
Fluctuation kinetics in superconductors at frequencies low compared 
with the energy gap 

Sh. M. Kogan and K. E. Nagaev 

Institute ofRadio Engineering and Electronics, USSR Academy of Sciences 
(Submitted 13 July 1987) 
Zh. Eksp. Teor. Fiz. 94,262-277 (March 1988) 

A kinetic theory is developed for fluctuations in superconductors (including dirty ones) for 
frequencies that are low compared with the energy gap and for sufficiently smooth changes of the 
averaged and fluctuating quantities in space. The correlation functions are obtained for the 
extraneous Langevin fluxes in the Boltzmann equation for the fluctuations of the quasiparticle 
distribution function that depends on the energy variable E and on the direction p/p of the 
quasimomentum. The spectral density of the voltage fluctuations and the frequency-dependent 
impedance of an S-c-S Josephson junction are calculated for currents lower than critical. The 
spectral density of the voltage fluctuations of this junction is obtained in the Josephson- 
generation regime at low voltages U< A/e corresponding to the plateau on the current-voltage 
characteristic. 

1. INTRODUCTION 

Spectral densities of fluctuations (SDF) of physical pa- 
rameters (e.g., current or voltage) of systems in thermal 
equilibrium are expressed with the aid of the fluctuation- 
dissipation relations in terms of the response of the system to 
external perturbations, and the calculation of the SDF re- 
duces to a calculation of the response. In nonequilibrium 
physical systems, on the other hand, calculation and mea- 
surement of the SDF is an isolated problem. Nonequilibrium 
states are realized in superconductors under various experi- 
mental conditions, viz., irradiation by a microwave field, 
quasiparticle injection, Josephson generation in S-c-S junc- 
tions (c--constriction), vortex motion, and others (see the 
survey anthology, Ref. 1 ). It is important that disequilibri- 
um leads in superconductors to new effects (different from 
those in normal metals). It is therefore of interest to develop 
for fluctuations in superconductors a kinetic theory applica- 
ble to both equilibrium and nonequilibrium states. 

An important application of such a theory can be the 
calculation of the SDF of the voltage at the end points of a 
narrow bridge between two superconductors, since these 
fluctuations determine the Josephson-generation 
linewidth.' When generation occurs in such a junctions, the 
particles acquire a nonequilibrium di~tribution,~ and there- 
fore calculation of the noise calls for knowledge of the corre- 
lation functions of the fluctuation sources in the nonequilib- 
rium superconductors. 

In pure superconductors (electron-collision frequency 
r, 4 A/fi) at low frequencies w < A/fi and in the case of con- 
tinuous spatial inhomogeneities (inverse scale q < A/fiu, 
where v is the Fermi velocity), one can describe the super- 
conductor kinetics with the aid of the Boltzmann equation 
for the quasiparticle distribution function f (p,r,t) (p is the 
quasimomentum) .4,5 An equilibrium-fluctuation theory for 
this case was developed in Ref. 6. In many cases of practical 
importance, however, for example in a Josephson junction, it 
is impossible to meet all three indicated conditions, and the 
kinetics cannot be described on the basis of the Boltzmann 
equation for f (p,r,t). In a more general case, when the only 
restriction is that the inhomogeneity scale be large compared 

with the Fermi wavelength, the kinetics of the superconduc- 
tor is described by a system of equations for the electron 
Green's functions (retarded, advanced, Keldysh's) inte- 
grated over p2/2m - E, (E, is the Fermi energy).'.' These 
equations can be used also for dirty superconductors, and 
also for any ratio h / A .  In those cases when h < A ,  one of 
the Green's functions (Keldysh's) can be expressed in terms 
of the quasiparticle distribution function f (~ ,n , r , t ) ,  where E 

is the energy variable and n = p/p is a unit vector in the 
quasimomentum direction. This allows us to reduce the 
equations for the three Green's functions to a simpler form 
consisting of a kinetic equation for f (~,n,r , t )  and the equa- 
tions for the retarded R (~ ,n , r , t )  and advanced A(~,n,r, t)  
Green's  function^'.^ (see also the review in Ref. 10). Even 
this system, however, is still difficult to solve in the case of 
strong spatial inhomogeneity A and of a phase order param- 
eter X ,  when R and A vary rapidly in space. This system is 
therefore usually solved for conditions that permit the use of 
a local approximation for R and A. The condition for its 
applicability in the pure limit is L $ fiv/A (L is the character- 
istic scale of the inhomogeneity), while in the dirty limit, 
when the quasiparticle motion is diffuse, the limit should be 
L 7 = (fiD /A) ' I 2 ,  where D is the quasiparticle diffusion 
coefficient. It is important in the latter case that at tempera- 
tures T close to T, the length is T,I < f ( T )  .32" 

The purpose of the present paper is the development of a 
kinetic theory for low-frequency and smooth fluctuations in 
a superconductor with not too strong a dependence of A and 
x on the coordinates, using as the basis the kinetic equations 
for the quasiparticle-distribution fluctuations Sf (~,n,r , t ) .  
The derivation of the expression for the correlation function 
of Langevine extraneous flows in the equation for 
6f (~ ,n , r , t )  is based on the fact that separate transitions be- 
tween states with different E, n, and r in scattering by impuri- 
ties and phonons are not correlated. This property of the 
quasiparticle scattering processes is manifested in the fact 
that the collision integral in the kinetic equation consists of 
fluxes of quasiparticles between different states. The absence 
of correlation between the individual quasiparticle scatter- 
ing processes was used earlier to develop a kinetic theory of 
nonequilibrium fluctuations in normal conductors.1'~'2 
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In Sec. 2 we formulate a system of equations for the 
fluctuations Sf ( ~ n r t )  of the distribution function, SR ( ~ n r t )  
and SA(~nr t )  of the retarded and advanced Green's func- 
tions, SA (r t )  of the energy gap, Sj (rt)  of the current density, 
Sp, (rt)  of the gauge-invariant momentum, and S@(rt) of 
the potential. We obtain also expressions for the correlation 
functions of the extraneous sources in the kinetic equation 
for Sf. In Sec. 3 we obtain an expression for the impedance of 
an equilibrium long Josephson junction at frequencies 
w < A/fi when a superconducting current less than critical 
flows through the junction. We then obtain with the aid of 
the equations of Sec. 2 an expression for the SDF of the 
voltage under the same conditions and show that this SDF 
agrees with the Nyquist formula. In Sec. 4 is obtained the 
high-frequency SDF of the voltage in the same junction for 
currents higher than critical, i.e., under conditions of Jo- 
sephson generation. 

2. EQUATIONS FOR THE FLUCTUATIONS 

The equation for the quasiparticle distribution function 
is derived from the equations for the Green's functions in 
Ref. 8 (see also Ref. 10). A somewhat different manner of 
expressing the Keldysh function in terms of the distribution 
function and of introducing f ( ~ n r t )  was proposed in Ref. 9. 
This method is more convenient for our purposes and we 
shall follow it (as well as the notation of Ref. 9).  Let R, and 
A, be the components of the expansions of the matrix func- 
tions R and A in Pauli matrices R = Rir i  = RT), 
a, = (R, - Ai)/2, b, = (R, + Ai)/2, a2 = a,a, = aa, 
p, = fi/Vx/2 - eA/c and @ = 1/2fidx/dt + ep are the 
gauge-invariant momentum and potential, A and p are vec- 
tor and scalar potentials. We write the kinetic equation for 
the distribution function f ( ~ n r t )  in the form 

af . a! a, - + a2vnV f + (a,vni,+ia,~ ta2@)- + I ( ~ n r t )  = 0. 
a t  a E 

(1)  

Compared with Ref. 9, we have omitted here the quanti- 
ties [ax b ] , ,  in the coefficients of the time derivatives, since 
they are small when the local approximation is applicable. 
Under the same conditions, the expression obtained in Ref. 9 
for the collision integral I ( ~ n r t )  can be written in the form 

I ( ~ n a )  = del dnt(Ji (En; elnl) - I ,  (etnl; en) 

+J2' (en; Ern') -1," (En; e'n') ). 

(2)  

Here Sdn' ... = Sdflf/4.ir denotes integration over the angles 
that determine the direction of n'; J,, J ; ,  and J; are quasi- 
particle fluxes equal to 

J, (en; e'n') = Ki (en, ~ ' n ' )  f (en) [l-f (e'n') ] 

Jt' (en; ern') = Kz (en, e'n') f (en) f (e'n') 

]?(en; Ern')= K,(en, e'n') [I-f(en) ] [i-f (e'n') ] 

Here A is the electron-phonon interaction constant, s is the 
speed of sound, r is the time of momentum relaxation due to 
scattering by impurities and is assumed isotropic, N, is the 
number of phonons in one mode with energy h, and K, and 
K, are coherence factors equal to 

In (4) ,  just as in ( 1 ), the terms with vector products are 
omitted. 

When interpreting the quasiparticle fluxes in the colli- 
sion integral, it must be borne in mind that at E > 0 the func- 
tion f (sn) is a quasielectron distribution function, and at 
E < 0 the function 1 - f ( ~ n )  is the hole distribution func- 
tion. At equilibrium f is the usual Fermi function f, 
= (eE'= + I ) - ' .  

In the Langevin theory of fluctuations of quasiparticle 
occupation states (see Ref. 11) the left-hand side of the 
equation for the fluctuations Sf ( Boltzmann-Langevin equa- 
tions) is obtained by linearizing the kinetic equation ( l ) ,  
while the source of the fluctuations (of the right-hand side of 
the equation) of the extraneous random flux S J ( ~ n r t )  due to 
the random character of the quasiparticle scattering: 

= 6J (enrt) . ( 5 )  

Here S[. . .] denotes linearization of the expression in the 
brackets. 

The form of the correlation function of the extraneous 
fluxes is determined by the fact that each elementary quasi- 
particle scattering process is correlated only with itself." In 
addition, accurate to the collision time, the correlation func- 
tion of the extraneous fluxes, taken at the instants t, and t,, is 
proportional to S( t, - t,) and, accurate to distances shorter 
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than the characteristic inhomogeneity scales (see above), it 
is proportional to S(r ,  - r,). Let us find this correlation 
function. 

By virtue of the Poisson character of the quasiparticle 
scattering processes, the contribution of each type of scatter- 
ing to thecorrelation function (SJ(~,n,r,t,)SJ(~~n~r~t~)) of 
the extraneous scattering is proportional to the correspond- 
ing average flux, just as in shot noise. For &, = &, and n, = n, 
the fluctuations SJ(&,n,) and SJ(&,n,) are obviously of the 
same sign, so that the corresponding contribution to the cor- 
relation function is positive and is proportional to the sum of 
all the average fluxes due to the appearance of a quasiparticle 
in the state clnl or to its departure from this state. 

A contribution to the flux J , ( E , ~ , ;  ~ , n , )  with 
&,n, #c2n2 is made by quasiparticle transitions within one 
mode ( E ,  and E, of the same sign), annihilation of quasielec- 
tron-quasihole states ( E ,  > 0, E, <O), production of quasi- 
electron-quasihole states (&, < 0, E, > 0) .  All have a com- 
mon property: the corresponding fluxes into the states &,n, 
and &,n, are of opposite sign, so that these processes make a 
negative contribution to (SJ(&,n, )SJ(&,n,) ), proportional 
to J, (&,n,; &,n,). Contributions to J (&,n,; &,n2 ) are made 
by transitions between branches ( E ,  and E, of opposite sign), 
annihilation of quasielectron pairs ( E ,  > 0, E,  > 0)  and cre- 
ation of quasihole pairs ( E ,  < 0, E, < 0).  In each such process 
the changes of the occupation of the states &,n, and &,n, are 
of the same sign, therefore the contributions of these pro- 
cesses to the correlation function of the extraneous fluxes are 
positive and proportional to the average flux J; (&,n,; &,n,). 
The same holds for processes corresponding to J;(&,n,; 
&,n,). Thus, the correlation function of the extraneous qua- 
siparticle fluxes in a superconductor is equal to 

Here N,  is the density of states on the Fermi surface. Note 
that when the signs of both their arguments are reversed, the 
quantities ai ( ~ n )  either do not change at all (a, ), or change 
only in sign (a, ), therefore the factor K,  given by (4) ,  and 
the right-hand side of (6)  as a whole, are symmetric with 
respect to the permutation ~ , n , c t ~ , n , .  

If the superconductor is in a state of thermodynamic 
equilibrium, the correlation function of the extraneous 
fluxes can be represented in the form 

Here i(&n; &In') is the operator of the linearized collision 
integral (2) .  Relations of the same form as (7 )  hold also in 
the case of normal  conductor^'^ and pure  superconductor^.^ 

The equations for the fluctuations SR and SA are ob- 
tained by linearizing the corresponding equations for R and 

In the low-frequency limit the equation for SR takes the 
form (the equation for SA is similar) 

1 - 1 
-I- -[R, &R]+ i[ y R ,  6R]= -[vn6p,~,-i-i~,fiAf 6@, R].  

2zf h 

The square brackets denote here as usual a commutator, a 
superio; bar denotes averaging over the angles n, and the 
matrix 9 describes the damping due to energy scattering by 
phonons. 

It is necessary to add to (5 )  and ( 8 ) the neutrality con- 
dition 

+ m 

the linearized self-consistency condition for the energy gap 
I m 

and an expression for the current-density fluctuation 
+m 

dS2 
6j  ( r t )  = eN,v j d~ J -- n (nzSfi-j6a,). 

- m 
4n 

Equations (5 )  and (8-1 1 ), together with the correla- 
tion functions (6),  make up a complete system for the deter- 
mination of all the needed correlation functions in the limit 
of low frequencies and in the local approximation. 

In the case of dirty superconductors, all the quantities 
that depend on n can be represented as a sum of an isotropic 
part independent of n and a part proportional to n.' In par- 
ticular, the fluctuation of the distribution function and the 
fluctuational extraneous flux are equal to 

It follows from (2)  that the fluctuational integral for 
collisions with impurities is equal to Slim, = a2nSf/r. The 
expression for the fluctuational integral for collisions with 
phonons becomes simpler in the energy region &-A,  of 
greatest interest, in the case A <  T. We then have SIP, 
= ya, (&)Sf (E) ,  where y = r; ' is the reciprocal time of en- 

ergy scattering by the electrons. 
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We use the subscript s to designate those parts of the 
distribution function and of the extraneous fluxes that are 
even in E, and the subscript a for the odd ones. We confine 
ourselves to processes in which there is no unbalance be- 
tween the quasiparticle-spectrum branches andf, is equal to 
its equilibrium value 1/2. It is convenient to replace the odd 
L(E) by F(E) = - 2 f , ( ~ ) .  At equilibrium we have 
F(E) = tanh ( E / ~ T ) .  

From (5) we get equations for Sf, and SF  (path length 
I = UT) 

rn 

e N p v  
6j  ( r t )  = - J de (2a,6f.+2f.6nz-FSa,-aM) . 

3 o (17) 

Calculation with the aid of ( 1 ), ( 13), and the equations for 
R and A yields 

The fluctuational superconducting current, the normal cur- 
rent of the quasiparticles, and the extraneous random cur- 
rent, which make up the total fluctuational current, are re- 
spectively equal in the homogeneous case to (on is the 
conductivity of the normal metal) 

D . aF 
a, (; + y ) 6 ~ - P l  (a2VbF)+  i- b [  ( R : - ~ , ' ) p , p . - ]  

w 

f i  ae 6 j , ( r t ) =  --j d e b [ - i ( R t - A : ) F p , ] ,  (19a) 
eNaD 

21 
f i 0  

+ 1?6a,+6 [ i h a ,  $1 = --261. ( e )  i- - div N.. 
3 

m 

(13) 

0 As follows from ( 6 )  and ( 12) ( a  andonumber the SJcom- 
ponents ) , rn 

a, 
3 bjex' ( r t )  = 2 e N F v ~  J de - ( I .  ( e r t )  . 

< (61a(e i r i t l )  ) (616 ( ~ 2 f i t 2 )  ),,a) = - baa6 (r1-r2) 6  ( t iA t , )  
41Ny 0 a2 

x [ ~ ( E I - E ~ ) *  6 ( e I + e 2 )  ] a 2 ( e l )  [ l - F 2 ( ~ l )  I ,  It follows from ( 14) and ( 19c) that the extraneous-currents 
correlation function is 

(14) 

w e  consider the case of temperatures close to Tc 9 when Comparing the expressions for the normal current [see 
A < T. 1f we calculate a, ( ~ n r t )  with the aid of the equations ( 19b) and (20) 1 we verify that in the thermodynamic-equi- 
for R and A, accurate to the second derivatives with respect librium state, when I;(&) = tanh(&/2T), the ~~~~i~~ 
to the coordinates and with respect to terms proportional to theorem is valid: 
p:, and substitute in the self-consistency equation for A(rt), 
we obtain the Ginzburg-Landau equation generalized to the 
case of a nonequilibrium quasiparticle distribution function < 6 j T t  ( r l t l )  6 j F t  (r2tz)  ) 

F(E) (see Ref. 3 ) : 
w 

E + A  J de [ F  ( e )  - th _] (e2-A')-'" = 0. 3. JOSEPHSON-JUNCTION VOLTAGE FLUCTUATION 
22 

A ( 16) AT CURRENTS BELOW CRITICAL 

We have introduced here the notation Using the method described in Sec. 2, we obtain the 
spectral density S ,  of the voltage fluctuations of a Joseph- 
son junction with direct conductivity of the S-c-S type, i.e., 

T d  
s ( ~ ) = - [ - ( e F ( a ) ) ]  A de  , of the type of a bridge between bulky superconductors 

= = A  (shores). We consider the so-called long junction, whose 
length L satisfies the inequalities T<L<{ ({ is the coher- 

17) = ( T, - T)/T,, and A,( T) is the equilibrium value of ence length and 77 = (fill /A,( T) ) ' I 2 ) .  The theory of the JO- 
A. Linearization of ( 16) leads to the fluctuational Ginzburg- sephson effect in such a junction was developed by Aslama- 
Landau equation, which is the expanded expression (10) in zov and Larkin.3*'3 They have found that in the resistive 
the dirty limit. state, i.e., under Josephson generation conditions, the quasi- 

At low frequencies w < A/fi expression ( 1 1 ) for the cur- particle distribution function F(E) deviates greatly from 
rent-density fluctuation takes in the dirty limit the form equilibrium, and this stimulates the superconductivity. The 

582 Sov. Phys. JETP 67 (3), March 1988 Sh. M. Kogan and K. E. Nagaev 582 



reason for the disequilibrium is that the order parameter and 
the energy gap A(r) in the junction are smaller than the gap 
A,( T )  in the shores. Quasiparticles with energy E < A,( T) 
turn out to be trapped in a well and cannot diffuse directly 
into the shores. For these quasiparticles, the time to establish 
equilibrium coincides with the energy relaxation time T,, 
and is long at low temperatures. As a result, F(E) deviates 
noticeably from tanh(d2T) already in a weak electric field. 

We consider first the case when the superconducting 
current I, is weaker than the critical I,. If I, #O, then 
A < A,(T) in the junction. As already indicated, the kinetics 
of quasiparticles with E < A, ( T) differs from that of particles 
with E > A,(T), namely, the relaxation time of the trapped 
particles is 7, and that of the untrapped ones is equal to the 
diffusion time 7, = L 2 / D ( ~ , .  Therefore, although the 
time-averaged distribution function F(E) does not differ 
from its equilibrium value, the fluctuations of the number of 
quasiparticles with E < A,(T) are large at low frequencies, 
owing to the large value of 7,. By virtue of the Ginzburg- 
Landau equation ( 16), the fluctuations SF(&) lead to fluctu- 
ations of the order parameter in the junction, and in the 
presence of an average super-conducting current and at 
p, #O this fluctuation leads to fluctuations 61, of the super- 
conducting current. If the total current is fixed, the fluctu- 
ations 61, cause a fluctuation 61, of the normal current, and 
by the same token a fluctuation 6 U  of the junction voltage. 
Since 7, is long, this mechanism can make an appreciable 
contribution to S, ( f ) at frequencies f < y = 7; ' (com- 
pared with the spectral density obtained if account is taken 
only of the extraneous fluctuation currents Sjext ( r t )  that re- 
sult from the random character of the quasiparticle elastic 
scattering). 

We assume for simplicity that the transverse dimen- 
sions of the constriction are small compared with its length L 
and that all the quantities in the bridge vary only in one 
direction (X) . According to ( 19a), 

We have introduced here the symbol 

Since r, <T,, the fluctuation SF(&) can be regarded as 
constant (independent of the coordinates) in the entire in- 
terval in which quasiparticles with a given energy E can 
move, i.e., within the interval in which A(x) < E. Moreover, 
owing to the frequent Andreev reflections from the well 
walls, the spectrum branches become strongly intermixed, 
so that we can neglect the fluctuations of the functionf, 
which is even in E and putf, = 1/2. In the derivation of the 
kinetic equation for SF  from (13) it must also be kept in 
mind thatp, = 0, b = 0, A = 0. Let us integrate the kinetic 
equation term by term within the limits of the junction. This 
integration is carried out in fact for each E over a segment on 
which A(x) < E .  By virtue of the conditions imposed on the 
ends of this segment, the diffusion term vanishes. We express 
now Sp, with the aid of (22) and (23). Finally, we neglect 
the term (21 / 3 )  div SJ, in the right-hand side of ( 13), inas- 
much as allowance for it, in the dirty limit and under equilib- 

rium conditions, results in a small correction. For the Four- 
ier transform of the fluctuation SF(EW) we obtain the 
equation 

(-ia ( a , ) +  4- 7 (a , ) )GF (&a)  = --2 (61, ( e m )  > 

The angle brackets denote here integration over the region of 
the junction, and we have introduced the notation 

<a,)+ = ( a , )  + - 4fiTZja2 
neZNP2De4 1 ( d A / d x ! ,  ' 
2DpS2 ia,+ = ia, + - 
ihA (Rg2-Ag2),  

the subscript E of It3A/dxI, means that the derivative is taken 
at the point where A ( x )  = E. We took it into account in the 
derivation that R - A z i r A S ( ~  - A ), and used the con- 
nection between j, and p, . 

The Ginzburg-Landau fluctuation equation is obtained 
by linearizing ( 16). We eliminate Sp, and SF, with the aid of 
(22) and (24). We put = A/A, and js = j, /j, , where 
j, = reN,DA; /4LT. Assume the operator 

The Ginzburg-Landau equation for ST can then be repre- 
sented in the form (the terms - L 2/< 4 1 were left out of Eq. 
(36) for H) 

A- 

The boundary condition for (27) is SA = 0 in the shores. 
The solution of Eq. (27) must be substituted in Eq. 

(22) for Sj,, in which S F  is taken from ( 14). This makes it 
possible to express Sj, in terms of Sp, and of the extraneous 
current SJ, ( E ) .  Expression ( 18) for the fluctuation of the 
total current S I  = S6j ( S  the cross section area of the junc- 
tion), and the connection between Sp, and the fluctuation of 
the junction voltage, 

L/Z 

M(t)= dx6P. /e ,  (28) 
-L/Z 

make it possible to relate the fluctuations SIand SUwith the 
extraneous sources SFxf = SSjsx' and SJ, . It is possible next 
to obtain both the junction impedance Z(w) and S, ( f ) for 
a given current (SI = 0 ) .  Independently of the possibility of 
solving Eq. (27), it is possible to verify that at currents lower 
than critical the Nyquist relation holds, i.e., S,(  f )  
= 4TRe Z(w).  

An approximate solution of (27) can be obtained for 
currents j, close to the critical current jc , and for f r e q ~ e ~ i e s  
w 4 y. For small j, all the eigenvalues of the operator H in 
(26) are positive. As j, approaches jc , the minimal eigenval- 
ue tends to zero and vanishes atj, = jc , when it is impossible 
to solve (27) for w = 0 and SJ, = 0 but Sj, #O. For j, close 
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to j,, the eigenfunction $, corresponding to the minimum 
eigenvalue is proportional to dA/dj, and can be regarded as 
known. The solution of the inhomogeneous equation (27) is 
determined at small j, - j, by the lowest eigenvalue and by 
the corresponding eigenfunction &. Calculation yields in 
this case 

Here w, = aA;/2fiT and 

It can be seen that the variance of Z(w) sets in already at 
frequencies w g y. The characteristic time 7, is longer than 
7, by a factor L 2/v2$ 1, and increases furthermore as the 
current approaches the critical value I,. 

4. FLUCTUATIONS IN JOSEPHSON JUNCTIONS ON 
SATURATION OF THE STIMULATION OF THE 
SUPERCONDUCTING CURRENT 

One interesting application of the theory of fluctuations 
in superconductors is to a Josephson junction with direct 
conduction in the generation regime. The spectral density 
S ,  ( f ) of the voltage fluctuations in such junctions was cal- 
culated in Ref. 14, using a resistive model in which it was 
assumed that the fluctuation source was only the Nyquist 
fluctuation currents corresponding to the normal resistance 
R, of the junction. It is of interest to determine how S,  ( f ) 
changes when account is taken of other fluctuation mecha- 
nisms. We shall use below the method described in Sec. 2 to 
calculate S ,  ( f ) of a junction of length L satisfying the con- 
dition 7 <L <l at temperatures Tclose to T, and at voltages 
corresponding to saturation of the current on the current- 
voltage characteristic (IVC), and compare the results with 
the resistive model and with the experimental data. 

As shown by Aslamazov and Larkin3.I3 (see also the 
review in Ref. 15). The distribution function F(E) in the 
considered junctions loses equilibrium in the region of the 
well ( E  < A,) under Josephson generation conditions 
( I >  I, ). Owing to the collisions of the quasiparticles present 
in the well, the jittering well walls cause diffusion of the 
quasiparticles towards higher energies, so that F(E) in- 
creases compared with the equilibrium value tanh(~/2T) 
and reaches in the limit a value corresponding to equilibrium 
at E = Ao, i.e., tanh(Ao/2T). This situation corresponds to 
fewer quasiparticles than their equilibrium number, and this 
leads to stimulation of the superconducting current. It is 
manifested by an appreciable increase of I, over I,, by a 
factor - L  /v & 1. A plateau appears on the IVC of the transi- 
tion (the current I hardly increases with the voltage U ) ,  
starting with * < A/e. 

Calculation of the junction kinetics in the supercon- 
ducting-current regime is substantially simplified because 
not only F is  independent of the coordinates inside the junc- 
tion (see Sec. 4) ,  but also the order parameter A is indepen- 
dent of the coordinates in almost the entire junction (except 
in narrow regions of width - v g L  near the edges). l3  There- 
fore, in almost the entire junction, the phase of the order 
parameter increases linearly with the coordinate x ,  and 
p, = fix/2L, where x is the phase difference of the order 
parameter over the entire junction. 

In the considered regime of superconductivity-stimula- 
tion saturation, only the term proportional to 4pf = fi2x2/ 
L ', and the nonequilibrium term are significant in the Ginz- 
burg-Landau equation. l6  This equation can be written in the 
form 

In accordance with (19a) and with the fact that 
- i(R : - A : ) =;aAS(& - A), the superconducting cur- 
rent in the junction is equal to 

It must be borne in mind, in the derivation of the rela- 
tion between the fluctuation SI, of the superconducting cur- 
rent and the fluctuation SFof the distribution function, that 
the total fluctuation of each of the quantities V! and s consists 
of a part directly due to the fluctuation SA, and a part con- 
nected with S E  

A0 

Since Fz A0/2T in the stimulation saturation regime, 

s ( A )  =Ao/2A. (35) 

From (31)-(34) we get for the fluctuations the equa- 
tions: 

After eliminating SA we get 

The extraneous fluctuating superconducting current is due 
entirely to the fluctuations of the quasiparticle distribution 
function: 

To express now the fluctuation of the distribution func- 
tion in terms of the extraneous fluctuating currents, whose 
correlation functions are known (see Sec. 2) ,  we must use 
the kinetic equation. Since the noise spectrum density is 
measured at frequencies f <w,/2a (w, is the Josephson fre- 
quency), it is determined by fluctuations that are smoothed- 
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out over a time interval to) w; '. In addition, the fluctuating 
quantities measured in an external circuit depend only on 
fluctuations averaged over the volume of the crystal. It is 
necessary to derive from the general equation ( 13) a kinetic 
equations for the fluctuation ( m) averaged over the time 
(superior bar) and over the volume of the junction (angle 
brackets). This problem is solved in the Appendix, and we 
present here only the result: 

Here = ( E ~  - DE is the energy-diffusion coeffi- 
cient3.13'15. 

6D, is the fluctuation of this coefficient and an expression 
for it is obtained by linearizing (40). The subscript 11 means 
taking only that part of the quantity which is averaged over 
space and time and whose averaging (the part) over either 
time or space yields zero. In particular, 

The extraneous flux is 6Q = - 26Ja + (21 /3)div6Ja [see 
( 13) 1, ( 6j,) is the extraneous energy-diffusion fluctuation 
flux and is equal to 

. .. 

The action of the operator (DV2) -' is defined in Refs. 3, 13, 
and 15. 

Let us compare (39) with the kinetic equation derived 
in Refs. 3 and 13 for the average (nonfluctuating) distribu- 
tion function (F(E)) .  It can be seen that the left-hand side of 
(39) is obtained by linearizing the equation for ( F ) ,  while 
two different extraneous sources appear in the right-hand 
side. The flux ( G) is due entirely, as we shall show, to 
scattering by phonons; ( z )  is the extraneous part of the 
fluctuating energy-diffusion flux due in final analysis to the 
jitter of the well in which are trapped the quasiparticles with 
E < A. and with random character of the scattering by im- 
purities. 

In the calculation of the correlation functions ( w) 
and ( x) with the aid of Eqs. (14), ( l5 ) ,  and (42) it must 
be borne in mind that, averaged over the junction volume, we 
have (div SJ, ) = 0, since scattering by impurities does not 
change the number of the quasiparticles. This is why 
( div SJ, ) = 0 and (SQ ) contains only the extraneous flux 
- 2(6J, ), which is due to scattering by phonons. The Four- 

ier transform of the corresponding correlation function is -- 
((hQ(eitt) ) ( 6 Q ( ~ ~ t ~ )  ))o 

Here V(E) is the junction volume accessible to quasiparticles 
having a given E. 

We calculate first that part of the correlation function 
of the quantities ( 6j,) which is due to impurity scattering. 
From the equality (divsJ, ) = 0 it follows that (divSJ, ) , , 
= divSJ, - divSJ, [see (41)l.  Expression (42) for 
( z )  contains an alternating quantity d l ,  ,/dt having the 
Josephson frequency and containing no time-independent 
part. This means that we need substitute in the expression for 
(Sj) only divSJ, and discard divSJ, . With the aid of ( 14) 
we obtain the following expression for the Fourier transform 
of the impurity-scattering contribution to the correlation 
function ( z): 
-- 

((hi ,  ( ~ i t , )  ) ( h i e  (8222) ))a 

The contribution of the background scattering to this corre- 
lation function is relatively small. 

Under conditions of stimulation saturation of the su- 
perconducting equation, two terms in the left-hand side of 
the kinetic equation vanish because d @ ) / a &  = 0 at E < A,. 
The first two terms in the left-hand side are small compared 
with the term due to energy diffusion. In the right-hand side, 
the extraneous source ( m) is small compared with the 
source that is connected with the same energy diffusion. The 
kinetic equation reduces in this regime to the statement that 
the total fluctuation energy-diffusion flux is independent of 
E :  

Since the flux is zero at the bottom of the well and since 
(SF )  = o ~ ~ E = A , ,  weget 

An expression for D, ( E )  was obtained in Ref. 13. Under 
conditions when the nonequilibrium term in the kinetic 
equation for ( F )  is large, we have 

In this expression, c is a coefficient of order unity, (fix)2 
= 4e2a2, and U(  t )  is the instantaneous value of the junction 

voltage. 
We proceed now to calculate the spectral density of the 

junction-voltage fluctuations. At nonzero average junction 
voltage the time dependence of the phase difference is deter- 
mined by the equation for the total current 

t i .  
= -- 2eR, x+l, (x) f 61:" f 61:' 

Here SI',"' is the extraneous normal current whose correla- 
tion function is determined by the Nyquist formula, since the 
main contribution to the normal current is made by the qua- 
siparticle energy region E-  T, and in this region the distribu- 
tion function is close to equilibrium: 
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In the regime of strong superconductivity stimulation, 
the amplitude of the oscillations of the order parameter in 
the junction is small compared with the mean value of A. 
This allows us to express the fluctuation current SI:' [see 
(34) and (38) ] in terms of the smoothly varying part of the 
distribution-function fluctuation ( SF) given by Eq. (46). 
The correlation function 61 7' follows from (44). It must 
also be recognized that in the strong superconductivity- 
stimulation regimeI5 the average current is 
I, = 0,4eNFSD 112A,512/fi1'2~, the energy diffusion coeffi- 
cient D, is given by (47), and the volume V(E) practically 
coincides with the junction volume Vat all energies E < A,. 
The Fourier transform of the correlation function of the ex- 
traneous superconducting currents is equal (apart from a 
coefficient of order unity) to 

er t  er t  2T A. AaZ 
(61. (t,)8l, (t,) >, = 

R, T 4e2@ 

The fluctuations SI y' and SIY' are produced by differ- 
ent mechanisms, so that there is no correlation between 
them, and the corresponding spectral voltage fluctuation 
densities S  g' ( f ) and S  $'( f ) are additive. Calculation of 
each of these spectral densities calls for a different approach, 
since the times of the correlations 61 7' and SI7' are entirely 
different. The SIy t  correlation time is T~ 9 w; I, and the 
61:' correlation time is of the order of Ai/D, ) w; I .  The 
spectral density S  $'(O) was calculated in Ref. 14 in the 
framework of the resistive model. Using the method de- 
scribed in Ref. 16, we can represent this density, for arbitrary 
I, ( x )  dependence, in the form 

Since the fluctuations SI 7' are slow, the response of the vol- 
tage to 61 7' is simply SU'" = - Rd 61 Y', and therefore 

The total spectral density of the voltage fluctuations at 
low frequencies is equal to the sum of (5 1 ) and (52): 

In the region of the plateau on the IVC of the junction, 
the quantity h;/4e2n2 increases with decrease of the vol- 
tage. In the region of the "shoulder" (the start of the pla- 
teau), i.e., at D,/Ai -y ,  its order of magnitude is w,/y, 
where wc = ~Ai/2fiT, i.e., it can be much larger than unity. 
This means that the noise due to the energy diffusion can 
exceed by many times the usual resistive noise. Since S ,  (0) 
as a function of the voltage is the product of R : and a de- 
creasing function n ,  the maximum of S ,  (0) should be shift- 
ed away from the maximum of R, towards lower n ,  by 
amounts on the order of the width of the shoulder on the 
IVC. It can also be seen that the ratio S  $'(O)/R : decreases 
with decrease of A, when the temperature Tappraoches the 
critical Tc . 

In a number of experiments (see, e.g., Refs. 17-20) it 
was noted that the spectral density S ,  (0)  in S-c-S junctions 
is several (3-10) times larger at 7> I, than the value calcu- 
lated on the basis of the resistive modelI4 [see (5 1 ) 1. On the 
basis of the foregoing it can be assumed that this difference 

between the experiment and the theory of Ref. 14 is due to 
the noise S  $'(O) produced by the fluctuations of the iso- 
tropic part of the quasiparticle distribution functions, both 
through scattering by phonons and through fluctuations due 
to the superconducting-current fluctuations. It is also point- 
ed out in Ref. 17 that the maximum of S ,  (f ) measured at 
low frequencies as a function of the time-averaged current ? 
is shifted away from the maximum ofRd (7) towards smaller 
7. It was shown above that if the IVC 1(n) and the noise 
S,  (0)  are determined by superconductivity stimulation by 
energy diffusion of the quasiparticles, such an effect does 
indeed take place. A decrease of the spectral density S ,  (0) 
of the voltage fluctuations at low frequencies (see Ref. 17) 
and a decrease of the Josephson generation linewidth con- 
nected with S ,  (0)  (see Ref. 19) were also observed when 
the temperature approached T, as the critical current I, of 
the junction decreased. This also agrees with (53). 
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APPENDIX 

When the distribution function and the order param- 
eter change little over distances -v, the kinetic equation 
( 13) for the fluctuation of the isotropic part of the distribu- 
tion function SF can be expressed, if E > A, in the form ( 6  
denotes linearization of the expressions in the square brack- 
ets) 

where 

E= (e2-A2)'", 6Q=-26.I.S- (2113) div 6J.. 

The boundary condition for SFat E = A is the nonpene- 
trability condition (equation of the derivative in the direc- 
tion of the well wall to zero). 

We represent SF in the form (see the text for the nota- 
tion) 

6F=6Foo+6Foi+SFio+6Fli, (-4.2) 

where 

We use a procedure similar to that used in Refs. 3 and 13 
to obtain a closed energy-diffusion equation for the average 
(nonfluctuational) distribution function (7) (see the re- 
view in Ref. 15). We average each term of (A. 1 ) over the 
volume and smooth out the time dependence. We use the 
vanishing of the time averages of the time derivatives of rap- 
idly oscillating quantities. In the upshot we get 
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Substituting (A.4) and ( A S )  in (A.3) and discarding 
small terms, we obtain the closed equation (39) for SFoo and 
expressions (40) and (42). 

For the quantities SF,,, SF,, and SF,, we obtain, taking the 
inequality D /L  *% y into account, the expressions 

The following expressions for F,,, Fol and F, , were obtained 
in Ref. 15: 
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