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Using macroscopic electrodynamics, we treat electromagnetic scattering from a rough interface 
between two uniform media by recasting the problem as the solution of a nonsingular equation for 
the scattering Tmatrix; this procedure is valid to any order in the dielectric constant of the 
boundary layer. We solve for the Tmatrix in the linear and quadratic approximations to the 
surface roughness h, and we obtain expressions for the scattering indicatrices and reflection 
coefficients which satisfy energy conservation requirements for all angles of incidence, any 
polarization of the incident and scattered waves, and any surface-roughness spectrum. We also 
derive expressions for the surface impedance, the dispersion relations for s- andp-polarized 
electromagnetic surface waves, and the Brewster angle to terms of order h 2. We finally analyze the 
applicability of the expressions obtained. 

1. INTRODUCTION 

Recent experimental discoveries of new phenomena in 
the optics of rough surfaces such as stimulated Raman scat- 
tering,' enhanced second harmonic generation,* and the dis- 
placement, broadening, and splitting of the dispersion curve 
for electromagnetic surface waves (ESW),3 have all served 
to stimulate the further development of theory. Results ob- 
tained recently in the limit of low surface roughness include 
expressions for the scattering indicatrices of electromagnetic 

the reflection  coefficient^^-'^ raB [a(b') = stp is 
the polarization state of the reflected (incident) wave], the 
effective surface impedan~e'"'~ fa8, and the ESW disper- 
sion relation on a rough s ~ r f a c e . ~ . ' . ' ~ - ~ ~  The results obtained 
by different methcds are often in disagreement, however, 
and are either incomplete or valid only in limiting cases. For 
example, the expressil.:ns for rap derived in Ref. 8 applied 
only to perfect conductors (E, -+ cc ); those in Ref. 9 were for 
impedance boul~darv conditions, which hold24 when 
1 ~ ~ 1 % ~ ~ ;  those in Kef. 10 were for the limiting case 
IE2 - I < E ,  (x-ray region of the spectrum) and a gently 
sloping surface (E, and E, are the dielectric constants of the 
surfaces in contact). Expressions were obtained in Ref. 11 
for the reflection coefficients from a rough interface between 
two media with arbitrary E, , but only for the r,, and r,, com- 
ponents, while in Refs. 12-15, they were obtained only for 
the diagonal components r,, and rpp . The results in Refs. 1 1- 
13 and 14, 15 are mutually inconsistent, and the equations 
for the ESW dispersion relation at a rough ~ u r f a c e ~ ~ . ~ '  are 
not in agreement with those obtained el~ewhere.~.'.'~-*' 

The fundamental assumption usually made is that the 
Rayleigh hypothesis25 holds; its limited domain of applica- 
bility has been demonstrated only for deterministic sur- 
face~,*"-~' and remains an open question for statistically 
rough ones.,' Attempts to avoid this assumption result in 
mathematically improper expressions, even to first order in 
the roughness2Y330 (see also the review in Ref. 23 ). Thus, 
there is presently no unique and consistent method of calcu- 
lating the quantities of interest for the optics of rough sur- 
faces, and no determination has been made of the domain of 
applicability of the existing expressions. 

Our objective in the present work is to develop a system- 
atic theory of the scattering of light by statistically rough 
surfaces which is free of improper expressions for perturba- 

tions of any order, without resorting to the Rayleigh hypoth- 
esis. The paper is organized as follows. Section 2 presents a 
statement of the problem, and an exact solution for the com- 
ponents of the diffracted field in terms of the scattering T- 
matrix. The T-matrix is shown to satisfy an integral equation 
analogous to the conventional equations of quantum scatter- 
ing theory. Section 3 contains a solution of the equation for 
the T-matrix to terms linear in the amplitude of the rough- 
ness, and a derivation of expressions for the scattering indi- 
catrices and reflection coefficients which are valid for uni- 
form media with any dielectric constant; Section 4 does the 
same for the quadratic approximation. These expressions 
are shown to conserve energy at all angles of incidence, for 
any incident or reflected polarization, and for surface rough- 
ness with an arbitrary spectrum, if the reflecting medium is 
nondissipative and opaque. Limiting expressions for rap are 
presented for the cases I E ,  -- E, I < E ,  and /E, / > E , .  In Section 
5, we derive both the effective surface impedance and disper- 
sion relations forp- and s-polarized electromagnetic surface 
waves. Expressions for the reflection coefficients are given in 
a form consistent with analyticity of theS-matrix, and which 
correctly determines the locations of poles and zeroes. The 
conditions for applicability of the results obtained is dis- 
cussed in Sec. 6,  and we conclude with a summary of re- 
search accomplished. 

2. STATEMENT OFTHE PROBLEM 

The equations of macroscopic electrodynamics gover- 
ing the propagation of a monochromatic electromagnetic 
wave E(r)e - '"' in a medium with dielectric constant 

containing an interface at z = h( p), where p = ( x , y )  is a 
two-dimensional vector lying in the plane z = 0 and 8(z) is 
the unit step function, are 

(rot rot-k:~,) E (r)  =u(r )E  (r) . (2.2) 

Here k,, = o / c  is the wave vector of the electromagnetic 
wave in vacuum, and E, is the dielectric constant of the medi- 
um with an unperturbed interface, 
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E ~ = E ~ ~  ( z )  + & z e  ( - z ) ;  

v(r) is the perturbation induced by surface roughness, 

v ( r )  =ko2A& (r)  = k o 2 [ ~  ( r )  - e l ] .  (2.3) 

Assuming that the surfaces in contact are uniform and have 
no spatial dispersion, we may put E,, ,  = E,, ,  ( w ) .  In the ab- 
sence of perturbations, the linearly independent solutions of 
the homogeneous form of Eq. (2.2) are 

Ejr ( r )  =Ej, ( b ,  z )  eibP, (2.4) 

where the subscriptj = 1,2 indicates the medium containing 
the incident plane wave, and y = s,p indicates its polariza- 
tion. Assuming with no loss of generality that the incident 
wave is in the medium with j = 1, we may expand the general 
solution of the inhomogeneous form of Eq. (2.2) for 
z >  h, = max {h(p)) in plane waves, 

where C,, and Cop are independent constants, b, (b )  is the 
projection of the incident (scattered) wave vector on the 
plane z = 0, 

q,,= (k j2-boZ)"~,  qj=( kjZ-b2)'h 

(Re ,  Im qjo, TI,>-0) (2.6) 

is the projection of the wave vector on the normal to the 
plane z = 0 in medium j = 1,2, and kj = k,~, ' I 2  is the propa- 
gation constant in medium j; O and $ are unit polarization 
vectors for the scattered wave: 

and finally EaB (b,b,) specifies the desired scattered field 
components with polarization a and wave-vector projection 
b, given an incident wave with polarization f l  and wave-vec- 
tor projection b,. These components are nonzero only if the 
perturbation u(r) is nonzero as well. 

Making use of the s o l ~ t i o n ~ ~ ~ ~ *  of the equation 

(ro t  rot-ko2e,)  G ( r ,  r') =6(r - r ' )  (2.8) 

for the Green's function G(r,rl) for a medium with a plane 
interface, we can express the general form of Eq. (2.2) in 
integral form as 

E ( r )  = E o  ( r )  + J d3r' G (r, r f )  v ( r ' )  E ( r f )  , (2.9) 

where E,,(r) is the general solution of the homogeneous 
equation. Equation (2.9) was used in Ref. 29 for an iterative 
solution, where the perturbation 

u  ( r )  = ( kL2 -k t2 )  [h  (p) 15 ( z )  - -- 2 a s  (2.10) 

and the field E ( r )  were expanded in powers of h. Due to the 
singular behavior of the Green's function at r = r', however 
[G(r,r) -S(r - r') as r+ r f ] ,  and the discontinuous behav- 
ior of (2.4) at z = 0, mathematically improper expressions 
such as products of delta functions arise in field components 
which are discontinuous at z = 0, even in the linear approxi- 
mation [ - h ( p) ] .29 ,30323 

In order to avoid these difficulties, only field compo- 
nents continuous at z = 0 were used in Refs. 33-35 to con- 
struct the Green's function. Even then, improper expres- 
sions are only eliminated from the linear term E'"-h(p); 
they remain in all subsequent terms, due to discontinuities in 
the derivatives of the field components with respect to z at 
z = 0. Furthermore, because of the preferred status con- 
ferred upon the normal to the plane z = 0, the equations in 
Refs. 33-35 are not covariant, which greatly complicates 
any subsequent calculations. 

When written in the form (2.9), then, the equation for 
the field is ill-suited to further analysis. It can be trans- 
formed, however, by isolating the singular term at the plane 
z =zf :  - 

zz 
G ( r ,  r ' )  = - - 6  (r -r ' )  + G' ( r ,  r ' )  , (2.11) 

koZer 

where the second term, G '(r,rf ), is finite at r = r'. Here and 
below we use the dyadic notation ab to represent second- 
rank tensors; f is the unit normal to the plane z = 0. 

The form taken by the singular term in (2.11 ) reflects 
the specifics of the zeroth-order problem, namely that the 
interface is planar. The same representation of the Green's 
function was used in Ref. 34 for a layered medium. In the 
treatments of electromagnetic wave propagation in random- 
ly inhomogeneous media reported in Refs. 36 and 37, the 
singular term extracted from the Green's function was of the 
form-(??.. .)a( ... ) , due to the spherical form of the excluded 
region. The way in which the form of the singular term de- 
pends on the form of the excluded region is discussed in Ref. 
38. 

Substituting (2.11 ) into (2.9) and transforming, we ob- 
tain the following solution for the desired field components 
Eao (b,bo): 

m 

E,,(b, b , )  = I. ( b )  t , ( bo )  jj dzi  d z2  X l a - ( b .  2 , )  T 

where Tis the scattering operator, which satisfies the equa- 
tion 

T ( b ,  b,, a,, z,)= u(b -bo ,  z , )  h ( z , - - z2 )  I +J dzb' dz' u (b -b ' ,  Z I )  

.Go (b'. z , ,  z ' )  T ( b ' ,  bil, z ' ,  Z L ) ,  

(2.13) 

or in symbolic form 

The notation used in (2.12) and (2.13) is as follows: 
u(q,z) is the Fourier transform of the perturbation u(r), 
G,(b,z,zl) is the transformed nonsingular Green's function 
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i 
6, (b ,  I ,  I ! )  = - r( tT ( b )  [XZii (b ,  z )  X i T  (b .  z')  0 ( z - z J )  

where h, is the Fourier transform of the surface profile 

2% .=en  h ( p ) .  
>- - , r  

+ xi,+ (a ,  2 )  XZT- (b,  2 ' )  0 ( ~ ' - z )  1 ,  Substituting ( 3 . 1 )  into ( 2 . 1 2 ) ,  we obtain a solution for 
( 2 ' 1 5 )  the field components of the scattered wave in the linear ap- 

t ,  ( b )  is the (Fresnel) index of refraction at the plane inter- proximation, 

face: 
EaB (b ,  bo) = (kzZ-k12) ta ( b )  ta (bo) 

2q 1 2 ~ 1 ( ~ 1 ~ 2 ) " '  t . (b )=-  , t p  ( b )  = ; C2.16) . [Xi , - (b ,  O)Xi~+(bo. 0 )  Ihb-bo+.  . . , ( 3 . 2 )  
&zq~+&iqz rll+% 

X,, * ( b , z )  represents the transformed solutions of the ho- 
mogeneous form of Eq. ( 2 . 2 ) :  

where EjZ ( b , z )  and E,, ( b , z )  are the 1 and 6-components of 
the field of thep-polarized wave EjP = EjZ + E,, . 

The form in which Eqs. ( 2 . 1 2 )  and ( 2 . 1 5 )  have been 
written entails a choice of unit normalization for the ampli- 
tude of the E,, ( b , z )  at z  = 0: 

A 

Ejs (b ,  0 )  =;, EiP(b, 0 )  =&+, Ezp(b, 0 )  = P I - ,  

which is the same as the existing solution by virtue of the 
normalization ( 2 . 1 9 ) .  Equations ( 3 . 2 )  and ( 2 . 5 )  enable one 
to calculate the Poynting vector of the scattered wave direct- 
l y ,  and averaging this over an ensemble of rough surfaces, 
using 

where angle brackets denote an ensemble average, and S(q) 
is the spectral density of the rough surface, we obtain the 
angular spectrum ofthe scattered power d P  / d n ,  normalized 
to the z-component of the incident power P, : 

where 

are the unit vectors for a p-polarized wave traversing the + I ' P  1 ' I -i20 
interface at z = 0. From ( 2 . 1 7 )  and ( 2 . 1 6 ) ,  we then have 

.s (b-bo) , 
b -  "rl- 

Xj,* (b,  0 )  = g, XI,* (b ,  0 )  = - z * - b, 
k,  k2 

( 2 . 1 9 )  where t ,  = t ,  ( b ) ,  t,, = t ,  ( b , ) ,  and the C,,  are normalized 

by 

The functions E,, ( b , z )  in (2.5 ) are normalized to the ampli- 
tude of the incident wave ICo812+lCoplz=l. ( 3 . 5 )  

Equations ( 2 . 1 2 )  and ( 2 . 1 3 )  reduce the problem of 
electromagnetic wave diffraction at an arbitrary corrugated Equation ( 3 . 4 )  is the same as the results in ~ e f s .  4  and 5 .  
interface between two uniform media to the solution of the 
integral equation ( 2 . 1 4 )  for the scattering operator T, which 
is in the standard form encountered in quantum scattering 
theory,39 solution methods are well-developed for this prob- 

The Green's function ( 2 . 1 5 )  which enters into ( 2 . 1 4 )  
is nonsingular at z = z', while the fields X,, * ( b , z )  of which 
it is composed are continuous at z  = 0, which follows direct- 
ly from the continuity at z = 0 of E,, E,, , and D,, = E,E,,, 
the components which enter into ( 2 . 1 7 ) .  The solution 
( 2 . 1 2 )  and Eq. ( 2 . 1 4 )  have been written in covariant form, 
and are mathematically well-behaved to any order in the 

4. QUADRATIC APPROXIMATION: REFLECTION 
COEFFICIENTS 

To calculate the reflection coefficients for an electro- 
magnetic wave at a rough surface, it is necessary to deter- 
mine the diffracted field components EM ( b , b o )  up to terms 
quadratic in the surface profile h  (p). We solve Eq. ( 2 . 1 3 )  
for the scattering operator T by iterating up to terms - u2, 

T ( b ,  b., 1..  z , )  = v(b-bo. 1 , )  6 (2 , - z , )  I +I d2b' u(b-bf.  2 , )  

.Go (b', z l ,  z z )  u (b'-bo, zz)  + . . . ( 4 . 1 )  
perturbation u. 

We next derive Eq. ( 2 . 1 3 )  to first 
the amplitude of the roughness h  ( p )  . 

and substituting the result into ( 2 . 1 2 ) .  The scattering opera- 
and second order in tor T ( b ,  b,, z , ,  z , )  is nonzero for lz, 1 ( h ,  , Iz,l ( h ,  , where 

u ( q , z )  #O. The characteristic scale for changes in the func- - 
tions X,, ' ( b , z )  depends on the coordinate dependence of 

3. LINEAR APPROXIMATION: ANGULAR SPECTRUM the fields E,, ( b ,  z )  - e * lV7", e ' '"z' which, according to 
Restricting attention to the linear term in the expansion ( 2 . 1 7 ) ,  comprise them. Thus, when 

of the perturbation u ( r ) ,  we obtain from ( 2 . 1 3 )  an expres- 
sion for the scattering operator T, ~johrnKl, qjh,<l, qj'h,<l, 

T ( b ,  bo, z , ,  2 , )  = (kz2-ki2)  hb-bo6(z1)6(Z2) lf. . . , (3.1 ) where 
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i= l ,  2, ~;=(k:-b'~)% (Re, Im %'>O), (4.3) 

the functions X j ,  * (b,z) vary only slightly over the range of 
integration of (2.12), and they can be expanded as power 
series in z. 

Keeping only linear terms of X,, * (b,z) in the first iter- 
ation for T, stopping at the zeroth approximation to (2.19) 
for the second iteration, and bearing in mind that 

OD 

the result for the second approximation to the scattered field 
components E,8'2'(b,bo) - h is 

In (4.5), Got denotes the symmetric part of the Green's 
function (2.15 ), obtained by replacing the function B(z) by 
1/2. The antisymmetric part GOp(b, z,, z,) -sign(z, - z,) 
makes a contribution Ea8 - h to the solution, and is not 
considered in the present approximation. The first two ad- 
dends in Eq. (4.5) (those not involved with the integral) 
and given in a condensed symbolic form. For a more explicit 
representation, it should be noted that the derivatives 
d X j ,  * (b, z)/dz are discontinuous at z = 0. Additional inte- 
gral terms in the profile function h ( p)  of the form [ h  ( p)- ...I 
then appear in this equation, and these tend to zero upon 
subsequent rough-surface ensemble averaging; they are 
therefore omitted from (4.5). 

Averaging (4.5) over an ensemble of rough surfaces 
with (3.3) taken into account, and substituting the result 
into (2.5), we obtain for the reflection coefficients r4 from 
an initial state with polarization0 to a final state with polar- 
ization a, to terms of order h 2, 

where o2 = ( h  2, is the mean squared surface roughness, and 
the r,, are the smooth-surface reflection coefficients: 

Equations (4.6)-(4.8) are quite general in nature, and 
hold for any homogeneous media in contact, which may 
have complex dielectric constants E, ( o )  and ~ , ( o ) ,  arbi- 
trary angles of incidence, and an arbitrary surface-rough- 
ness spectrum. The applicability of these equations is gov- 
erned by the inequalities (4.2) and the requirement that 
corrections oforder c? in (4.6) and (4.7) be small compared 
to unity. 

In the general case of anisotropic rough surfaces, the 
reflection coefficient matrix rm8 is nondiagonal, with 
rps = - r,, . For isotropic surfaces, the cross terms r, and 
r,, go to zero. The degree to which the nondiagonal compo- 
nents rap differ from zero is thus a measure of the anisotropy 
of the surface roughness spectrum. 

The equations for the angular spectrum of the scattered 
wave (3.4) and the reflection coefficients (4.6)-(4.8) satis- 
fy the energy conservation law 

for all angles of incidence 0<00<77/2, any incident polariza- 
tion state, and any type of rough-surface spectrum, if only 
the media are nonabsorptive, Im E,,, = 0, and medium 2 is 
opaque. 

The quantities xZc  and x, in (4.10) denote the total 
fraction of the power reflected in the direction of the normal 
to the plane z = 0 for the coherent and incoherent compo- 
nents of the diffracted wave, respectively: 

where the coefficients C,, in (4.1 1 ) are related by the nor- 
malization (3.5), and the angular spectrum d P / d R  is given 
by (3.4). The fact that energy is conserved is an indication 
that Eqs. (3.4) and (4.6)-(4.8) are mutually consistent, 
and is a necessary condition for their validty. 

In the limit J E ~  - E , I  <E,, with a mildly sloping rough 
surface, if we expand (4.6)-(4.8) up to linear terms in 
(E, - E, ) and neglect terms - (b  - b0l2, we obtain the 
asymptotic expressions of Ref. 10: 

Conversely, for good conductors with I E,I SE, ,  expand- 
ing (4.6)-(4.8) in powers of E,-"~, neglecting terms - 1/ 
E ~ ,  and keeping the resonant behavior of the denominator 
intact, we obtain 
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For perfect conductors (E, - co ), equations (4.14) go into 
the asymptotic expressions obtained in Ref. 8. 

Transforming from reflection coefficients to surface im- 
pedance [see Eq. (5.7) below] and making use of the expan- 
sion (4.14), we obtain the first terms in the expansion of the 
effective surface impedance in powers of the impedance of 
the mediumI8, (E,/E,) 'I2. 

5. SURFACE IMPEDANCE; POLES AND ZEROES OF r,, ; 
DISPERSION RELATION FOR ELECTROMAGNETIC 
SURFACE WAVES 

The foregoing equations (4.6)-(4.8) for the reflection 
coefficients form the basis for the derivation of other quanti- 
ties pertinent to the optics of rough surfaces, such as the 
effective surface impedance caB, the ESW dispersion rela- 
tion, and the shift in the Brewster angle. These topics are 
treated in the present section. 

When p-polarized electromagnetic waves are reflected 
at the Brewster angle 8, = 8 ,  from a perfectly uniform in- 
terface between two dielectric media, the reflection coeffi- 
cient r,, of (4.9) vanishes if 

E ~ ~ ~ ~ - E ~ ~ ~ ~ = O .  (5.1) 

The solution of (5.1 ) is 

b 0 = k O [ ~ 1 ~ 2 1 ( ~ ~ + ~ ~ )  1'". (5.2) 

For reflection from a rough surface, rppB = rpp 1 ,,, = ,B is 
nonzero in general. Using (5.1 ), Eq. (4.7) gives 

where 6,  is given by (5.2). The difference between rppB -2 
and zero is a measure of the roughness of the interface. This 
is exactly the range of angles for which polarimetric control 
methods are most sensitive to surface quality.40 

We note in this regard an incorrect result in Ref. 41, 
where a correction of order u4, rather than 2 as in (5.3), 
was applied to the fundamental equation of ellipsometry, 
significantly degrading the result. 

Equating (4.6) and (4.7) to zero, we obtain the equa- 
tions which determine the locations of zeroes of the coeffi- 
cients r,, in the complex plane: 

d2b S (b-b,) 
= ( ~ , - e ~ ) ~ . l  (bb,-qloq2) (bbo+q1qzo). 

. E ~ T I , + E ~ T I ~  

Terms of order u4 have been discarded from these equations. 
Other  author^'^-'^ have calculated the effective surface 

impedance cap of a rough surface in the impedance approxi- 
mation, which is only applicable24 when I E,  I $ E , .  Below, we 
derive expressions giving cap for media in contact, having 
arbitrary E,. Defining JaB through the equation at the 
boundary z = 0 

(a ,  p = s, p) ,  where Ec ... H(r)  ) are the coherent compo- 
nents of the fields, substituting (2.5 ), and solving for cap, we 
obtain the effective surface impedance of a rough surface in 
terms of the reflection coefficients rap: 

Substituting (4.6)-(4.8) into (5.7) and retaining terms of 
order 2, we have 

Equations (5.8) are valid for arbitrary E,; they are the 
same as the result in Ref. 44, and for IE, I E, they are equiva- 
lent to the asymptotic equations obtained in Refs. 17 and 18. 
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Equations (4.6)-(4.8) for the reflection coefficients 
determine the positions of the zeroes of raB only, and not the 
poles. It is well known that the latter are given by the ESW 
dispersion relation at the rough surface. To produce the dis- 
persion relation, we solve Eq. (5.7) for raB, obtaining 

ki 2 
R ' qio R 

kl .= ( I  +'!, r8')(l +-ebb)- C5.b6... 
rlio 

If we neglect cross terms J,, [,, in (5. lo ) ,  which are of 
order a4, the equation for the poles of r,,, , R = 0, separates 
into two. Substituting (5.8) and neglecting terms -a4, we 
obtain 

Equation (5.11), if it has solutions, is the dispersion 
equation for s-polarized electromagnetic surface waves in- 
duced by surface roughness; it is of the same form as that 
obtained in Ref. 2 1. 

Equation (5.12) is the dispersion equation forp-polar- 
ized electromagnetic surface waves at a rough surface, and 
corresponds to the analogous equation derived in Refs. 3, 7, 
19-21; it is not consistent, however, with Refs. 22 and 23. 

The derivation of the dispersion equations ( 5.1 1 ) and 
(5.12) relied on the concept of impedance. We can directly 
derive these same equations diagrammati~ally,~~ starting 
with Eq. (2.14) for the scattering T-matrix, by writing the 
perturbation u in the linear approximation (2. lo) ,  averaging 
the iterative solution (2.14) over an ensemble of rough sur- 
faces, assigning all unreduced diagrams to the mass opera- 
tor, and summing reduced diagrams. If we then calculate the 
mass operator to order 2, we obtain equations equivalent to 
(5.11 ) and (5.12) for the poles of the (T)-matrix. 

Equations (5.11) and (5.12) reduce to the equations 
for the locations of the zeroes, (5.4) and (5.5), when we 
make the replacement vI0 -  - vI0,  i.e., to every root of 
(5.4), (5.5) with r], , ,  = vlC in the complex ql0  plane, there 
corresponds a root of (5.1 I ) ,  (5.12) with v,,, = - v,,,. This 
symmetry of the locations of poles and zeroes of the reflec- 
tion coefficients is a manifestation of the general properties 
of analytic scattering mat rice^.^' If we neglect cross terms 

JsbJbs -u4in (5.9) and (5.10),andmakinguseof (5.8),the 
reflection coefficients become 

where I, and I, are the integral terms in curly brackets in 
(5.8) corresponding to Js, and <,, respectively. For a 
smooth surface, I, = I, = 0, and (5.13) reduces to (4.9). In 
contrast to the original equations (4.6)-(4.8), the expres- 
sions comprising (5.13) satisfy the analyticity requirements 
for the scattering rna t r i~ ,~%nd correctly determine the loca- 
tion of poles and zeroes of the reflection coefficients for elec- 
tromagnetic waves scattered by a rough surface. 

6. APPLICABILITY 

The applicability of the foregoing expressions for the 
angular spectrum (3.4) and reflection coefficients (4.6)- 
(4.8) is constrained by the inequalities (4.2), in which we 
can put h ,  -a for purposes of estimation. The physical jus- 
tification for these conditions derives directly from their der- 
ivation: the characteristic transverse roughness scale a must 
be small compared with the typical transverse scale of irre- 
gularities for all fields both in medium 1 and medium 2-for 
the incident and specularly reflected waves [first condition 
of (4.2) 1, for scattered waves [second condition of (4.2) 1, 
and for all waves in some intermediate state [third condition 
of (4.2)]. 

In medium 1, the first inequality of (4.2) reduces to the 
conventional Rayleigh condition 

and in medium 2, it reduces to 

where E = EJE, is relative dielectric constant. As a rule, 
(6.2) is a more rigorous constraint than (6.1 ) . For example, 
for metals in the near- and mid-infrared, where I & /  is large, 
(6.2) reduces to a < S ,  where S is the skin depth. 

The second inequality of (4.2) is reduced to (6. I ) ,  
(6.2) by replacing the angle of incidence 8,, with the scatter- 
ing angle 0. 

The form taken by the third inequality of (4.2) depends 
on the nature of the surface roughness. The characteristic 
scale of variations in the variable b ' is governed by the weight 
assigned to the intermediate states of the integral terms in 
(4. l ) ,  (4.5) or (4.6)-(4.8). This weighting factor is the per- 
turbation v(q,z) in (4.1 ), the profile variation h, in (4.5), or 
the spectral density S ( q )  in (4.6)-(4.8). For single-scale 
rough surfaces, a typical value of q is determined by the cor- 
relation length I, such that q l5  1. If we then consider only 
the coherent component of the diffracted wave and let 
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b' = b, + q in ( 4 . 2 ) ,  we transform the third inequality of 
( 4 . 2 )  fo r j  = 1 and 2  to the form 

For typical values q- 1/1, ( 6 . 4 )  reduces to 

k,a[cos2 8,-2 (k , l )-I  sin 0a- (k1 l ) -~I '"<I .  ( 6 . 6 )  

This implies that for large-scale roughness k , l $  1 and mod- 
erately large angles of incidence, with cos 8, > ( 2 / k I 1 ) ' l 2 ,  
( 6 . 4 )  reduces to ( 6 . 1 ) ,  and for grazing propagation, with 
cos 8,< ( 2 / k 1 1 ) 1 1 2 ,  we obtain instead of (6.1) the stricter 
constraint 

For fine-scale roughness k , l g  1 and arbitrary angles of 
incidence, ( 6 . 6 )  gives the constraint a / l <  1 .  

A similar evaluation of the left-hand side of ( 6 . 5 )  leads 
to the following constraints. For large-scale roughness 
k , l )  1 and 

( 6 . 5 )  reduces to ( 6 . 2 ) .  Condition ( 6 . 8 )  is violated in the 
neighborhood of the critical angle 8,-8, = arcsin & ' I 2 ,  

upon reflection of a wave from an optically less dense dielec- 
tric medium with 0 < E < 1 .  If then the converse inequality 
k l l  I E  - sin28,j < 1 is satisfied, ( 6 . 5 )  will reduce to ( 6 . 7 ) .  

For fine-scale roughness 1 1 and if 
k , l ( &  - sin26,) ' I 2  > 1 ,  ( 6 . 5 )  reduces to ( 6 . 2 ) ,  and converse- 
ly, if k , l ( &  - ~ i n ' 8 , ) ' / ~  < 1 ,  it reduces to the condition a /  
1g  1 .  

It must be noted that ( 6 . 2 ) ,  ( 6 . 3 ) ,  and ( 6 . 5 )  are violat- 
ed by perfectly conducting media. Formally, this occurs be- 
cause the perturbation ( 2 . 3 )  diverges, and there is a radical 
change of behavior in the zeroth-order fields at the interface 
z = 0. For example, the z-component of the displacement 
vector will no longer be continuous: it will be a discontin- 
uous function of z .  The way in which the problem of light 
scattering by a rough surface is posed is then fundamentally 
altered.j5 

However, notwithstanding the violation of conditions 
( 6 . 2 ) ,  ( 6 . 3 ) ,  and ( 6 . 5 ) ,  the expressions comprising ( 3 . 4 )  
and ( 4 . 6 ) - ( 4 . 8 )  remain in force for a surface with only mi- 
nor roughness [see ( 4 . 1 4 ) ] ,  and these are consistent with 
the corresponding expressions in Refs. 8  and 9, where a basis 
system consisting of field functions in perfect conductors 
was used from the outset. 

CONCLUSION 

In this paper, the diffraction of electromagnetic waves 
by a rough interface between two homogeneous isotropic 
media has been reduced to the solution of a conventional 
potential-scattering problem of quantum r n e c h a n i c ~ . ~ ~  We 
have formulated Eq. ( 2 . 14 )  for the scattering T-matrix, 
which in contrast to approaches developed in Refs. 29, 33, 
and 35, is mathematically well-posed to any order of pertur- 

bation theory, is valid for any amplitude of roughness h ( p ) ,  
and does not rely on the Rayleigh hypothesis. The solution 
for the components of the diffracted field Eap (b ,b , )  is given 
in the form of matrix elements ( 2 . 12 )  of the scattering oper- 
ator T. The fields X, ' (b, z )  which enter into the solution 
( 2 . 12 )  and the Green's function ( 2 . 1 5 )  vary smoothly over 
the interface separating the media at z = 0. This is our main 
result. 

A direct iterative solution of the equation for the T- 
matrix leads to a series expansion of the diffracted field in 
powers of the perturbation of the dielectric constant, and not 
to the usual expansion in powers of the roughness amplitude 
h  ( p ) .  Each iterate of ( 2 . 1 4 )  is then a nonlinear and nonana- 
lytic function of the surface profile. Other approaches do not 
make use of terms with nonanalytic profile dependences of 
theform ( h ,  - h2)Ihl  - h,l,whereh, = h ( p , )  [seethedis- 
cussion following (4.5 ) 1 .  

In Secs. 3  and 4,  we presented the linear and quadratic 
approximations, respectively, to a conventional solution in 
powers of the roughness amplitude. Averaging over an en- 
semble of rough surfaces provides expressions for the angu- 
lar spectrum ( 3 . 4 )  and the reflection coefficients ( 4 . 6 ) -  
( 4 . 8 ) .  In the quadratic approximation ( - h 2 ) ,  these equa- 
tions satisfy the energy conservation condition ( 4 . 1 0 )  for all 
incident and scattered polarizations, all angles of incidence 
0< 8,< n / 2 ,  and any surface-roughness spectrum. From the 
general expressions ( 4 . 6  ) - ( 4 . 8 ) ,  which hold for any contig- 
uous media, we have obtained expressions for the reflection 
coefficients rap in the limits - ( 4 . 13 )  and 

I E * ~  ( 4 . 1 4 ) ,  and these are consistent with previous re- 
sults obtained by independent means. A comparison of the 
general expressions for rap with existing  result^^'-'"^^ indi- ' 

cates that over the whole space, i.e., for all incident 0-polari- 
zations and reflected a-polarizations (a ,  0 = s, p),  the only 
results consistent with ( 4 . 6 ) - ( 4 . 8 )  are those in Ref. 44, if 
the media in the latter are assumed isotropic, and the corre- 
sponding equations are reduced to the form of ( 4 . 6 ) - ( 4 . 8 ) .  
The results in the other papers are incomplete and only par- 
tially consistent with ( 4 . 6 ) - ( 4 . 8 ) :  all agree with ( 4 . 6 )  for 
the coefficient r,,; for r,,, Eq. ( 4 . 7 )  is in agreement with 
Refs. 12 and 13, and in disagreement with Refs. 14 and 15; 
for r,, , Eq. ( 4 . 8 )  is in agreement with Ref. 11. 

The applicability of our results is restricted by an over- 
all requirement that the characteristic transverse scale of 
surface roughness be small compared with the characteristic 
transverse scale of all field irregularities in the two contigu- 
ous media. 

The iterative solution method for the T-matrix em- 
ployed in Secs. 3  and 4 leads to a representation for the solu- 
tion which does not satisfy the general requirements of S- 
matrix analyticity. As a result, the derived reflection 
coefficients give incorrect pole locations [in ( 4 . 6 ) - ( 4 . 8 ) ,  
the poles are located on the plane interface]. Section 5  pro- 
vides a transformation of the equations for the reflection 
coefficients to the form (5.13 ), which has the contract anal- 
yticity properties and the proper symmetry of pole and zero 
locations; the derivation makes use of the concept of imped- 
ance ( 5 . 6 ) .  Since the iterative solution for the coherent field 
obtained in Section 4  is already known, ( 5 . 6 )  is the final 
equation needed to calculate the equivalent effective surface 
impedance of a rough surface. To accuracy - h  2, then, we 
have obtained expressions for the impedance ( 5 . 6 )  and dis- 
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persion equations (5.11 ), (5.12), and equations which de- 
termine the location of zeroes (Brewster angle) (5.4) ,  (5.5). 
The derivation of the dispersion equations through the im- 
pedance concept is easier than the diagram summing tech- 
nique employed in Ref. 22 
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