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The transport equation for the motion of a degenerate gas along the energy axis during 
interactions with a thermalized distribution is discussed. The equation is analogous to the 
Burgers equation for the one-dimensional flow of a compressible gas. The structure of the 
stationary state is investigated in the presence of a pump and recombination. Population waves, 
similar to shock waves in the gas, and the propagation of "sound" along the energy axis are 
examined. One-dimensional Burgers turbulence develops along the energy axis when the pump 
intensity is a random function of time. 

INTRODUCTION 

The advent of femtosecond lasers has resulted in rapid 
advances in the kinetics of hot photoelectrons in semicon- 
ductors because it is now possible to investigate the time- 
dependence of the distribution function.'-3 The significant 
feature of experiments with femtosecond lasers is that a large 
number of electrons is produced and, although the electrons 
do not reach the bottom of the band, degeneracy usually 
appears during the operation of the pump or during relaxa- 
tion. It is then interesting to consider the effect of local de- 
generacy on relaxation and to examine the type of collective 
behavior induced by the nonlinearity of the transport equa- 
tion due to degeneracy. 

In contrast to transport in coordinate space, transport 
in momentum space is characterized by nonlocal behavior 
due to the collision integral. We shall consider the situation 
where it is possible to select directions in momentum space 
along which transport is due to small momentum transfer 
(modulus of momentum) and the transport equation can be 
written in the diffusion approximation. 

At the same time, the entire behavior of a gas (liquid) in 
coordinate space, described by the Navier-Stokes equations, 
can be simulated by giving the molecules a repulsion at short 
distances and attraction at large distances in the microscopic 
description. The Pauli principle plays an analogous role in 
momentum space. Two electrons effectively "repel" because 
they cannot occupy the same point in momentum space, 
which means that neighboring points effectively "attract" 
them. This means that many of the properties of flows in 
coordinate space can be established for flows in momentum 
space. In particular, there is an analogy between the "flow" 
of electrons along the energy axis E in quasielastic scattering 
by a thermostat at temperature T and the one-dimensional 
flow of a compressible gas. The transport equation is identi- 
cal with the hydrodynamic equation which, in this case, is 
the Burgers eq~a t ion .~ , '  The temperature Tplays the part of 
viscosity (or, more precisely, dissipation) in the transport 
equation, and degeneracy plays the part of compressibility 
(nonlinearity). The Reynolds number is introduced as a 
measure of nonlinearity and viscosity (degeneracy). 

We shall examine in detail the form of the stationary 
distribution in the presence of a pump and of recombination. 

The Burgers equation describes the propagation of 
shock waves which, in the case of flow in momentum space, 

will be referred to as population waves. In this sense, the 
Fermi distribution is a standing population wave. We shall 
discuss some of the properties of these waves, such as the 
propagation of a single crest produced by the pump pulse, 
propagation of a kind of "sound" along the energy axis, and 
attenuation of the sound as a result of viscosity and nonlin- 
earity. When the pump power is a random function of time, 
the statistical properties of the distribution function reduce 
to the so-called Burgers turbulence (Refs. 4, 6, 7) .  The tur- 
bulence develops in a self-similar manner as electrons relax 
downward along the energy axis. 

1. TRANSPORT EQUATION 

The transport equation in the diffusion approximation 
for quasielastic scattering by the thermostat will be derived 
in the usual way.' In the initial collision integral 

1 d 
S ( F ) =  [ g ( e ) J ( ~ )  1 ,  ( 1 )  

g ( e )  d.5 
written in terms of the flux J ( E )  along the E axis and the 
density of s t a t e s g ( ~ ) ,  i.e., 

we assume that the scattering probability W(E,E') satisfies 
the principle of detailed balancing and has the form 

The symmetric part of K(w) must be large for values of w 
that are small in comparison with the characteristic scales of 
the distribution, e.g., in comparison with the temperature T. 
This enables us to expand f ( ~ )  in the integrand of ( 2 ) ,  so 
that the flux assumes the differential form 

where the transport coefficient A(&) can be expressed in 
terms of the second moment of K(w):  
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This integral must be evaluated for o 4 T. 
The expression for the flux (4 )  differs from the flux in 

the nondegenerate case by the term f 2 ( s ) .  Hence, degener- 
acy affects dynamic friction, which now occurs at the rate 
A(&) [ l  - f ( ~ ) ] ,  but does not affect diffusion, the diffusion 
coefficient being given by D(E)  = TA (E) .  The flux associat- 
ed with dynamic friction has the maximum value J = A /4 at 
f = '  

2' 
Let us now compare the transport equation containing 

the collision integral ( 1 ) , (4 )  

with the hydrodynamic Burgers equation describing the 
one-dimensional flow of weakly-dissipating, weakly-nonlin- 
ear gas (Ref. 5, p. 495): 

where u ( x , t )  is the flow velocity of the gas, s is the velocity of 
sound, a,, is determined by compressibility and is given by a,, 
( y  + 1)/2 for a polytropic gas, y = c,/c, (the ratio of spe- 
cific heats at constant pressure and volume, respectively), a 
is a measure of dissipation and is given by 

p is the density of the gas, q, 5 are the viscosity coefficients, 
and x is the thermal conductivity. 

If we neglect the dependence of the coefficients g, A on 
E, then ( 6 )  and (7)  are found to be identical. This means that 
the variation in compressibility with pressure is analogous to 
degeneracy and, owing to viscosity and thermal conduction, 
dissipation is analogous to diffusion along the energy axis, 
determined by the temperature T. It follows from (6 )  that 
the relative contribution of nonlinear and dissipative effects 
can be characterized by the Reynolds number Re = jAeT - ', 
where f and AE are the characteristic amplitude and the scale 
of the distribution, respectively. 

Let us briefly consider the validity of (6 ) ,  e.g., for a 
three-dimensional electron gas. Phonons and thermalized 
electrons and/or holes play the role of the thermostat de- 
scribed by the probability (3) .  It is readily verified that 
quasielastic scattering by phonons (acoustic or optical) 
usually predominates at low concentrations at which the de- 
generacy of the electrons is not significant. To allow for scat- 
tering of carriers by carriers, it is simplest to consider a p- 
type sample in which the concentration of nonequilibrium 
electrons is less than that of equilibrium holes (n, <n, ). We 
shall confine our attention to this situation. The segment of 
the energy axis along which the relaxing electrons travel 
after photoproduction must lie in the passive region E <fin,,, 
where R,, is the frequency of an optical phonon) if the con- 
centration of thermalized holes is relatively low, and can be 
extended to the active region (E > fifl,,) if there are enough 
holes.' 

2. STRUCTURE OF STATIONARY STATE 

In this section, we shall examine the form of the distri- 
bution function f ( ~ )  that is established for given rates of 
pumping and recombination. For a nondegenerate gas, the 
distribution function f ( ~ )  is usually determined for a given 
flux J ( E )  along the energy axis. It will be seen below that this 
problem is not properly defined for a degenerate gas. 

We wish to find the stationary solution of the equation 

which explicitly includes recombination at E = 0 at the rate 
- 1 

rR and a pump at the point E = E,, with a pumping rate 
G,,L " L is a linear dimension). 

We shall consider this problem in the simplest case, for 
which ( ~ ( E ) A ( E )  = const). This occurs, for example, for 
electron-electron (electron-hole) scattering in a nondegen- 
erate 3D-gas, or for scattering by acoustic phonons in a 2D- 
gas.' Integrating (9 )  with respect to E, we obtain, in the 
time-independent case, a Riccati equation 

and the condition 

where, by definition, the dimensionless flux is given by 

0, Y < O  or Y>YO 

x af(O), o<Y<Y., Y ~ = F ~ / T  ( 1  l a )  

and we have introduced the dimensionless pump and recom- 
bination rate constants 

After the integration of ( l o ) ,  the result, i.e., the function 
f ( ~ ) ,  depends parametrically on x and on the undetermined 
constant jj = Z/T. Conditions ( 11 ) and ( 1 l a )  are required 
to determine these parameters. 

Consider the quadratic three-term expression .7( f )  

= f - f + x with the discriminant 1/4 - x. When the dis- 
criminant is positive, A ' r 1/4 - x, OGAG;, we have 2-( f ) 
= ( f  - 1/2 - A )  ( f  - 1/2 + A) , and the solution has the 

form 

This shows that f; does not vanish for finite y, so that f does 
not cross the point 1/2. A. In the case of a negative dis- 
criminant, y'=x - 1/4, y > 0, we have the solution 

The regions in which the individual solutions of ( 12)- 
( 14) are realized for 0 <y <yo (this occurs in a unique man- 
ner) are conveniently represented on the a, p plane (Fig. 1 ). 
It is clear, in view of ( 12)-( 14), that conditions ( 11 ) and 
( 1 l a )  are transcendental equations in x and j .  The analysis 
can be extended further in the case of the strong pump E,,> T, 
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FIG. 1 .  Different typesofstationary solution f(a) of (12)-(14) on thea, 
p plane with E, )  T. 

yo) 1 in which we are interested here. According to ( 10)- 
( 14), the determination of 7t and J is not difficult, but turns 
out to be very laborious. Here, we merely note that the origi- 
nal equation (6)  transforms into itself when we introduce 
the replacement f- 1 -f, E-E, - E, a t t p ,  so that it is suffi- 
cient to consider the region a > p ,  which is labeled with the 
index a in Fig. 1. The answers are as follows: 

h='i,-p, y=h-' Arth {A-' [pa-'( 1-p) --'i2] }, 
f (0) =pa-'(I-p), f(yo)=p; 

(123) 

A, f (0) ,  f(y,) are given by Eqs. (12a); 

f ( 0 )  = 1 / 4 ~ t ,  f (  yo) = l - 1 / 4 ~ .  (14a) 

In the region in which a < p  (labeled as b in Fig. I ) ,  the 
formulas are obtained by introducing the above replace- 
ment. The distribution at y = yo does not depend on a for 
a > min(p, l /2).  The function f(y) depends on the rate of 
recombination for ally, and this means that the search for a 
stationary solution with a given flux is an undefined problem 
for a <min(p,1/2). We note that, in the nondegenerate 
case, the analogous condition is much more stringent 
a 5.e-Yc1,  and is absent altogether in the limit that we are 
considering here ( y o )  1 ) . 

Analysis of the solutions given by ( 12)-( 14) shows 
that they are stable and that the stability is absolute or "con- 
vective." In the latter case, before the fluctuating perturba- 
tion reaches an appreciable magnitude, it is either carried 
outside the region 0 < y  <y, ,  or to the point f (y)  = 4. The 
absolutely stable solutions ( 13), ( 14) are those for which 
f; > 0, and convective stability sets in when the sign in ( 12) 
is reversed. Solutions ( 12), ( 13) are characterized by Reyn- 
olds number Re - 1, and solution ( 14) by Re - yo $1. 

3. POPULATION WAVES 

Among the nonstationary problems that can be solved 

gation of the wave f(a,t) = f ( ~  - Ut), subject to the initial 
condition f( - w ) = f,, f( + W )  = f2, f, > f2. Equation (6 )  
is formally extended to the entire E axis: - oo < E < oo. In 
reality, the width of the region in which the wave propagates 
must be much greater than the width of the wave. The prob- 
lem arises, for example, when the rate of generation changes 
f r o m p = a - 6 , u  to ( p = a + S p  ( & < a ,  a < 1 / 2 ) ) .  Al- 
though the pump intensity has increased only slightly, the 
point Z = JT ( 12a), which has an undetermined position for 
p = a ,  leaves the neighborhood of E = 0 for the neighbor- 
hood of & = &,. A population wave therefore propagates 
from?-T toeo - E-T. 

For simplicity, we shall neglect the dependence ofg(&) 
a n d A ( ~ ) o n ~ . S u b s t i t u t i n g r  = t A T - l , y = ~ T - ' i n ( 6 ) , w e  
then obtain 

The required solution has a form analogous to ( 12): 

When u = 0, we have a standing wave. The Fermi distribu- 
tion is a special case of this for f, = I,& = 0. 

Equation ( 15) enables us to investigate the time evolu- 
tion of different initial perturbations, in the same way as in 
hydrodynamics.'.' As an example, we note that a single- 
hump distribution f (e)  of width Td and heightL), produced 
by the pump, transforms into a triangular wave in the course 
of time. Its high-energy wing turns out to be a population 
wave, and propagates in time in accordance with the law 
y, (T)  -yo = (2dr) ' I2 - T. The low-energy wing becomes 
longer, and occupies the region y, < y <y, where 
y, ( T )  - y o  = - r. When d >  1, the distribution is 

The wave with the opposite sign, f, < f,, cannot propa- 
gate. When the initial conditions are chosen in this form, the 
solution depends on the ratio of fi and i. When f, < 4, the 
distribution tends to f, for any E, and the width of the front 
increases diffusively. When f2 > 4, the region f (&) = 4 ap- 
pears at the center and extends in both directions. 

In dimensionless units, the width of the front of the 
wave ( 16) is &E = 2T/ (  f, - f,), and the Reynolds number 
is Re = 2. 

4. "SOUND" 
We shall now determine the dispersion relation for har- 

monic waves propagating along the &-axis in time. Such 
waves can be excited by variations in the rates of pumping or 
recombination. For simplicity, we shall suppose that the 
wavelength 27k - '  is much less than the scale of f ( a ) ,  and 
that the frequency o is much greater than the reciprocal of 
the relaxation time off(&).  The distribution then has the 
form 

Substituting this in ( 6 ) ,  we obtain the dispersion relation 
- - - 

analytically for (6 ) ,  we begin with the problem of the propa- o=A [(2f-1) k - i r k 2 ] .  (17) 
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Thus, when w <AT - ' (2f - 1 ) ', "sound" waves can propa- 
gate along the &-axis. The propagation takes place in the 
direction of high (low) energies for f > 1/2( < 1/2). The 
"sound" waves are attenuated by dissipation, in accordance 
with ( 17). They can also attenuate as a result of a nonlinear- 
 it^,',^ which does not manifest itself in the linear harmonic 
analysis. Each wave train eventually transforms into a trian- 
gular wave whose high-energy wing is a population wave. 
When attenuation by dissipation occurs in a time td = T /  
Ak 2, attenuation due to nonlinearity (degeneracy) occurs in 
a time t ,  = T/2AkSf: The ratio of these two times gives the 
Reynolds number for the sound waves. 

5. TURBULENCE 

Let us now consider the propagation of random waves, 
produced by the pump with a time dependence of the form 
p ( r )  = p  + S p ( r ) ,  wherep = const, JSp(  <p. The random 
function S p ( r )  is specified by the correlator 
(Gp(r)Sp(r  + 8 ) )  = M(B), which has the characteristic 
scale 8. A sawtooth profile appears after the waves flip over 
as a result of the nonlinearity, and the profile moves down- 
ward along the energy axis with velocity 1 - 2p. Each popu- 
lation front has its own height h and its own relative velocity 
u, so that wavefront collisions take place in which the two 
colliding fronts form a single front. In these collisions, the 
wave fronts behave like particles with mass and momentum. 
The collisions are perfectly inelastic. The quantity indicat- 
ed' in Fig. 2 plays the part of mass. The particle masses and 
separations increase with time, and the number of particles 
decreases. The state of the system after a time equal to the 
relaxation time r, =yo/( 1 - 2p) can, in principle, be deter- 
mined from the exact solution of ( 6 ) ,  but this procedure is 
equivalent to the solution of the set of equations of motion 
for all the particles of the one-dimensional gas. We shall only 
be interested in averages and, in particular, the average sepa- 
ration between the particles (wavelength), the average 
mass, the correlator of the distribution function, and the 
average characteristics of recombination luminescence. For 
simplicity, we shall put a = 1 - p (i.e., f = p ) ,  p < 1/2. 

Near y =yo, where 8 is not small, the correction to the 
distribution function is Sf(y,r) = f - p and satisfies the lin- 
earized equation 

subject to the boundary condition Sf (y , , ,~)  = 6p ( r ) .  Hence, 
we have 

It is clear from this formula that the pump operates like a 
strip chart recorder: S p ( r )  moves the "pen" across the "pa- 
per" transported at the rate l - 2p. Let us transform to the 

FIG. 2. Profile of developed Burgers turbulence for large Reynolds 
numbers.',' 

moving coordinate frame j = y + ( 1 - 2 p ) r  and introduce 
the function q,(j,r) = $(y,r), which satisfies the equation 

with the random initial condition 

The line drawn by the "recorder" is the initial condition for 
( 19). We now define the Loitsyanskii-Burger invariant by 

m - 

The problem defined by ( 19) and (20) is examined for H #O 
in Ref. 4 and for Z = 0 in Ref. 6. We shall confine our atten- 
tion to the case where HfO. According to Burgers, the dis- 
tribution then develops so that the triangular waves exhibit a 
self-similar behavior in time. The mean length of the wave is 

and the mean "mass" is (m) = ( I  ). The mean height of the 
wave is ( h )  = (I)/T, and the Reynolds number is 
R e ( r )  ~ 7 ' ~ ' .  The correlator F = ( f(y,r)  f(y + h y , ~ ) )  is 
not evaluated theoretically in Ref. 4. However, it is known 
that its dependence on time T and Z is of the form (2/r)'I3, 
and the characteristic scale in Ay is ( I  ). 

As far as recombination is concerned, we note that, near 
y = 0, the diffusion term cannot be neglected, as in ( 18). For 
quasistationary propagation of the wave with 1% 1, the equa- 
tion for the flux 

near y = 0 yields 

which is always valid except for the short times taken by the 
triangular wavefronts to cross y = 0. Hence, the recombina- 
tional luminescence correlator is 

(Z(t)Z(t+ At) ) m t 6 / ( 0 ,  T )  6 f ( 0 ,  z  

+ A z ) ) ~ < 6 f m  ( t ) 6 f m  (T+AT)  ) ~ F ~ ( E / Z ~ ) " ' .  (23) 

The necessary condition for the validity of (18)-(23) is 
ISpl %max[ l / (  1 - 2p)R ( 1 - 3 ,~) '8 /~ , , ] .  The triangular 
wave train should also be observed in the case of hot lumines- 
cence. 

In conclusion, I wish to express my gratitude to V. F. 
Gantmakher for suggesting this topic, A. F. Dite for draw- 
ing Ref. l to my attention, I. B. Levinson for discussions and 
for pointing out Ref. 8, and S. V. Iordanskii and D. E. 
Khmel'nitskii for their interest in the early stages of this 
research. 
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