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It is shown that in a number of models the requirements of supersymmetry are fulfilled only when 
certain additional conditions are imposed on the wave functions of the states. If this circumstance 
is disregarded, paradoxes can arise. In particular, the question of the fermion condensate in the 
supersymmetric a-model and in supersymmetric gauge theories is analyzed. 

1. INTRODUCTION ha"Pa ( x )  - {Qa ,  P'(o,) p " A w a ( ~ ) ) .  (1)  

A striking feature of supersymmetric theories is the fact 
that certain complex and highly nontrivial properties (the 
structure of the vacuum, condensates, etc.) can be estab- 
lished reliably by considering a simplified variant of the the- 
ory in which a weak-coupling regime is realized. One of the 
first examples of this type was the counting of the number of 
vacuum states,' which was carried out in a finite (small) 
volume. In the process, complicated field-theory models are 
reduced to quantum mechanics. An extremely elegant phe- 
nomenon was discovered in Ref. 2. It was found that the 
introduction of matter fields into supersymmetric gauge the- 
ories can lead to spontaneous breaking of the gauge symme- 
try and to an increase in mass of the gauge bosons. Here, a 
weak-coupling regime, which can be fully monitored theo- 
retically, arises automatically. On this path, models have 
been found3s4 in which nonperturbative dynamics leads to 
spontaneous supersymmetry breaking. Finally, a very recent 
example is the calculation of gluino condensates (TrAA ) in 
supersymnetric gluodynamic~.~ The fact of the gluino con- 
densation ( (TrAA ) #O), as will be clarified below, poses an 
extremely interesting question concerning the relationship 
between the complete Hilbert space of the system and the 
supersymmetry. In the present paper we shall give an ex- 
haustive solution of the question for a number of quantum- 
mechanical problems, We shall show that the general super- 
symmetry properties (SUSY)-the supersymmetry of the 
spectrum, the annihilation of the vacuum state by the action 
of the supercharge, etc.-can be fulfilled only in the case 
when certain additional conditions are imposed on the wave- 
functions of the states. Although we do not go beyond the 
framework of the analysis of supersymmetric quantum-me- 
chanical models, it is clear that the qualitative conclusions 
will be valid in field theory as well. 

The starting observation that initiated the present work 
is an apparent paradox that arises in supersymmetric gauge 
theories and a-models. Its essence is as follows. We consider 
a supersymmetric Yang-Mills (SYM) theory without mat- 
ter, with the group SU(N). The supersymmetry here re- 
mains unbroken (see, e.g., Ref. 1 ), but a no less interesting 
phenomenon occurs: The discrete Z ,  x Z ,  symmetry that 
remains from the classical chiral U ( 1 ) invariance when the 
anomaly is taken into account is spontaneously broken to 
Z , ,  this being manifested in the formation of a gluino con- 

If, as is customary, the action of Q on the supersymmetric 
vacuum gives zero, the right-hand side of ( 1 ) cannot have a 
nonzero vacuum average, in explicit contradiction to the re- 
sults of Ref. 5. 

A similar situation obtains in supersymmetric Kahler 
u-models. In C P ( N )  models, a fermion condensate 
($(I + y5)$) is also generated,6" as can be verified by ex- 
panding in 1/N. On the other hand, the operators 
$( 1 + y5)$ are the average components of the Kahler su- 
perpotential V ( @ ,  5) and can be represented in the form 

Once again, it would appear that the representation (2)  con- 
tradicts the nonzero vacuum average of these operators, 
since the supersymmetry is not broken in the given theory. 

The resolution of the paradox lies in the fact that the 
action of the operators 8, (8, = $,p in the a-model, and 
da = A OB(u, )BaArO in the SYM mode1)on the vacuum 
wavefunction gives a function with "bad" properties: In the 
supersymmetric a-model the latter function is not normali- 
zable, while in the SYM model it is gauge-noninvariant. The 
supersymmetry does not act in the space of the bad func- 
tions. In particular, the supercharges Q, and "cease to be 
Hermitian conjugates, and the reasoning that leads to the 
relation ({Q, da 1) = 0 is not valid. Thus, we are concerned 
with the following phenomenon: The entire Hilbert space of 
the state vectors is divided into two sectors-the "physical" 
sector, which can be fixed by a definite additional condition 
on the states, plus the rest of the space (the "nonphysical" 
sector). In the physical sector all the consequences of SUSY 
(boson-fermion degeneracy, zero energy of the lowest state, 
etc.) are fulfilled. Entering the nonphysical sector can lead 
to the result that the formal conclusions of SUSY do not 
hold. 

In Sec. 2 we shall analyze a very simple one-dimension- 
a1 example in which the supersymmetry algebra is realized 
not on all states but only on states satisfying a certain addi- 
tional requirement. In Sec. 3 we analyze the quantum me- 
chanics obtained by reduction of the supersymmetric u- 
model. Section 4 is devoted to the analogous problem arising 
from the SYM model. Section 5 presents the conclusion and 
the main results. 

densate ( ~ r / l , / ~  ") (Ref. 5 ) .  It is here that we encounter the 2. ONE-DIMENSIONAL QUANTUM-MECHANICAL MODEL 
paradox. The operator /12(x) can be represented as the aver- 
age component of the superfield V ( x ,  0,8)  W ,  (x, 0, $), i.e., 

The supersymmetric quantum-mechanical Hamilto- 
nian of Witten8 is well known: 

in the form of the following anticommutator containing the 
supercharge Q: H={pZ+lV'(x)+[$,  $1 W ' ( 2 ) ) / 2 ,  ( 3 )  

25 Sov. Phys. JETP 67 ( I ) ,  January 1988 0038-5646/88/010025-05$04.00 @ 1988 American Institute of Physics 25 



where u ia a bosonic variable, $ is a complex Grassmann 
variable," p = - id/ax, and $ = 13 /a$. The supercharges 
corresponding to the Hamiltonian ( 3 ) are 

Q-=+[p+iW(x)], Q=$[p-iCV(x)], (4 )  

\o that 

Q'-=Q2=0, {(I, 9 )  =211 ( 5 )  

111 Ref. 8, polynomial functions W(x) were considered. In 
this case, the Hamiltonian ( 3 )  and supercharges (4 )  do not 
have singularities in the entire region - rn < x  < rn , and the 
supersymmetry algebra is realized on all normalizable eigen- 
f~111ctiorrs of the operator H. The entire Hilbert space decom- 
poses in this case into two regions: bosonic states with wave- 
function T, (x,  $) = a, ( x ) ,  and fermionic states with 
'Y, (x, $) = $a, ( x ) .  For E # 0 the fermionic and bosonic 
states are paired:They have the same energy and are ob- 
tained from each other by the action of the operators Q and - 
Q. If the leading power in the polynomial W(x) is odd, the 
lowest state has zero energy and its wavefunction is propor- 
tional to 

C Y ~  (= 5 w ( y )  dy  ) . 
0 

where the sign + or - is chosen JO as to ensure ncrmaliza- 
bility. The choice of the sign determines which state (the 
fermionic or the bosonic) is the lowest (vacuum) state. 

We now consider a function W(x) of the form 

w ( x )  = - O X + I / X .  ( 6 )  

In the bosonic sector the Hamiltonian has the form 

while in the fermionic sector, 

I t  can be seen that in the bosonic sector the Hamiltonian 
does not have singularities at x = 0, and represents an ordi- 
nary harmonic oscillator. If the problem (7a) were consid- 
ered separately, with no connection with the supersymme- 
tric system ( 3 ) ,  we would say immediately that the 
wavefunction of the lowest state is 

and the energy E = - w, i.e., is negative! How can one rec- 
oncile this situation with supersymmetry, which requires 
E>Ol The point is that the Hilbert space of the system de- 
scrihrd by the Hamiltonian ( 3 )  should be narrowed in com- 
parison with the Hilbert space of the bosonic system (7a).  
Some of the states that are admissible from the point of view 
of (7a)  fall in the nonphysical sector for the Hamiltonian 
( 3 ) .  Specifically, the supersymmetry is realized only on 
states satisfying the additional condition q ( x ,  $) = 0 for 
x = 0. In fact, the action of the supercharge Q on the func- 
tion ( 8 )  (and on all even levels of the Hamiltonian ( 7 a ) )  
gives a non-normalizable state with a singularity b ( l /x),  in 
view of the singularity of W(x) at x = 0. In other words, the 
pathologic.al state ( 8 )  does not have a superpartner. 

The condition \V (0, $) = 0 selects from the spectrum of 
the Hamiltonian H ,  half of the states-those that are odd 
under the replacement x-  - x. Their energies are 0,2w,4w, 
... . For E # O  these states have fermionic superpartners. ( I t  
is easy to convince oneself that a, = A ( x )  and a, = A ( x 2 )  
for x - 0. ) With the example of ( 6 )  we have demonstrated 
how a situation can arise in which the consequences of SUSY 
are valid only for some of the states in the Hilbert space. The 
necessity of imposing additional conditions on the wave- 
functions in the given space is connected with the fact that 
the superpotential has a singularity at x = 0. We note that 
the Hamiltonian ( 3 )  with the superpotential (6 )  has been 
considered previously in Refs. 9. In these papers the exis- 
tence of the state ( 8 )  with negative energy was interpreted as 
breaking of the supersymmetry. It seems to us that a differ- 
ent interpretation is preferable-the supersymmetry is real- 
ized, but on a narrowed class of states. 

j(x) =O ( x )  for x+0? f (f =) =fa. 

The presence of the term l /x  leads to the result that the 
wavefunction 

Z 

0 

with E = 0 has a zero at x = 0. By virtue of the oscillator 
theorem this implies that in the (nonsingular) potential 
V =  ( W2 + W1)/2 a level with E<O should exist. If 

f ( x )  -0, we obtain superconformal quantum mechanics 
with W(x) = l/x, in which a very similar situation is also 
realized.'' The choice (6 )  makes the spectrum discrete, and 
makes the phenomenon clearer. 

3. THE SUPERSYMMETRIC a-MODEL 

The supersymmetric CP( 1 ) a-model is described inde- 
tail in the review Ref. 7. In standard superfield notation the 
action of the model has the form 

where @ is a complex chiral superfield, and V is the Kahler 
potential 

Corresponding to the potential (9a)  is the metric 

As is well known, the manifold of ( 9 )  is a sphere with radius 
1/G. In the following, however, we shall find it convenient 
to change the normalization of the fermionic component of 
the superfield @. In this connection, we give the Hamilto- 
nian of the model in component form: 
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Here is a two-component complex Grassmann spinor, 

~ = a l a $ ~ ,  n=-ialacp, n=-ialaq, $$=pqa 
=$"'bi+V$~, $"$a$a=~aO~a$B ( ' I ) ,  v=$5$a, 
and R is the scalar curvature 

The normalization of the field $ differs from that used in 
Refs. 6 and 7 by the factor (h(p,z))1'2 (the $ used here is 
obtained from the field of Refs. 6 and 7 by multiplying by 
h"'2), so that the variables $, and become canonically 
conjugate. 

The order of the operators in ( 10) is important and is 
strictly defined, if we wish to preserve the supersymmetry 
algebra at the quantum level. 1' *12  This algebra has the form 

where P is the momentum operator, and the supercharges 
Q,, e8 are determined as follows: 

The field Hamiltonian ( 10) contains an infinite number of 
degrees of freedom. Moreover, the a-model is a theory with 
strong coupling: At large distances the effective charge in- 
creases. In the present paper, our problem does not involve 
the dynamical investigation of the u-model as such. We wish 
to illustrate only one aspect of the model, and to this end we 
shall reduce the theory to a quantum-mechanical model. By 
this reduction we mean the following. We consider the theo- 
ry ( 10) in a small "box", impose periodic boundary condi- 
tions on all the fields, expand them in modes, and then throw 
away all nonzero modes. The zero modes correspond to 
fields that do not depend on x ,  i.e., to constant fields. The 
Hamiltonian describing the interaction of the zero modes is 
obtained from ( 10) if we assume that all the fields appearing 
in ( 10) are constant. Below, these quantum-mechanical de- 
grees of freedom, which do not depend on x ,  will be denoted 
by the same symbols as those used for the corresponding 
fields. It should be noted that, in principle, the nonzero 
modes generate corrections that change the interaction of 
the zero modes. It is possible to obtain an effective Hamilto- 
nian for the zero modes in which, instead of simply throwing 
away the nonzero modes, we take their contribution into 
account in the Born-Oppenheimer approximation. The cor- 
responding procedure is discussed in detail in Ref. 12. Since 
our aim is illustrative, and the Born-Oppenheimer approxi- 
mation is certainly not valid, e.g., in d(N) gluodynamics 
(see Sec. 4) ,  we shall not concern ourselves with this ques- 
tion, but shall concentrate on the quantum mechanics as 
such. 

Thus, the quantum-mechanical system with which we 
shall be concerned is described by the Hamiltonian (the box 
size L = 1) 

The operators ( 14) and ( 15) act on the wavefunctions \I/ (p,  - 
p, $,, $,), which are normal by the condition2' 

The covariant wavefunctions are normalized with the mea- 
sure -dpdFh (p, F )  and are obtained from ours by dividing 
by h1'2. 

The Schrodinger equation with Hamiltonian ( 14) has 
two solutions with zero energy, in agreement with the value 
of the Witten index'. The explicit expression for the vacuum 
wavefunctions has the simple form 

It is easily verified directly that 

(Here it must be taken into account that $: = $: = 0 and, 
consequently, $I$, lvac,) = 0, $I$,  lvac,) = Ivac,), etc.) 
We shall find the matrix elements of the operators $a*$, 

between the states ( 18). (These operators coincide with 
h$(l + y5)$/2 in the notation of Refs. 6 and 7.) It is not 
difficult to obtain 

(vacI ~$cr*$Jvaci>=(vac,~$u*$~vac2>=0, 
(20) 

The physical vacuum state can be an arbitrary superposition 
of Ivac,) and I vac,), thereby leading to nonzero averages for 
the operators $a'$. (We note that the instanton arguments 
of Refs. 6 and 7 do not determine which of the matrix ele- 
ments-diagonal or transition-are nonzero.) 

We are now ready to resolve the paradox formulated in 
the Introduction. We have 

The central point is that the operators $i@ are in fact not 
defined, since their action on Ivac,,, ) gives a non-normaliza- 
ble wavefunction, i.e., goes outside the physical sector of the 
Hilbert space. We consider the matrix element 

The second term in (22) is equal to zero, since the super- 
charge @ annihilates the state Ivac, ). The first term in (22) 
can be rewritten as 

It would also be equal to zero if it were possible to carry the 
action of ' over to the left (to "turn over" the derivative 
i3 /&), in order to use Ql Ivac,) = 9. But the essential point 
is that in our case this is impossible, since the state 
IX ) = $,G lvac,) is not normalizable and the matrix ele- 
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ments (X 1 Q, 1 vac,) * and (vac, )a ' ) X  ) differ from each oth- 
er. In other words, the operators Q, and Q a  cease to be 
Hermitian conjugates when they act on non-normalizable 
states. Specifically, 

(vac2 I Q' IX)=(XI Qi I vac2)* 

The contribution of the second term in (24) gives the matrix 
element of ( 19) after multiplication by i. The integral of the 
total derivative J ( G / ( l  + p?)) coincides, to within a nu- 
merical factor, with the integral 

which determines the Euler characteristic of the manifold. 
We note that, in contrast to the model analyzed in Sec. 

2, in this case we need not impose any additional conditions 
on the wavefunctions. The usual normalizability condition 
for states of a discrete spectrum is sufficient. 

4. SUPERSYMMETRIC YANG-MILLS FIELDS 

We turn to the analysis of the question of the fermion 
condensate in SYM theory without matter. We note first of 
all that the operator A aB(a,, )B "A, a from the relation ( 1 ) is 
gauge-noninvariant, and, when it acts on the vacuum, gives a 
gauge-noninvariant nonphysical state. In a gauge theory, 
however the standard supersymmetry algebra acts only in 
the sector of physical states. Indeed, in the SYM theory, the 
anticommutator {Q, ;7) contains not only the standard 
term P,, ( a  but also the extra term 

-- S Aka (I) 3. (x) (odak d h ,  (25) 

where Ya(x)  is the operator Gauss law Ya(x )  
a (div Ea - j,") coinciding with the generator of local 
gauge transformations. The extra term (25), proportional to 
the equation of motion, arises because we are considering a 
theory without the introduction of auxiliary fields, i.e., a 
theory in the Wess-Zumino gauge. In this case the composi- 
tion of two supersymmetry transformations gives not only a 
translation but also a certain gauge rotation. In the sector of 
physical states Y "(x) lY) = 0, the extra term (25) vanishes 
and the standard supersymmetry algebra applies. 

It is interesting to trace how the supersymemtry is lost 
in the gauge-noninvariant sector for a simple model. Follow- 
ing the approach outlined in Sec. 3, we shall reduce the theo- 
ry to quantum mechanics: We place the system in a finite 
three-dimensional box, impose periodic boundary condi- 
tions on the fields, and discard all nonzero modes. We thus 
obtain the quantum mechanics of the zero modes. As shown 
in Ref. 1, in the gauge A,  = 0 the dynamical degrees of free- 
dom will be the three bosonic coordinates pi;  these can be 
chosen to be p i  = Ai3 (i = 1, 2, 3), where the superscript 3 
indicates the orientation in color space. The fermionic de- 
grees of freedom are R and (x 3 ,  ". (In the following the 
index 3 will be omitted.) The Hamiltonian describing the 
dynamics of the zero modes, 

corresponds to free motion in the space of the pi. The super- 
charges are written in the form 

(27) 
It is easily verified that {Q, * ) = 26, H. 

Up to now we have overlooked one very important cir- 
cumstance: The variables pi do not vary within infinite lim- 
its, but are defined on a torus. In other words the points 

pi and pi + 2rmi (miare integers) (28) 

are identified with each other. ' This identification is a "rec- 
ollection" of the gauge invariance of the original SUSY gluo- 
dynamics. 

We emphasize that the model to be discussed is not sim- 
ply gluodynamics in a finite volume. For the latter, the pres- 
ence of nonzero (massive) modes (e.g., A * in the SU(2) 
case) is extremely important. Treating these modes in the 
Born-Oppenheimer approximation, we note that they be- 
come massless on the boundary of the range of variation of 
pi. The effective lowest-approximation Hamiltonian (26) 
then acquires large corrections near pi = 2rmi (in Ref. 13, 
these were calculated explicitly in the very simple case of 
supersymmetric QED), and this, evidently, makes the Born- 
Oppenheimer approximation inapplicable for the analysis of 
the SYM model in a finite volume (see the detailed discus- 
sion in Refs. 5 and 13). Without dwelling further on this 
aspect, we propose to view the Hamiltonian (26)-(28) sim- 
ply as a model which, while being a distant relative of the 
SYM model, has a number of features with analogs in field 
theory. 

The wavefunctions of the physical states should be 
gauge-invariant. In the language of our model the condition 
that distinguishes the physical sector from the rest of the 
Hilbert space is as follows: Of all the eigenfunctions of the 
Hamiltonian (26) we should choose only those functions 
that are periodic in pi with period 2a. 

The gauge invariance of the wavefunctions implies not 
only periodicity of the wavefunction Y (pi ) in pi, but also its 
invariance under G-parity transformationsL: 

Thus, the Schrodinger equation with Hamiltonian (26) has 
only two admissible solutions: 

The solutions CA, are odd under the transformations (29), 
and are excluded. (Here Care normalization constants.) 

The problem thus reformulated is extremely similar to 
the supersymmetric a-model. It can be seen that the opera- 
tor AaA " has nonzero matrix elements 

On the other hand, 

The right-hand side of (32) should not have matrix elements 
between the vacuum states that can be annihilated by the 
supercharges Q, and Q ", and this, obviously, contradicts 
(31). 

The paradox is resolved by the observation that the 
pairs of operators Q,, Q " are Hermitian conjugates only on 
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the space of gauge-invariant wavefunctions periodic in p i .  In 
fact, the Hermitian conjugacy of the supercharges (27) is 
connected with the hermiticity of the momentum operator. 
But the latter holds if, upon integration of the matrix ele- 
ment 

by parts, the surface term is equal to zero, i.e., Y, (pi ) and 
Y2 (pi ) take the same values on the boundaries of the box. 
But the state 

is not gauge-invariant (the periodicity of the wavefunction is 
broken), and the matrix element (vac21 Q, IX ) is given by 
the expression 

(compare with (24)). When (34) is taken into account the 
right-hand side of (32) acquires a nonzero matrix element 
between the states Ivac, ),and Ivac, ), which coincides exact- 
ly with (31). 

5. CONCLUSION 

We have considered quantum-mechanical examples 
(two of these are related to important field-theory models) 
which show that a formal analysis of the system in the com- 
plete Hilbert space can give results that contradict the gen- 
eral consequences of SUSY. The principal lesson is that the 
supercharge operator, and also the other operators with 
which the manipulations are performed, should be well de- 
fined. This requirement in each concrete case leads to specif- 
ic conditions on the choice of states from the Hilbert space. 
Besides normalizability, additional conditions on the phys- 
ical states can arise. The action of the supercharge and of the 

"admissible" operators of the theory should not carry the 
states out of the physical sector. Supersymmetry holds only 
in part of the Hilbert space (the physical sector), and only 
those properties which stem from consideration of the ad- 
missible set of operators are fulfilled. The formal chains of 
conclusions using poorly defined operators lead to paradox- 
es. Although these results apply strictly to quantum me- 
chanics, qualitatively the same situation also obtains in field 
theory. 

"In the case when there is one fermionic variable, the matrix representa- 
tion rC, = a- = ( u ,  - iu2)/2, 4 = u +  = ( u I  + iu2)/2, where the u, are 
the Pauli matrices, is extremely convenient. The Hamiltonian then takes 
the form H = (p2 + w2 + u3 W')/2 and acts on a two-component col- 
umn. 

2'The relation ( 17) imp@ a so-called_holomorphic_representation. If $ 
has the form P = a ( p , p )  + b,(p,  p)Y1 + b2(9,  ~ ) 4 ~ + . . . ,  then** 
must be taken to mean P *  = a* + bI*q1 + b2*$' + ... . 
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