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New mechanisms of energy exchange are considered for a system of two-level particles behaving 
cooperatively in the Dicke model. It is shown for the case of dipole-dipole exchange of 
nonresonant radiation quanta, or the exchange of resonance quanta in the presence of a resonator, 
that processes involving the relaxation of excited impurity particles are significantly accelerated 
in a cooperatively behaving medium. 

Of the many known collisional processes in atomic and 
molecular physics,'.2 there is particular interest in radiative 
collisions occurring in the field of a strong electromagnetic 
wave (see, for example, Ref. 3 ) .  Such phenomena are usual- 
ly described in terms of the binary collision approximation, 
whose parameters (relative velocity and impact parameter) 
are usually assumed to have a Boltzmann distribution. At 
the same time, other, coherent, ensembles can also evolve in 
the field of a strong resonant wave. The Dicke ensemble4 is 
an example of this. The cooperative behavior of particles in a 
coherent ensemble gives rise to new effects such as direction- 
al superradiance,' superscattering,' and so on. In the coher- 
ent ensemble, collisional phenomena that are essentially ex- 
changes of radiation quanta can proceed in a different, more 
complicated manner as compared with the Boltzmann en- 
semble. In this paper, we examine the influence of these pro- 
cesses on a subsystem of impurity atoms in a Dicke ensem- 
ble. The essence of these phenomena is that, when one of the 
particles of the coherent ensemble exchanges a photon with 
another, the process can occur synchronously with the ex- 
change of quanta by another pair of particles. We then have 
an induced rather than a spontaneous radiative process be- 
cause the presence of two identical photons accelerates each 
of the exchange processes by a factor of two. 

We shall examine this phenomenon within the frame- 
work of the simplest model, namely, N identical two-level 
particles in a radiation field. Collisions of resonantly excited 
particles with buffer-gas particles and with the walls of the 
thermostat will be ignored, and we shall suppose that energy 
exchange occurs mostly via interactions between the reso- 
nant particles, induced by the radiation field. The coherent 
ensemble will be described by the Dicke model.4 The first 
step in an analysis of energy exchange between particles in 
the cooperative ensemble is to determine the distribution 
function for the populations of the Dicke states in the pres- 
ence of a laser pump and cooperative spontaneous emission. 
The second stage is to determine how this ensemble of essen- 
tially nonthermal particles facilitates energy exchange 
between its individual two-level atoms or molecules. We 
shall split the Dicke system4 into a main filler gas with a 
resonant working transition, and an impurity gas with much 
lower partial density and a working transition that is close 
enough to resonance. Because of the large number of filler- 
gas molecules for each impurity gas molecule, we may sup- 
pose that the main process of energy exchange is that 
between the impurity molecules and the filler molecules. 

We shall consider two energy exchange mechanisms, 
namely, the dipole-dipole interaction due to the exchange of 
nonresonant virtual hard quanta with characteristic wave- 
lengths of the order of the particle separation,' and the ex- 
change of resonant quanta when the presence of the resona- 
tor ensures that the total energy of these quanta is sufficient. 

For simplicity, we shall suppose that the energy levels 
involved in the working transition are nondegenerate, the 
linear dimensions of the system are much smaller than the 
wavelength of the resonant radiation, and the field has a 
single mode; and the system is located in the resonator. Ac- 
cording to the Dicke model, the gas behaves as a single quan- 
tum-mechanical system, and spontaneous emission corre- 
sponds to transitions between the energy levels of a certain 
cooperative macroparticle. It is well-known that this Dicke 
ensemble can be described by the total spin L, and the energy 
levels are specified by the component L ,  of the total spin 
along a chosen direction in energy space. The state vector of 
the Dicke ensemble has the form jl,m), where I is the Dicke 
cooperative number and m is the quantum number associat- 
ed with the component L, of the total spin. 

We can now use the step-up and step-down operators, 
L + and L -, to express the intensity of spontaneous emission 
by the Dicke ensemble from the state II,m) in the form 

where I,, is the spontaneous transition rate of an individual 
particle,' p is the matrix element of the operator represent- 
ing the dipole magnetic moment of the transition, and w,, is 
the resonant frequency. 

When spontaneous emission and stimulated absorption 
and emission are taken into account, the transport equation 
for the distribution function p, over the states /I,m) of the 
Dicke ensemble takes the form 

where I, is the laser pump intensity in the resonance mode 
and a is the photoabsorption cross section. 

In steady state, ( 3 )  leads to the equation of detailed 
balance for the population fluxes produced in the upward 
direction by the pump field and in the downward direction 
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by spontaneous emission to all the field modes and stimulat- 
ed transitions due to the pump: 

where we have introduced the dimensionless parameter 

For a smooth distribution function, i.e., when 
I(prn+1 - ~ m ) / p m + ,  I-a12<1,wehave 

where s-l + rn varies between 0 and 21 and B is a normaliz- 
ing factor (when P=al 3, 1, we have ~=:2(a l / . r r )  'I2.  

Let us now investigate energy exchange between a par- 
ticular two-level particle and the Dicke ensemble. In the 
near zone of the chosen particle, the main energy exchange 
mechanism is the dipole-dipole interaction. The correspond- 
ing interaction operator is 

N 

where R, is the distance between the centers of mass of the 
k th particle and the chosen particle, a+ describes the transi- 
tion from the lower to the upper level, and a- the transition 
from the upper to the lower level. The dipole-dipole interac- 
tion disturbs the phases of the dipole moments of the parti- 
cles. The analysis given here is therefore valid only for the 
initial stage of the dipole-dipole exchange between the cho- 
sen particle and the Dicke ensemble, during which the di- 
pole-dipole interactions between the filler-gas particles do 
not as yet significantly disturb the coherence of the Dicke 
enemble. 

We shall suppose that the particles of the medium, 
which form a single Dicke macroensemble by their mutual 
interaction via the radiation field, have parallel dipole mo- 
ments and are therefore responsible for the macroscopic po- 
larization of the medium, whereas the macroscopic polariza- 
tion of the Dicke particle aligns the dipole moments of the 
individuzl particles in the same direction. This enables us to 
reduce V to a form that corresponds to the interaction 
between the chosen particle and the Dicke macroensemble 
in the dipole-dipole approximation, i.e., 

N 

where 5 is the effective interaction frequency. Let us suppose 
that the chosen particle is initially ( t  = 0 )  in an excited state. 
We can then use the method of slowly-varying amplitudes to 
derive the expression for the population of the upper state of 
the chosen particle on the assumption that a stationary dis- 
tribution has been established in the system over the energy 
levels of the Dicke particle (8)  : 

p z 2 ( t )  =Sp {p,, c ~ s " * / ~ ~ j t ( < l ,  m(L-L+(Z, m ) ) " ] ) .  ( 9 )  

For a weakly excited system (P> 1 ), we find, using (2)  and 
(8),  that 

The spectral density of the relaxation process (line shape) of 
the chosen particle as it "collides" with the Dicke ensemble 
is 

m 

The characteristic relaxation time for the dipole-dipole co- 
operative collisions is 

After averaging over the realizations of the Dicke ensemble, 
we find that 

where V = (Ao/2.rr)' is the volume of the system, A, is the 
wavelength of the resonance radation, and a, is a character- 
istic dimension of the gas particles. If we suppose that the 
cooperative Dicke number 1 is not very different from the 
total number N of particles, i.e., N - I<  N (this is justified if 
we suppose that gas-kinetic collisions do not succeed in dis- 
turbing the particle phases or the coherence of the Dicke 
ensemble throughout the time interval), we obtain the fol- 
lowing estimate for the relaxation time: 

where n = N / V is the gas density and 8% 1. 
We must now consider the cooperative exchange of res- 

onant photons between particles of the medium through 
their common radiation fields. We shall suppose that the 
external radiation field excites the ensemble of particles that 
are capable of cooperatively emitting spontaneous photons 
into a large number of field modes. However, a high-Q open 
optical resonator is tuned to one of these field modes and has 
the property that photons entering it cannot escape from the 
system other than by being again absorbed by the gas parti- 
cles and emitting into other low-Q modes. Such problems 
have been s o l ~ e d ~ . ~  under the conditions of thermodynamic 
equilibrium. 

The complete Hamiltonian for the system is 

h 

where H, = h J A  + is the field Hamiltonian, $ h&, 
is the Hamiltonian for the Dicke ensemble, H, =fig 
(A +L + + AL - )  is the Hamiltonian for the interaction 
between the Dicke ensemble and the field in the dipole ap- 
proximation, g is the constant of this interaction, and A and 
A + are, respectively, the operators describing the creation 
and annihilation of a resonant photon. The mean field ener- 
gy density and the mean interaction energy are, respectively, 
given by 
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so that 

Because cooperative processes in the Dicke model are 
macroscopic, the field can be described classically, but the 
particle states can be specified by quantum-mechanical vari- 
ables. According to the correspondence principle, the semi- 
classical approach is asymptotic for large field quantum 
numbers. For small field quantum numbers (m approaching 
- I),  the validity of the semiclassical description can be il- 

lustrated by the following calculation. 
In the quantum-mechanical case, the system is specified 

by statevectors In, m, I ), wheren is thenumber ofphotonsin 
the resonant mode of the field and m and I have the same 
meaning as before. We then have 

and (2) is satisfied. 
In the interaction representation, the Schroedinger 

equation 

for the wave function of this particle + j e l d  system in the 
basis of the state vectors In, m - n, I )  ( - l ~ r n ~ l ,  
O<n(m + 1) takes the form 

where 

Y = $,, 1 n, m-n. 1 )  

is the wave function of the system. In the approximation 
I - m + n-I- m and n < l -  m (m assumes values near 
- I), the problem can be solved analytically. If we introduce 

the dimensionless time 

and use the method of generating functions, we obtain the 
solution of this equation in the form 

(-i sin 6 ) "  (cos 6 )  I+"-" In, m-n, 1). 
(20) 

This gives us the required quantum-mechanical expectation 
value of the field amplitude 

m i ( l + m )  sin 6 cos 6 [ s i n Z 6 f  (l+m)cos2 61-'" 
(21) 

and the intensity 
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It follows from (2 1 ) and (22) that, when the system is weak- 
ly excited, it exhibits periodic beats of its own radiation field 
with small amplitude (fig/,u) ( I  + m )  ' I 2  and high frequency 
g(1-  m + I)'", that corresponds to the matched emission 
and absorption of resonance radiation. 

If we suppose that the field is classical, its intensity can 
be determined by using the solution of Hamilton's equation 
constructed from the classical Hamiltonian, which has the 
following form in terms of the action-angle variables: 

H=2Ag[I(l+m-I) ( M S I )  1'" cos 0, (23) 

where I i s  the action variable (classical analog of the compo- 
nent L, of the energy spin), 8 is the angle variable, 
M = I - m + E,  and 0 < E -  1, which gives the necessary 
square-root dependence of H on I at the turning points 
I ,  = 0 and I,  = I + m. The Hamiltonian (23) is the classical 
analog of the quantum-mechanical Hamiltonian used in 
( 16) and having the following matrix element in the interac- 
tion representation in the basis of the state vectors In, m - n, 
I ) :  

Of course, this ignores the process of absorption and emis- 
sion of pump photons during the time of absorption and 
emission of photons of the resonator modes. It is assumed 
that the function of the pump radiation is only to form the 
distribution function for the populations of the Dicke states, 
which then acts as the initial condition for the generation 
and absorption of photons in the particular resonator mode. 
The Hamilton equation then takes the following form (the 
quantity f i  is introduced, through a suitable choice of units, 
for convenience) : 

This gives 

In the same approximation as in the quantum-mechanical 
case, i.e., M + I? M ,  which is valid for values of m close to 
- I, we obtain from (26) 

I ( t )  =(2+m)sin2(gtM'") +i(H/2figM1") sin (2gtM'"). (27) 

Since I = (AA + ), and if we use the correspondence princi- 
ple, we must put E = 1 and H = 0 in (27). The semiclassical 
approach then yields the same values for the intensity of the 
intrinsic field of the system as the quantum-mechanical cal- 
culation. Thus, the semiclassical approach is justified for the 
description of the weakly excited system. When H = 0, (26) 
becomes 

Substituting I = u2  and 

u= [ ( l+m)  MI"' sin $[iV+(l+m)cos2 $1 -',> 
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we can reduce the elliptic intergral (28) to the standard el- 
liptic integral of the second kind: 

where 

and, hence, we find the expression for 

in terms of elliptic functions of the dimensionless time 

The classical field amplitude 

has the oscillation period 

whereK(k) is the complete elliptic integral of the first kind. 
The period T increases monotonically from T =  2 ~ /  
g(2l+&)" '  for m =  -1, to T = 2 1 n [ 1 6 ( 2 1 + ~ ) / ~ ] /  
g(2I+ E) ' I 2  for m = 1, where, for k approaching unity, the 
period is 

The maximum field amplitude lE / ,,, = f ig( l  + m ) ' I2/p is 
reachedperiodically at times t = T /4,3 T/4,5 T /4,7 T/4, ..., 
with different periods for different values of m. Each initial 
state of the system gives rise in the resonator to its own radi- 
ation field with its own period. The superposition of radi- 
ation fields from states excited by the pump field is therefore 
a relatively complicated and irregular field. The random 
character of the phases of the start states (due to the pump 
and to spontaneous decay) enables us to view this field as 
random. The chosen particle, which occupies the upper state 
at t = 0, is transferred by the resonance field with randomly 
varying amplitude and phase to a state with mean population 
of each level equal to 1/2. This is actually a process of coher- 
ent damping of the oscillations of the chosen particle in the 
radiation field of the Dicke ensemble, in which the random 
parameter is the initial state of the enesemble. Let us exam- 
ine this process of coherent damping. We shall, of course, 
neglect the influence of the chosen particle on the field. If we 
again use the method of slowly-varying amplitudes, we ob- 
tain the following expression for the population of the upper 
state of the chosen particle: 

Taking the equilibrium distribution function for the energy 
levels of the Dicke ensemble (6) ,  and using (32) and (3  1 ), 
we obtain 

In the case of a strongly excited Dicke ensemble (P- 1 ), the 
characteristic cooperative relaxation time is 

Suppose that the pump is weak and the system is far from 
saturation (p) 1 ) . The relaxation of the chosen particle is 
then slower, i.e., I-) 1, and the main contribution to the inte- 
gral in (35) is provided by the region k 4 1. We can therefore 
use the approximation 

(8 ) (-4pk') k' dk'. 

The spectral density (line shape) for the process is 

rn 

1 
I ( @ ) =  - J e x p [ i ( ~ - ~ ~ ) t ] p , ~ ( t ) d t  

2n- rn 
4 'b - - ( )  { ( I + Q ) ~ x ~ I - ~ ~ ( ~ + Q ) ~ I  
g 

+ (1-Q)e~p[-4~(1-52)~]--8(1+252)ex~[--4~(1+262)~] 
0 - 0 0  

-8(l-252)e~p[-4@(1-2Q)~]), 52 = - 
2g (21) 

(39) 

The characteristic relaxation time in this case is 

Hence, it is clear that the relaxation time is not very depen- 
dent on the effect of the pump on the system. 

In conclusion, let us consider some numerical estimates 
of the rates of the above processes, and discuss physical sit- 
uations in which such phenomena could be observed. In the 
infrared, in which a stationary Dicke ensemble can be set up 
by pulsed radiation from a CO, laser (A3, = 10.6 pm)  at a 
pressure of about 1 torr ( n  -- 3 . 2 ~  10'" cmP3), and colli- 
sional processes do not fully succeed in manifesting them- 
selves during pulse lengths of about l@-100 ns, the following 
results are valid for a gas of molecules with characteristic 
dipole moment p ~ 0 . 3  D: 

cooperative Dicke number 

characteristic degree of excitation of Dicke particle 
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characteristic energy exchange time due to the cooper- 
ative dipole-dipole interaction 

characteristic relaxation time due to the exchange of 
resonant photons (process occurring in the resonator) 

t ,=A"1 /3AQIp"~5 .10- 'osecp[  torr  ] ( I ,  [ w 1 ) - I h .  

We particularly draw attention to the short relaxation 
time t, in the resonator. It may well be that this is the mecha- 
nism capable of explaining the short relaxation time in a gas 
illuminated by radiation pulses in a waveguide-type cell. l o  

A more detailed study of the process will, of course, 
require special investigation. In our view, this could be car- 
ried out by probing the state of a medium excited by pulsed 
radiation over time intervals shorter than the collisional 
times. The optimum probing method can be based on SRS 
processes that are not sensitive to the degree of saturation 
(Ref. 6). The degree of excitation of the impurity gas can be 
monitored by recording the line shape of another transition 
between one of the working levels and a nonworking level 
chosen so that the line is absent from the spectrum of the 
filler gas. The SRS processes should be used for such levels. 
I t  is likely that both the near and far zones can be examined 
in this way. Cooperative energy exchange in the far zone can 

probably be investigated in special resonators, e.g., elliptic 
resonators, in which there is strong optical coupling between 
different points in space. The above process should then en- 
sure efficient energy exchange between individual particles 
in one of the foci and the Dicke particle produced by laser 
radiation in the other. We suggest that this could be verified 
experimentally by using the vibrational-rotational part of 
the spectrum of molecules containing a small number of 
atoms. 
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