wide, and the prob- 
lem of the depletion of the pump wave during the 
development of the Raman instability in laboratory plasma 
was solved. 

We note, however, that the parametric interaction in a 
spatially inhomogeneous medium can also occur in the co- 
herent state that is realized when there are favorable condi- 
tions for the return of at least some of the secondary wave 
energy transported out of the decay region z z z ,  to this re- 
gion. Theoretical analysis of different special  case^^.^-^ 
shows that, as a rule, this kind of feedback does actually 
occur. What happens is that, when the pump wave is intro- 
duced, convective spatial amplification gives rise to the exci- 
tation of the coherent process, i.e., absolute parametric in- 
stability. The spectrum is then discrete, the frequencies of 
the unstable waves are given by the condition for the quanti- 
zation of the feedback loop, and the instability threshold and 
growth rate are determined from the balance condition for 
amplification in the decay region z-z. and losses incurred 
during propagation in the feedback loop. A small excess 
above the absolute instability threshold gives rise to excita- 
tion of only one (the most unstable) mode of the system, but 
the spectrum fills up as the pump wave field increases. 

We note that, when the absolute instability threshold is 
slightly exceeded, pump depletion effects in the region of the 
three-wave resonance z-z. may become very significant. 
They then lead to instability saturation, and determine the 
degree of excitation of secondary waves. In contrast to Ref. 
3, the significant effect is not only the loss of energy by the 
pump wave as it crosses the 2-2. layer, but also the change 
in the amplitudes and phases of the secondary wave. 

In the determination of these quantities, we shall con- 
fine our attention to the simple case where only one pair of 
secondary waves with frequencies w,, w, is excited in the 
inhomogeneous medium under the influence of the pump 
wave of frequency w,. We shall consider the case in which 
waves 2 and 3 have opposite group velocities (v,v, < 0) ,  in 
which the absolute instability is usually found to occur and, 
to be specific, we shall suppose that v ,  > v, > 0 > u,. More- 
over, we shall consider that, in the neighborhood of z = z,, 

k, (z) -k,(z) -k3(z) =z/h2. 

The truncated equations for the amplitudes of the three in- 
teracting waves then become 

d 
v, -y,=iyly3 e s p  

d 
(2.2 dz y2=iy,y; enp (-$,), 

where y, ( m  = 1,2,3) are proportional to the amplitudes of 
the interacting waves and urn are the corresponding group 
velocites. Before we formulate the boundary conditions for 
(2) ,  let us agree to use the upper index ( v )  = ( + ) to label 
quantities referring to incident ( - ) and outgoing ( + ) 
waves in the three-wave interaction region. I t  is readily seen 
that we then have 

It  can be shown that the asymptotic solutions of ( 2 )  for 
z/h -. + co are 

y,"'(z)-A,'") esp  { - i ( l ~ ~ ( ~ ) + l t ? ( ' ~ ) l n  /z/hl)+O(h/z),  

y2 '" (~)-A2(v)  e s p  {i(x3"1-r.l"')ln Iz/hl)+O(h/z), (3 )  

Y ~ ( " ) ( Z ) - A ~ ( ~ ~  exp { i ( ~ ~ ( ~ ~ - ~ , ( ~ ) ) l n  1 z/h()+O(h/z), 

where O( h / z )  are rapidly oscillating functions that decay as 
h / z f o r z - +  + a, 
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are complex constants, and the quantities x:' (m = 1,2,3) 
are given by 

The solutions given by ( 3 )  have an obvious physical inter- 
pretation: the waves cease to interact far from resonance in 
the sense that the absolute values of their amplitudes become 
asymptotically constant. The six complex constants A :) 

( m  = 1,2,3) determine the amplitudes of the waves far from 
resonance, and only three of them are independent and must 
be specified as boundary conditions, which, in our notation, 
are A , ' ' ,  A,'-', A,'-'. The dependence of the amplitudes of 
the outgoing waves A,'+', A,'+', A,'+' on the amplitudes of 
the incident waves A,'-' ,  A,'-', A '-' i s then given by un- 
known functions, and it is our aim here to determine these 
functions. 

In the limit of the homogeneous medium h - w , the set 
of equations given by (2 )  has an exact solution that can be 
written in terms of elliptic functions.' In the other limiting 
case, in which the secondary wave amplitudes are negligible 
in comparison with the pump, and the amplitude y ,  of the 
latter can be regarded as given and the first equation can be 
eliminated from ( 2 ) ,  we again have an exact general solution 
that can be expressed in terms of the parabolic cylinder func- 
tions. This limiting case is examined in detail in Ref. 8. Since 
each of these two limiting cases is described by a very com- 
plicated exact solution, one can hardly expect to obtain an 
explicit exact general solution of (2 ) .  However, some prog- 
ress can be made in the solution of the above problem of the 
relationship between the asymptotic constants even when 
the exact solution is not known. Actually, the stationary 
three-wave interaction problem is physically completely 
equivalent to the interaction of very long, smooth, flat- 
topped wave packets. The requirement that the packets be 
smooth is significant because arbitrary packets, e.g., trian- 
gular packets, can excite absolute instability, i.e., a phenom- 
enon that does not occur in the stationary problem with an 
unbounded pump wave. 

2. ASYMPTOTIC PROPERTIES OF THE NONSTATIONARY 
PROBLEM 

The set of equations describing the three-wave decay 
interaction between smoothly-varying wave packets in a 
spatially inhomogeneous medium is 

(d/at+v,d/i)z)  yt=iy,y, exp (-izV2h" ), 

In the asymptotic region, in which Iz/h 1 $1, the solutions of 
(5  ) can be written in the form of the sum of rapidly oscillat- 
ing ( (j,, ) ) and smoothly varying ( (y, ) ) functions of z: 

Substituting this in ( 5 ) ,  and separating terms with different 
oscillation scales, we obtain the following expressions for the 
rapidly-oscillating part j, : 

I t  has been assumed in the derivation of ( 6 )  that 

We note that the rapidly-oscillating parts of the solution, j, , 
are forced and fall as - h / z  with distance from the decay 
region. The smooth parts, ( y ,  ), obey the following equa- 
tions as z /h  -+ + UJ : 

obtained using (6 ) .  The solution of (7)  that is valid for z /  
h -+ + UJ , can be written in the form 

where l,,, = z - v, t ,  and the phases yc) (z , l ,  ) are given by 

y;v) = - j + X i v )  dz' 
1-7 Z 

dz' 
Y 3  * 

where z. -+ + 0 for z /h  > 0 and z, - - 0 for z /h  < 0. The 
quantities x ~ ) - x ~ ' ( ~ ,  ) are specified, as before, by (4), 
but, in contrast to the stationary case, they are slowly-vary- 
ing functions of 5, and not constants. The integrals in (8 )  
are evaluated for each phase yc' with constant l,, , i.e., 
along the trajectory of the corresponding wave packet. For 
example, the integrals in the expression for the phase yiV' 
must be understood in the sense 

( Y l  7 
ds' J v z - V t -  z O , L )  j - -I 

dz' 

I t  is clear from the structure of the solutions ( y ,  ( z , t ) )  that 
the three-wave interaction occurring far from the resonance 
region leads only to a change in the phases of the wave pack- 
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ets. The amplitude moduli IA :' I are then freely propagating 
(without change in shape) real wave packets. The signifi- 
cant point is that a change in the phase of a packet far from 
resonance leads to an interaction with all the waves propa- 
gating there, both incident and outgoing. As the point of 
observation z approaches the region of resonance to dis- 
tances much shorter than the inhomogeneity scale of the 
interacting wave packets ( Izj <H, but 1 ~ 1 %  h ) ,  the expres- 
sions given by (8)  become much simpler, and the functions 
O.', (z,gm ) ) assume the form 

We note that these relationships are similar to the asympto- 
tic expressions (3)  for the boundary conditions in the sta- 
tionary problem, except that the amplitudes of the incident 
and outgoing waves in (10) are smooth functions of time 
and, as will be shown later, the amplitudes of the outgoing 
waves depend on time only through the time dependence of 
the incident waves. Moreover, when h < H, Eqs. (5)  describ- 
ing the interaction between the packets are identical with the 
equations of the stationary problem (2)  for Izl g H ,  since 

The above analysis confirms the intuitive idea that the 
three-wave interaction between smooth wave packets is phy- 
sically equivalent to the stationary problem. The required 
relationships between the asymptotic constants A 2' in the 
stationary problem can then be obtained from the corre- 
sponding relationships between the asymptotic complex 
profiles of wave packets A :' (6, ) in the space-time problem 
by simply omitting the argument 6, of the function A :' 
(6, ), since the formulas expressing this relationship in the 
problem with continuous wave packets are adiabatic. We 
note that the complication which arises as we pass from the 
stationary to the space-time problem can be completely re- 
moved by applying to the latter the inverse scattering meth- 
od9 for the interaction between finite packets. It will be 
shown below that this method can be used to relate the 
asymptotic solutions of (5)  for t -  f co that correspond to 
nonoverlapping packets of, respectively, incident and outgo- 
ing waves y:'((,, ) in the far asymptotic region of the coor- 
dinate z. We note that the amplitudes of packets in the 
asymptotically far region, yC'(6, ), differ from the required 
amplitudes A 2' (6, ) by only the phases that arise from the 
mutual crossing of the packets far from resonance. Actually, 
we find, using ( 8 ) , that 

( " 1  ("' ( V )  

ym (En,) = ~ l ,  (E,,,) e s p  ( iym (*w, E m )  ) , (11) 

where y2'  ( + co ,6, ) are obtained from ( 8 )  for z- + co 

3. THE LAX REPRESENTATION AND THE SOLUTION OFTHE 
DIRECTSCATTERING PROBLEM 

We now turn to the relationship between the asympto- 
tic solutions of (5)  for t -  f and note that, as shown in 
Refs. 10 and 11, there is a transformation that reduces (5)  to 
equations that describe the interaction between wave pack- 
ets in a homogeneous medium. This transformation is 

For the functions u, (z,t), we then have the set of equations 

The initial conditions for the packets u, (z,t) at times 
t  = T-+ - co can be formulated as follows: 

If Ju, J = Jy,(-)J -0 as JzJ  - co at time t = r, then, follow- 
ing Ref. 12, we can apply the inverse scattering method to 
( 13). The interaction between packets is examined in great 
detail in Ref. 12 within the framework of (13), but most 
attention is devoted to solutions corresponding to the dis- 
crete spectrum of the direct scattering problem and, natural- 
ly, there are no universal recipes for solving the inverse prob- 
lem. On the other hand, we are interested in the opposite 
situation, in which the discrete spectrum is absent and the 
initial conditions have the specific form given by ( 14). The 
set of equations given by ( 13) was examined in Ref. 13 for 
initial conditions in the form given by ( 14), but most atten- 
tion was again devoted to soliton solutions corresponding to 
the discrete spectrum and the integral relations given in Ref. 
12 were again employed. However, the inverse problem was 
not solved for a pure nonequilibrium spectrum. 

We shall show below that the inverse scattering prob- 
lem can be solved explicitly for the initial conditions ( 14), 
which means that the relationship between the wave packet 
amplitudes before and after the interaction can be found. It 
will be useful to reproduce now the necessary data on the 
inverse problem method for ( 13 ) . These can be found in Ref. 
12. 

The Lax representation for ( 13 ) is 

where the operators A, B are constant diagonal matrices of 
rank 3 x 3 with elements a ,  > a, > a,, b,, b,, b,, respectively. 
In our case of the decay process, the matrix Q takes the form 
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i 0 p ( a ,  - a*)-'I2u2 
Q = - p ( a ,  - a,)-'" u,* 0 

- p (al - a,)-'l'u1* - p ( a ,  - a,)-'"u3* 0 

where 

and the elements of the matrices A and B must be such that 

It is important to note that there is a misprint in the equation 
corresponding to ( 17) in Ref. 12 (their signs should be re- 
versed). Eliminating the quantities b,, b,, b3 from ( 17), we 
readily obtain the following useful relationships: 

Since, in our case, v ,  > v, > 0 > v,, one would expect that 
a ,>a2>O>a3 .  

The first step in the inverse scattering method is to solve 
the direct spectral problem for the operator L, given by ( 15 ), 
with a real spectral parameter A: 

sively for each packet u, (z,r), and the scattering matrix can 
be written as the product of three partial scattering matrices 
S I - ', S - ', S: - '. The partial scattering matrices are the 
scattering matrices of the operators L,, L,, L,, obtained 
from L by substituting into it u, = u3=0, u, = u,=O, and 
u , = u, =O, respectively. The order in which the partial ma- 
trices are multiplied together at time t = r is determined by 
the disposition of the wave packets in space prior to the inter- 
action, i.e., by the ratio of their group velocities. In our case, 
v ,  > v3 > 0 > v,, we have 

The partial matrices are much simpler than the complete 
matrix and, in our case, they can be evaluated explicitly. We 
shall demonstrate this for S - '. 

The corresponding partial spectral problem that can be 
solved in the localization region of the packet u, (z,r) is 

d Y 1  
iat - i- P (al-a,) "u, ( 2 ,  t )  U' ,=hy ,, d z  

d Y 2  ia, - - 
dz - h Y 2 ,  

where Y is a vector function. Since, by hypothesis, urn (z) -0 Substituting 
for 121- cc , the asymptotic solution of ( 19) is 

Y ,-esp (-ikzla,) . 

We shall now determine the two fundamental sets of solu- and recalling (141, we obtain 

tions of (19) that have a particularly simple behavior for 
z- f a,, namely, 

d f i  a ,  - = i p  (a,-a,) '"y,'-' (2-U,T)  f 3  
dz 

Y ' * )  ( z ,  h )  +esp ( - ihA-lz) ,  z - t z tm ,  (20) 

where Y'+' are matrices with elements Y,(,,a I ,  where the first 
index (rows) is the vector index and the second (columns) is dfs 
the number of the fundamental solutions. The scattering ma- a3 - = ip (a,-a3) " y I ( - ) ' ( z - v l ~ )  f l  

dz  
(25) 

trix S ( R )  of the operator L is then determined by 
ihz (as-%) 

Y ( + ) ( z ,  h )  =Yi-'(z, k ) S ( h ) .  (21) asa1 

Since the coefficients in ( 19) are functions of time because df2 -= 
urn = u, (z,t), the scattering matrix is also a function of 

0. 
dz 

time, i.e., S = S(R,t). The essential point is, however, that 
the function S ( t )  is determined relatively simply with the 
aid of the representation ( 15 ) for z - + a, even if we do not 
know u(z,t) (Ref. 12). The expression relating the scatter- 
ing matrices at times T and t is 

where S,, are the elements of the matrix S. 
Since we are interested only in the relationship between 

the solutions of ( 13) that are asymptotic for t - +  -+ C C ,  the 
direct spectral problem LY = RY becomes significantly 
simpler because the wave packets are separated in space 
t = 7- - CC. The scattering problem is then solved succes- 

We note that the scale of variation of the exponentials on the 
right-hand sides of these equations ( 5 h )  is much smaller 
than the characteristic size of the wave packet ( h  4 H ) .  The 
scattering matrix for (25) was investigated in Ref. 14 for 
these conditions. In the neighborhood of zi - ', i.e., near the 
point of stationary phase of the exponential, for which 

we can neglect the variation of y', - ' ( z  - v , ~ )  and reduce 
(25) to the equation of a parabolic cylinder. Well away from 
the point of stationary phase, the approximate solution of 
(25) can be readily found in the asymptotic region, in which 
q,(z  - ~ , " ' ) ~ $ 1 .  It is found to be 
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- , @ ),q3 they become identical with the elements a: - ', 
T I  - ). All the functions ?tk- ', under the integral sign have 
been evaluated at  the corresponding points of stationary 
phase: 

When the function y , ' - ' (z - u , ~ )  is sufficiently smooth, the 
resonance and asymptotic regions are found to overlap. The 
solutions given by ( 2 6 )  and those of the equation of the para- 
bolic cylinder must be joined in the overlap region and, when 
this is done, we obtain the solution of the problem defined by 
( 2 5 )  on the entire z axis. The application of this procedure 
yields all the partial scattering matrices. 

Henceforth, it will be convenient to use the normalized 
scattering matrices with elements 

I t  is shown in Ref. 12 that the general form of the normalized 
partial matrices for u, > v, > v, is: 

The elements of these matrices, evaluated by the above pro- 
cedure, are as follows: 

x,' (ZJ-U,T) - ixT '1n12q2~21+i  J 
zf-z(-) dz' 

- m  1 

where E -  + 0. The elements a: - ' , y :  ' are not written out 
in ( 2 8 )  because, when xi - ', @I ', q ,  are replaced with 

The relationship between the points of stationary phase and 
the spectral parameter is 

The quantity @!,- ' in ( 2 8 )  denotes the functions 

4. SOLUTION OFTHE INVERSE PROBLEM 

To abbreviate the derivation, we reproduce the proce- 
dure for the solution of the inverse problem, but only in the 
special case y :  ' ( z , r )  GO, i.e., when the incident packet is 
absent for one of the interacting waves. For the general 
boundary conditions, we shall reproduce only the final result 

It is clear that, when yi '(z,r) =0, the partial scattering 
matrix si - ' ( A , r )  becomes a unit matrix, and the total nor- 
malized matrix assumes the following form, according to 
( 2 3 ) :  

s  (h, T) =sll-Is3(-). ( 3 1 )  

For t -  + w , we find from ( 2 2 )  that 

(-1 (-) sm,, (k, t )  = ( s ,  s3 ) .. exp{ ih (L  - 5)  ( i r ) ) .  ( 32)  
a, a, 

On the other hand, it is natural to suppose that, at time 
t + W ,  the wave packets that have undergone an interaction 
will also be separated in space. Their mutual disposition in 
space will then change in accordance with the group velocity 
ratio, and the scattering matrix will again be factored in the 
form s (A , t )  = s,'+'s,'+'s,'+', where the partial normalized 
matrices are calculated from the packets that have interact- 
ed at  some time t -  + W .  Equating these two representa- 
tions of the complete normalized scattering matrix, we ob- 
tain 

We note that the form of the normalized partial scattering 
matrices si + ', si ' ), s(, + ' is the same as ( 2 7 )  if we replace 
the elements a! , ) ,  vjn ' with u!,+ ', vjn' ' ( m  = 1,2,3) in 
( 2 7 ) .  This device together with ( 3 3 )  and ( 17) enables us to 
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find the general relationship between the elements a:+ ', 
~ k +  ) and the elements a!,- ', 7;- ': 

To express the partial matrices sk+ ' in terms of the elements 
of the partial matrices s;- ', we must reconstruct the argu- 
ments of the functions a;+ ' from their moduli. It is well 
known that this can be done if we know the positions of the 
zeros of the functions a;+ ' ( A )  in the complex plane of A. In 
our case of the parametric decay interaction between smooth 
wave packets y i p  ' ( z , ~ )  in an inhomogeneous medium, the 
functions a;-' have no zeros, according to (28 ) ,  which 
means that by virtue of ( 3 4 )  the functions a;+' have no 
zeros either. This enables us to write down the required argu- 
ments: 

To relate the elements of the partial scatering matrices 
a;+ ', 7jn+ ' to the amplitudes of the outgoing wave packets, 
we introduce the natural assumptions (confirmed by the en- 
suing analysis) that the packets yk+ ' ( z  - urn t ) ,  like the inci- 
dent packets y k  ' ( z  - u, T ) ,  are smooth functions. The 
quantities aii ', yk+ ' can then be determined from y i i  ' 
( Z  - urn t )  by means of the procedure described in the last 
Section. Naturally, the expressions for a;+ ', 7;' ' are found 
to be analogous to (28 ) , and differ only by the replacement 
of xk - ' ,  @k- ', f i- ',T with x k t  ', @lnf ', f kt ),t, whereas the 
expressions for @:+ ' are of the form given by ( 3 0 )  except 
that arg[yk- ' (6 : -  ' ) ]  and r must be replaced with 
arg [yk+ ' ( f  :+ ' ) ] and t .  The formulas relating the station- 
ary points zk+' and the spectral parameter then have the 
form 

Comparison of ( 2 9 )  with ( 3 6 )  shows that all the stationary 
points f k+ ' and f ,(,- ,-' are related to one another. This rela- 
tionship can be determined by eliminating the spectral pa- 
rameter R from ( 2 9 )  and (36 ) .  Using ( 1 2 )  and (18 ) ,  we 
obtain the relationship between f ;+ ' and f i- ', which does 
not contain the nonphysical parameters a, : 

This result is a consequence of the local point interaction 
between the wave packets in the decay region z  = 0. Indeed, 
the outgoing wave packet yk+'  is generated at the point 
z  = 0  at time T under the influence of the local values of the 
amplitudes of the packets of incident waves y ;  ', which, at 
the time T, are located at the point of decay. In other words, 
the trajectories of all the packets, both incident and outgo- 
ing, cross at the decay point z  = 0. 

Equating the elements a;+ ', q~:+ ', calculated directly 
from the unknown packets y:+ ' ( z  - u,, t )  after the interac- 
tion, and the same elements a:+ ', ~ k +  ', expressed in accor- 
dance with ( 3 4 )  and ( 3 5 )  in terms of the partial normalized 
matrices a!,-', vk- ' prior to interaction, we obtain a set of 
transcendental equations for the unknown functions x;+ ', 
arg [yk+ '1 .  This set can be solved for the required ampli- 
tudes and phases of the packets. This solves the problem of 
the connection between the profiles of wave packets y: in an 
inhomogeneous medium before and after the interaction for 
t -  + C Q .  We shall reproduce here only the answer for the 
packet y: + ', bearing in mind the subsequent interpretation 
of the results in relation to the stationary problem: 

where 
+ m 

Equation ( 3 8 )  and ( 3 9 )  have the following meaning. Equa- 
tion ( 3 8 )  is used to determine the modulus of the amplitude 
of the resonance-crossing packet y: + ' ( 6  : + ' )  at each point 
f : ' ' = z - v,t. In this procedure, the quantities 6 (, ', 
f ' on the right-hand side of ( 3 8 )  must be replaced with 
f :  ' = f \ + ' ,  < I p '  = ( v , / u , ) f : ' ' ,  in accordance with 
( 3 7 ) .  Equation ( 3 9 )  gives the slowly-varying phase of the 
same packet for t -  + CQ.  It 1s important to note that the 
functions x:  + ' ( f  \ + ' ) , arg [y:  + ' ( f  : + ' ) 1,  calculated from 
( 3 8 )  and (39 ) ,  are actually smooth functions because of the 
smoothness of the amplitude of the wave packets prior to 
interaction, which totally justifies the assumptions made in 
the derivation of ( 3 8 )  and ( 3 9 ) .  

As noted in Sec. 2  [formula ( 1 1  ) 1, the amplitudes y: ' ' 
of the wave packets in the far asymptotic regions differ from 
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the amplitudes A : * ' in which we are interested here only by 
their phases, i.e., 
arg[y3(+) ( f  3 ( + ) )  ]=arg[A3(+' ( k 3 ' + ' )  ]+ 73") (+a, f 3 ' " )  7 

(40)  
arg[ y3( - )  ( f 3 ( - ' )  ] =arg[A3'-' ( f 3 ' - ' )  ]+73'-' f 3 ' - ' )  7 

where y:"( c o , f : * ' )  are given by ( 8 )  for Z- + co. 
Substituting (40)  in ( 39 ) ,  we obtain 

To interpret the integral terms in ( 41 ) ,  we must take into 
account the following relationships, essentially the Manley- 
Rowe relations: 

, * ( + I  (k ," ' )  =xl'-' ( E l ' - ' )  +x3(-) ( f 3 ( - ) )  -x3(+) ( f 3 ( + ) ) ,  

( 42)  
x2"' ( E , ' + ) )  =x3'-' ( E 3 ( - 1 )  -x3(+) ( f 3 ( + ' ) .  

These results are obtained from ( 34 )  with the aid of the 
following formula that follows from ( 28 ) :  

I om(') 12=e~p(2nxm(') ( f m C V ) )  ). 

Using the Manley-Rowe relations together with ( 37 ) ,  it can 
be shown, after some cumbersome derivations, that the inte- 
gral terms in (41 ) acutally cancel out and (41 ) assumes the 
simple form 

It was noted in Sec. 2 that, to obtain the relationship between 
the asymptotic constants in the stationary problem from 
( 38 ) ,  ( 42 ) ,  and ( 43 ) ,  it is sufficient to discard the argu- 
ments f :' in ( 38 ) ,  ( 42 ) ,  and ( 43 ) .  This gives us the rela- 
tionships between the amplitude A : + ' of the departing wave 
y: + ' and the amplitudes A i , A ' of the incident waves 
yl , y ' (the case in which the incident wave y: ' is ab- 
sent). Let us now examine the limiting cases of ( 38 ) ,  ( 42 ) ,  
and (43) .  

In the case of a weak wave y: - I, 

and a pump yi ' of moderate intensity, 

2nx3(-) exp(2nxl'-') < I ,  

Eqs. ( 38 ) ,  ( 42 ) ,  and ( 43 )  become identical with the well- 
known result of the linear theory' that describes the convec- 
tive amplification of the incident wave: 

X s ( + ) % x 3 ( - )  exp(2nxl(-I), x l '+ '~x l ' - ' ,  
( 44 )  

arg[A3(+)]  %arg[A3'-' 1 .  

For a powerful pump wave, for which 

the pump becomes strongly depleted as its energy is trans- 
ferred to secondary waves: 

This effect is even more clearly defined when both incident 
waves are strong, i.e., 2axi - % 1 ,  2n-tt:- ' % 1 :  

We note that, in this case, there is also an appreciable change 
in the phase of the departing wave y: + ': 

5. RELATIONSHIP BETWEEN THE ASYMPTOTIC 
CONSTANTS OF THE STATIONARY PROBLEM 
( v , > v ~ > ~ > v * )  

The above algorithm can be used to derive the formulas 
relating the asymptotic complex amplitudes A I"', A iv', A :"' 
of the interacting waves y, ,  y,, y, in the case of general 
boundary conditions. I t  is useful to recall the necessary defi- 
nitions: 

A,(")= I A,(') I exp (icp,")) , m=l, 2, 3; 

where ( Y )  = ( ) correspond to departing and incident 
waves at the resonance point z = 0,  respectively. The final 
results can be summarized as follows. 

The moduli of the amplitudes are given by 

The phases of the departing waves have the form 

p, sin a,,,+ 6, sin @, 
lp.'+'= arg[r(i-ix;" ) I +  arotg [ pm cos a,+ 6, cos B, I 
m=l, 2, 3, (49)  

where the quantities a, are given by the simple general for- 
mula 

a,=cp,(-)+arg[r(i+ixm(-)) 1 ,  m=l, 2, 3. ( 50 )  

The remaining quantities are as follows: 
p 1 -2" '~h'~ - (nx,(- ')exp{n (x,(-)-x3(-)-xi(-)/2)),  

&=2 sh'" (nx3( - ) )  sh'" (-nx,(-)) exp{n (x2(-)-xsC-I) 121, ( 5  1 ) 

p1=cp3(-)+cp,(-)+n/4+arg[r (l+ixs(-)) r (i-!-ix,(-)) 1 ; 
p 2 -2'" - sh'" (-nx,'-)) exp{n (xl(-)-xs'-)-x2(-'12) ), 

6,=2 sh"~ (nx l ( - ) )  sh'" (nx3[- ) )  exp{n (x1'-'-x3'-') 121, ( 52 )  

pz=cpl(-I-cp3(-)+3n/4+arg[r (l+ixi(-I) r (1-ix3(-)) ] ; 

p3=2'I2 sh'"(nx3(-I) exp{n(xl(-)+x,(-)+x3(-)/2) 1, 
6,=2 sll'"(-nx,(-))sh1"(nx1'-')exp{n(xi'-'+x,'-')/2), 

(53)  
p3=cpl(-)-q2(-)+3x/4+arg[r (l+ix,(-))  r ( I - ix2(-))  1.  
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It is important to note that the presence of the dependence on 
2p3S3 cos(a3 - P3) in (48) reflects the interference of the 
interacting waves. In particular, when 

we have complete suppression of the departing wave y: + ' 
and an amplification of the pump wave yj + '. For weak inci- 

. dent secondary waves 27.r~:- ' & 1, - 27.r~:- ' 1 and a 
strong pump 27.r~; - ' > 1, the suppression conditions (54) 
reduce to 

found in Ref. 8 in the linear theory. 

6. CONCLUSION 

We have examined the nonlinear stage of the three- 
wave decay interaction in an inhomogeneous medium in the 
most interesting case, in which the group velocities of the 
interacting waves are such that v ,  > u3 > 0 > u, and absolute 
parametric instability can be excited in an inhomogeneous 
medium by closing the feedback loop by some suitable mech- 
anism. It is clear that the above algorithm can be used to 
examine all other possible cases of group velocity ratios and 
to obtain in a systematic manner all the possible formulas for 

the relationship between the asymptotic constants in the 
three-wave stationary problem in an inhomogeneous medi- 
um. 

'A. D. Piliya, Proc. Tenth Conf. on Phenomena in Ionized Gases, Ox- 
ford, 1971, p. 320. 

'M. N. Rosenbluth, Phys. Rev. Lett. 29,565 (1972). 
3L. M. Gorbunov, V. M. Domrin, and R. R. Ramazashvili, Zh. Eksp. 
Teor. Fiz. 70,2161 (1976) [Sov. Phys. JETP 43, 1128 (1976)l .  

4A. D. Piliya, Pis'maZh. Eksp. Teor. Fiz. 17,374 ( 1973) [JETP Lett. 17, 
266 (1973)l .  

'D. Pesme, G. Laval, and R. Pellat, Phys. Rev. Lett. 31, 203 (1973). 
9. Z. Gusakov and A. D. Piliya, Fiz. Plazmy 6, 509 (1980) [Sov. J. 
Plasma Phys. 6,277 (1980)l .  

'J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. 
Rev. 127, 1918 (1962). 

'A. D. Piliya, Zh. Eksp. Teor. Fiz. 64,1237 (1973) [Sov. Phys. JETP37, 
629 (1973)l .  

9S. P. Novikov, V. E. Zakharov, S. V. Manakov, and L. P. Pitaevskii, 
Theory of Solitons: The Inverse Scattering Method Consultants Bureau, 
New York (1984). 

'"A. Reiman, A. Bers, and D. Kaup, Phys. Rev. Lett. 39, 245 (1977). 
"A. A. Andreev, Pis'ma Zh. Tekh. Fiz. 5, 377 ( 1979) [Sov. Tech. Phys. 

Lett. 5, 152 (1979)l .  
I2V. E. Zakharov and S. V. Manakov, Zh. Eksp. Teor. Fiz. 69, 1654 

(1975) [Sov. Phys. JETP 42,842 (1975)l .  
"A. Reiman, Rev. Mod. Phys. 51, 311 (1979). 
I4V. E. Zakharov and S. V. Manakov, Zh. Eksp. Teor. Fiz. 71,203 ( 1976) 

[Sov. Phys. JETP 44, 106 (1976)l .  

Translated by S. Chomet 

705 Sov. Phys. JETP 67 (4), April 1988 E. Z. Gusakov and A. N. Savel'ev 705 


