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The upper critical field H,, forp-pairing superconductors is determined at arbitrary 
temperatures, taking into account magnetic effects which originate both from spin and orbital 
motion. We show that in the absence of spin-orbit interaction the ferromagneticp-phase has the 
largest value of H,, ( T) of all thep-pairing phases; in addition, we show that the phase transition 
from metal top-paired superconductor is split in two in a magnetic field, like the phase transition 
from the normal to the superfluid state which occurs in liquid 3He. We calculate the critical fields 
for these two transitions in the Landau-Ginzburg region and describe the characteristics of the 
resulting superconducting states. We investigate the effects of spontaneous magnetism and of 
para- and diamagnetic corrections to the function Hc2 ( T) forp-pairing superconductors with a 
spin-orbit interaction possessing cubic symmetry. For these superconductors, the splitting of the 
phase transition is found to be absent for arbitrary directions of the external field. We discuss the 
anisotropy of the upper critical field for superconducting phases with multicomponent order 
parameters characterized by various representations of the cubic group, and also 
superconductivity in the paramagnetic limit for superconductors with triplet pairing in the 
presence of strong spin-orbit interaction. 

1. INTRODUCTION 
One is the important characteristics of type I1 super- 

conductors is the magnitude of the upper critical field Hc2. 
Microscopic calculations of H,, for ordinary superconduc- 
tors with isotropic s-pairing were carried out in Ref. 1-3. 
The unusual properties of heavy-fermion superconducting 
~ o m ~ o u n d s , ~ - ~  which were discovered comparatively re- 
cently, provide evidence for the hypothesis that in these ma- 
terials superconductivity occurs either with anisotropic 
singlet pairing (in which the spin S of a Cooper pair is a 
zero) or with triplet (S = 1 ) pairing. Because of uncertain- 
ties both in the characteristics of the energy spectra and in 
the form of the pairing interaction for heavy-fermion super- 
conductors, calculation ofHc, is possible only at a phenome- 
nological level, within the region of applicability of Landau- 
Ginzburg although Scharnberg and Klemml'~l' 
carried out microscopic calculations ofHc2 in the weak-cou- 
pling approximation at arbitrary temperatures for the sim- 
plest of the triplet-type pairings, i.e., p-pairing. In Ref. 10, 
the upper critical field was computed for the various isotrop- 
ic superconducting phases with p-pairing in the absence of 
spin-orbit interaction. Reference 11 contains a discussion of 
the problem of calculating the upper critical field in super- 
conductors with a strong spin-orbit interaction possessing 
cubic symmetry. 

A characteristic of superconductors with s-pairing is 
that their upper critical fields are bounded by the paramag- 
netic limit H ,  - Tc /p (p  is the magnetic moment of a quasi- 
particle); this limit is derived from the pair-breaking effect 
of a magnetic field on the spins of electrons in a Cooper 
pair.',-l4 In superconductors withp-pairing but no spin-or- 
bit interaction, the paramagnetic limit does not apply be- 
cause the solutions of the linear integral equation for the 
order parameter near H,, are phases whose paramagnetic 
susceptibility coincides with that of the normal metal1'; 
hence the field does not disrupt the paired state. Inp-super- 

conductors with strong spin-orbit interaction, the action of 
an external field on the electron spins may or may not give 
rise to a paramagnetic-limit bound on the upper critical 
field. In particular, for those phases in which the weight of 
paired states with zero projection of the total spin onto the 
direction of the external field is small, there is no paramag- 
netic suppression of the superconductivity. 

Along with the paramagnetic effect, triplet-pairing su- 
perconductors exhibit three more types of local magnetic 
effects which were not considered in Refs. 10, 11 and which 
influence the value of Hc2 . As a consequence of the inequali- 
ty of the densities of states for electrons with spins along and 
opposite the field and for electrons belonging to Cooper 
pairs with orbital moments oriented along and opposite the 
field, it becomes possible for superconducting phases to exist 
with spontaneous magnetism originating from both spin and 
orbital momenta. In addition to this effect, an applied field 
has a depairing effect due to the appearance in the supercon- 
ducting state of an additional diamagnetic (orbital) suscep- 
tibilityX5 which bounds the upper critical field at the diamag- 
netic limit H, - ( Tc/p, ) (m*/m) where p, is the Bohr 
magneton and m, m* are the mass and effective mass of the 
electrons. This article is devoted to calculating the field Hc2 
microscopically, taking into account all the above-men- 
tioned local magnetic effects for superconductors with p- 
pairing-both those in which the effects of spin-orbit inter- 
action is negligible (like 3He), and those in which the 
spin-orbit interaction produces a rigid coupling of the 
Cooper-pair electron spins in the direction of the crystal axes 
(like the superconducting heavy-fermion compounds). 

An isotropicp-pairing superconductor has several non- 
ferromagnetic phases; in the absence of spin-orbit interac- 
tion, the one which has the maximum value of the upper 
critical field is the so-called polar phase." The spin state of 
this phase corresponds to an equal-probability combination 
of states with spins along and opposite the field; therefore, 
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the upper critical field of the polar phase is not bounded by 
the paramagnetic limit. Taking into account the splitting of 
the Fermi surface for spins along and opposite the field (see 
the second section of this paper), we find that the transition 
from the normal to the superconducting state takes place 
first in only one of the spin states (with spin opposite the 
field) which make up the polar phase. The resulting phase 
(thepphase, which is a spin analog to the A-phase of super- 
fluid 3He) is ferromagnetic; of all the phases of a p-pairing 
superconductor (in the absence of spin-orbit interaction) 
this phase has the largest H,, ( T) . 

In the third section of this paper we investigate the 
problem of superconductivity in the diamagnetic limit, and 
also the effect of orbital ferromagnetism on the function 
Hc2 ( TI. 

For 3He the splitting of the normal-to-superfluid phase 
transition in a magnetic field is a well-known phenome- 
non.I6 In contrast to 3He, for a charged Fermi liquid the 
splitting of this phase transition has a number of peculiari- 
ties, whose investigation (in the absence of spin-orbit inter- 
action) is the subject of the fourth section of this paper. In 
this section, we show that following the formation at 
H = H,, of a lattice of Abrikosov nuclei of the supercon- 
ducting P-phase consisting of Cooper pairs with electron 
spins antiparallel to the field direction, a second phase tran- 
sition is possible at smaller fields with formation of a lattice 
of nuclei of the superconducting phase made from pairs of 
electron spins parallel to the field. The vertices of the second 
lattice can either coincide with those of the first or be located 
in the interstices of the latter. In the latter case there are two 
Abrikosov lattices which are dual to one another, consisting 
of superconducting pairs with opposite projections of the 
spin of paired electrons. 

The problem of the upper critical field in p-pairing su- 
perconductors with strong spin-orbit interaction possessing 
cubic symmetry was investigated in Ref. 11. It was shown 
there that it is necessary to seek the superconducting phase 
with maximal H,, as a linear combination of all nine basis 
functions for the four irreducible representations of the cu- 
bic group which correspond to the case ofp-pairing. In con- 
nection with this, we note that the phase transition to the 
superconducting state must be a transition to the phase 
which has the highest critical temperature (or largest pair- 
ing interaction c ~ n s t a n t ) ~ ~ ~ ~ ~ ;  the symmetry of this phase is 
characterized by one of the representations of the cubic 
group. Mixing of contributions whose symmetries involve 
other representations with lower critical temperatures to 
this phase begins to be significant only when terms 
- ( 1 - T/T, ) 2  are taken into account. Therefore, for Hc2 - (1 - T/Tc ), i.e., the Landau-Ginzburg region, and any 
ratio of interaction constants for two different representa- 
tions, the one which is important is the one with the largest 
Tc, as was asserted in Refs. 7, 8. 

Since our principal intent in this paper is to investigate 
how local magnetic effects influence the function Hc2 ( T) , 
we will assume that the pairing interaction constant for the 
three-dimensional vector representation (denoted by F, in 
the classification of Ref. 17 and Tl in that of Ref. 18) is large 
compared with the constants for the other representations. 
The choice of this representation has interesting implica- 
tions, in that the upper critical field of the p-pairing phase 
with F, symmetry is isotropic, i.e., does not depend on the 

orientation of the external field relative to the cubic axes for 
any given temperature. This property, which obtains only 
for superconductors with isotropic electronic dispersion re- 
lations, distinguishes the F, representation from the other 
multicomponent representations F, and El whose critical 
fields are anisotropic even for the case of an isotropic spec- 
trum. 

In the fifth section of this paper we show that the gener- 
alized Scharnberg-Klemm phase has the largest field H,, of 
all the p-pairing phases belonging to the F , representation. 
This phase is ferromagnetic. The corrections to Hc2 due to 
spontaneous magnetism act to decrease the value of the up- 
per critical field; in particular, the slope dH, /dTat T = Tc 
is decreased. We also find both paramagnetic and diamagne- 
tic corrections to H,, , and show that for a superconducting 
Fermi gas the paramagnetic corrections are smaller than 
those due to the spontaneous magnetism. On the other hand, 
if the electron effective mass is considerably larger than the 
free-electron mass, the paramagnetic contribution will ex- 
ceed the contribution due to spontaneous magnetism. For 
anisotropic superconductors with a strong spin-orbit inter- 
action, the phase transition from the normal to the supercon- 
ducting state is not split by a magnetic field in any direction. 
Thus, the assertion made in Ref. 18 that such splitting takes 
place only for external field directions along one of the cubic 
symmetry axes is valid only for an uncharged Fermi liquid 
with a spin-orbit interaction possessing cubic symmetry. 

As long as H,, is small compared to the paramagnetic 
limit H,,  the paramagnetic corrections make only slight 
changes in the value of the upper critical field. In the oppo- 
site case, paramagnetic suppression of triplet superconduc- 
tivity can either occur or not occur as a function of the 
weight with which the other representations mix with the 
basic one with maximum T,. In the sixth section of this pa- 
per we discuss the problem of paramagnetic limits on super- 
conductivity in the presence of strong spin-orbit interaction, 
when other representations enter into the order parameter. 
As an example, we discuss mixing of the F, representation 
into a fundamental representation with F, symmetry. 

In the Conclusion, we assert that we can now interpret 
the results of measurements of the upper critical field in the 
cubic-symmetry heavy-fermion superconductor UBe13.'9.20 

2. UPPER CRITICAL FIELD IN THE @PHASE 

In order to determine the critical field, we will solve the 
linear integral equation for the order parameter which is 
appropriate for ap-pairing s ~ ~ e r c o n d u c t o r ~ ~ :  

Here 

is the order parameter matrix 

and il andp are indices for the spin projections of the pairing 
particles: il = 7 ,  1 or + 1, - 1; a = (a,, a,, a,) denotes 
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the Pauli matrices and g the interaction constant, 

i2,"r) = - - ipoAr sign o - 7 r l " l ]  (2.4) 
Po r vo 

is the electron Green's function of the normal metal, p = 

[ 2 m * ( ~ ,  - ~ , ! ~ , H ) ] ~ ' ~ , p ~ = p t  (H=O)istheFermimo- 
mentum, v t  = p ;/m*, uo = p ,/m*, No = m* p , /2d is the 
density of states at the Fermi surface for a given spin projec- 
tion, p, is the Bohr magneton and H = curl A, A = (0, Hx, 
0). 

If we neglect the effect of the field on the electron spin, 
then 

and the solution of Eq. (2.1 ) (Ref. 10) with the maximum 
value of the upper critical field: 

corresponds to the so-called "polar phase", in which states 
with spin projections t T and 1.1 are equally probable. Here 
f ,(R) is the ground-state eigenfunction of the Schroedinger 
equation for a particle with mass m and charge 2e in a homo- 
geneous magnetic field. The quantity Hc2 (T)  for the polar 
phase is found from the equation 

2lunlr lelHrLz)} x cosz o e r p  (- - - 
uo 2c 

cos O = ; H I H ,  r,=l [rHIHl I, 

which is conveniently written in the dimensionless variables 

where Ho = QO/r{;, QO = rc/lel is the flux quantum, 
lo = u0/2rTc is the coherence length, Tc = wo exp ( - 1/ 
N,g) is the critical temperature; we use units in which fi  = 1 
everywhere. The solution of Eq. (2.6) in the variables (2.7 ), 

will be a function h = f ( t )  which takes on the values" 

In dimensional variables we have 

Hczp (T=O) xHo, 

for Hc2 in the polar phase. 
When paramagnetic contributions -p, H are includ- 

ed, the integral equations (2.1) for the components A, ,  and 
A , ,  of the order parameter will have different kernels; there- 
fore, in a neutral homogeneous Fermi liquid the transition to 
the superfluid state is split in a magnetic field. The equation 
for the critical temperature coincides with (2.1 ) if we omit 

the operator exp{ - r [ a  /a R - (2ie/c) A(R) 1 ) from this 
equation, which givesI2: 

Equation (2.11 ) implies that for a temperature T t  > T, 
pairing first takes place between quasiparticles with spins 
opposite the field, i.e., the phase transition is not to the polar 
phase but to the P-phase. The question of a second phase 
transition for particles with spins along the field is the sub- 
ject of the fourth section of this paper. 

The solution to Eq. (2.1 ) for the/?-phase has the form: 

and the corresponding equation for determining Hc, ( T) is 
written thus: 

Here, TcH = T r, NOH = N A, voH = vA . The transition to di- 
mensionless units 

where HoH = a0/776 iH, lOH = VOH /2rTcH, P U ~ S  Eq. (2.13 ) 
in the form (2.8). Its solution therefore will again be a func- 
tion h = f ( t )  , or in dimensional units 

Because HoH and TcH are functions of H, relation (2.15 ) is 
now an equation for determining Hc, ( T) . Taking advantage 
of expressions (2.9H2.11) and (2.13), (2.14), with loga- 
rithmic accuracy we obtain the upper critical field for thep- 
phase: 

3. DIAMAGNETIC CORRECTIONS ANDTHE EFFECT OF 
SPONTANEOUS ORBITAL MAGNETISM ON THE UPPER 
CRITICAL FIELD 

In Ref. 20 it was pointed out that there are additional 
limitations on the magnitude of the upper critical field in p- 
pairing superconductors, which originate from the fact that 
the Cooper pairs have a spatial structure. The estimates 
made in Ref. 20 show that the upper critical field for T = 0 is 
limited to the value Hd - ( T, /p, ) (m*/m ), which we refer 
to as a diamagnetic limit on the superconductivity. Because 
usually Hc2 - QO/r{ ;, we have Hc2 /Hd - Tc / E  , and 
bounds involving Hd become important only for supercon- 
ductors with Cooper pairs whose size is on the order of the 
interatomic spacing. Nevertheless, the local diamagnetism 
of the Cooper pairs gives rise to important corrections to 
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Hc2. In contrast to Ref. 20, in which the diamagnetic suscep- 
tibility was calculated-i.e., the authors investigated the 
limit H-+ 0 for arbitrary A-a correct calculation of the dia- 
magnetic corrections at arbitrary temperature requires solv- 
ing the linear integral equation for the order parameter, i.e., 
studying the limit A-0 for arbitrary H. In this section we 
will find the diamagnetic corrections to Hc2 in the polar 
phase, and also discuss the effect on Hc, of the spontaneous 
orbital magnetism, which is important for phases having a 
spontaneous orbital moment. To this end we will write the 
integral Eq. (2.1 ) for A in a slightly different form which is 
convenient for including these effects2': 

A' (R) = 3 d3R1 K i j  (R, R') Aj(R1). (3 .1 )  

Here 

X G ,  (R, R') G-. (1, m) . (3.2) 

The Green's function G, is connected with the Green's func- 
tion gm (2.4) by the relation 

R 

G. (R, R') = exp [: 5 A (r) drf  i). (R-R') 16. (R-R') . 

In the functions z, (R - R' ) and A' (R)  we have omitted 
the spin indices; this amounts to neglecting paramagnetic 
effects to simplify the exposition. The correction $O to the 
phase of the Green's function in the field has a relative mag- 
nitude - ( p ,go) -' compared to the first terms in the expo- 
nent of (3.3), and is determined by the expression' 

It is not hard to verify that Eq. (2.1) is obtained from 
(3.1) if we include only the principal contribution in 
( p ,go)-', arising from differentiating exp ( i p  ,lR - R'I 
sign o ) .  Let us now consider also the derivative of the phase 
factor 

R 

Then to order'( p ,c0) -' we obtain the following expression 
for the kernel K, 

(R-R') (R-It')? 

ie -- 
Zp,'c e i j m ~ ~ m }  exp [$j R r ~ ( r )  dr] . 

From (3.1) and (3.5) we can make use of the well-known 

exp [$ J A (r) dr ] ~j (R') 
R '  

to obtain 

In contrast to (2.11, Eq. (3.7) contains the effects of local 
diamagnetism and the spontaneous orbital moment of the 
Cooper pairs. For the polar phase (2.5), which is the solu- 
tion with maximum value of Hc2, the term - e,, , H,,, which 
corresponds to the spontaneous orbital moment (here, to the 
magnetic orbital moment) of the superfluid Fermi liquid 
(see Ref. 22) equals zero (for H ((2). However, for the type 
A-phase s o l ~ t i o n ' ~  this term gives a nonzero correction to 
Hc2 (see below). 

The equation for Hc2 corresponding to (3.7) has the 
following form for the polar phase: 

Passing to dimensionless units, we obtain in analogy with 
(2.7) 

from which we have at T =  0 (see with (2.9)) 

Here a = 1/2p ig:. Thus, the value of the upper critical 
field in the polar phase equals 

The-spatial structure of the Cooper pairs gives rise to 
effects which contribute to Hc, for any type of pairing in 
addition to s-pairing. As one might expect, this effect will be 
important only for Tc -E, . The relative diamagnetic de- 
crease in Hc2 is of order a - (p,  H,/E , ) (m/m*). At the 
same time, the paramagnetic increase in Hc, due to the sepa- 
ration of the Fermi surfaces for particles with spins along 
and parallel to the field (which was found in the previous 
section) is of order (p,  H O / ~ F  )In(o,/Tc ). Therefore, dia- 
magnetic effects need not be considered in calculating the 
upper critical field in the P-phase. 

It is also appropriate to discuss renormalization of H,, 
for the solution which has the A-phase structure (see Ref. 
10) : 

where this renormalization is due to the spontaneous orbital 
moment of the Cooper pairs. Such a contribution to Hc2 
arises, e.g., in the Scharnberg-Klemm phase which has the 
maximum Hc2 in a cubic crystal with strong spin-orbit inter- 
action (see Sec. 5). Here we discuss the effect of the sponta- 
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neous orbital moment in its pure form, again omitting the 
spin indices, or in other words neglecting the spin paramag- 
netism; taking this latter effect into account would give the 
A,-phase as a solution to the integral equation for the order 
parameter, which possesses a higher Hc2 compared to the A- 
phase (3.12). 

Omitting the term - [HrI2 in (3.7), which is small 
compared to the terms - (ie/2p ; c ) e i j r n~ , ,  which now 
give the principal contribution, we write for Hc2 

where T,, s determined from the equation 

whose solution is in essence 

Solving (3.13 ) to within logarithmic corrections, we obtain 

Thus, inclusion of the spontaneous orbital moment 
slightly increases Hc2 in the A-phase. The rise in H,, takes 
place because the orbital moment of the A-phase (3.12), be- 
ing a solution to the linear integral equation (3.7) for 
H = H f 2 ,  is directed antiparallel to the external field: 
1 = - [%?I = - 2. 

4. SPLITTING OF THE PHASE TRANSITION IN A MAGNETIC 
FIELD 

It is well-known that the liquid 3He phase transition 
from the normal phase to the superfluid A-phase splits in two 
in a magnetic field. As the temperature falls, the first phase 
transition takes place to the A ,-phase, corresponding to pair- 
ing of particles with magnetic moments oriented along the 
field (spins opposite the field), followed by a phase transi- 
tion to the A-phase in which particles with magnetic mo- 
ments opposite the field also pair. For a charged Fermi liq- 
uid with p-pairing, the maximum H,, corresponds to the 
polar phase; it is therefore necessary to investigate for this 
specific case the question of whether the transition from nor- 
mal state to p-pairing superconductor splits in a magnetic 
field. 

Let us write the order parameter (2.3) in the form 

(the field direction, as usual, is along the z-axis). From 

(2.2), we conclude that a = A', , zi, b = A:, zi are the coordi- 
nate-dependent pairing amplitudes for states with spin pro- 
jections + 1 and - 1. The free energy of a superconductor 
with order parameter (4.1 ) in the Landau-Ginzburg regime 
can be written asz3 

where 

and the coefficients p and y are expressed in terms of the 
standard Landau-Ginzburg expansion coefficients as fol- 
lows: 

In the weak-coupling approximation 

-2pI=p2=$3=PI=-P5=i~ (3) N0/120nZT?, 

K,=[i~(3)/240n']No(~o/T~)~, 

so that y = 0. Furthermore, 

and we assume that a and b are independent of the z-coordi- 
nate, which is along the magnetic field. 

By varying Eq. (4.2) we obtain a system of Landau- 
Ginzburg equations: 

- i / 2 ( a - g , H )  b+Pl bJZb+yla12b+'jzK,D,2b=0. (4.4) 

Discarding the nonlinear terms in (4.3), we obtain a linear 
equation whose smallest eigenvalue determines the upper 
critical field for a transition from the normal state (a  = 0, 
b = 0)  to the superconducting state (@phase) with a#O, 
b = 0: 

which naturally coincides with (2.16). Here 

HcZP=a/4KlmpB,  v=g1/4KlmpB,  (4.6) 

H z  is the upper critical field for the polar phase (2.10). 
As the field H decreases to a value slightly smaller than 

Hf2 ,  it becomes necessary to solve the nonlinear equation 
(4.3) with b = 0 along with the Maxwell equation which is 
obtained from (4.2) by variation with respect to the vector 
potential A (for b = 0). The solution to this system24 con- 
sists of a planar lattice ofp-phase nuclei (a  #O, b = 0 )  with 
period - (K,/a) ' I 2 ,  where 

and f ( r )  is a doubly-periodic function which does not de- 
pend on H. As the field is further decreased, a phase transi- 
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tion can take place to a state with b f 0. In this case, a lattice 
appears which is made up of nuclei of the A , ,  -phase )a = 0, 
b f 0). Because the energy of this interaction yjdV laI2)b 1' 
must take on its smallest value, for y > 0 the A , ,  -phase nu- 
clei which appear will be repelled by the preexisting lattice of 
A , ,  -phase nuclei, and will form a lattice dual to the latter. If 
no other phases occur as the field is further reduced (for 
example, structural transitions in the lattice or a transition 
to the A-phase, which may turn out to be energetically more 
favorable at low fields), then all the evidence suggests that 
for H-,Hc, the structure of two dual lattices with a#O, 
b = 0 and a = 0, b # O  goes over to a nonsingular vortex 
structure made up of the ferromagnetic 0-phase with order 
parameter 

d i = A  ( T )  (e ,+ie2)  i,, (4.8) 

where el, e, are unit vectors with el .e, = 0, and the direction 
of spontaneous magnetic moment M = el X e, forms a vec- 
tor triad with them similar to the triad formed by the orbital 
moment 1 for the lattice of nonsingular vortices in rotational 
3He-A (Ref. 25). If, however, y < 0 holds, a new A , ,  -phase 
appears which replaces the A, ,  -phase nuclei, i.e., once more 
the transition will be split; however, a lattice of nuclei of the 
real-valued polar phase forms below the second phase transi- 
tion. 

In order to find the field HI, which corresponds to the 
appearance of the A , ,  -phase, we write the equation which 
comes from linearizing (4.4) in b in the form 

This is the Schroedinger equation for a particle with mass m 
and charge 2e in a magnetic field and acted on by a potential 
yla(r) /*/K,m. Treating this potential as a perturbation and 
using (4.7), we find the smallest eigenvalue of this equation: 

where 

The solution to (4.10) in the notation (4.6) has the form 

H,2t=H,2P[1-~(a+2yI)/(a-2yZ) 1. (4.12) 

Using (4.5) and (4.12), we also obtain the magnitude of the 
transition splitting: 

Equations (4.12) and (4.13) apply when yga/2I .  In 
the region y-a/2I, and more so for y > a/2I, it is not per- 
missible to use perturbation theory to find the lowest eigen- 
value of Eq. (4.9). We will leave the question of what the 
splitting of the transition is in this region for a future investi- 
gation. 

A change in the sign of y, due, e.g., to the effect of a 
pressure P, as we have already shown, can lead to a struc- 
tural transition from the two-sublattice phase to a lattice of 
polar-phase nuclei. Because the value ofIis different on both 
sides of this transition (i.e., for y > 0 and y < 0), there will be 
a kink in the function Hi, ( P ) (at fixed temperature) at the 
point y ( P ) = 0. 

5. UPPER CRITICAL FIELD IN SUPERCONDUCTORS WITH 
CUBIC SYMMETRY 

Let us now discuss the temperature behavior of the up- 
per critical field for cubic-symmetry superconductor crys- 
tals which possess a center of inversion in the presence of 
spin-orbit interaction. We limit ourselves to the case of an 
order parameter linear in i., where i. is the direction of a radi- 
us vector joining the particles in a Cooper pair (this is analo- 
gous to p-pairing). In such a case, the order parameter is 
written1' as a linear combination of basis functions dgiri  of 
the four irreducible representations of the 0, gro~p" , ' ~ :  

Here g;p = (ia,a, )+, vP(R) is an expansion coefficient; 
the indexp labels the basis functions. 

As we have already noted in the Introduction, since our 
primary intent is to investigate the effects of local magne- 
tism, we retain in the linear combination (5.1) only those 
terms which correspond to an expansion in basis functions 
belonging to the three-dimensional vector representation Fl:  

Here, A: = (2,, j, ,la ) are unit basis vectors; the indices a 
and i label their projections onto the coordinate axes direct- 
ed along the cube edges. Thus, we will assume that the criti- 
cal temperature of the phase whose order parameter is a lin- 
ear combination of the functions (5.2) belonging to Fl is 
large compared to the critical temperatures for phases with 
order parameters belonging to the other representations. 

The analogue of Eqs. (2.1 ) and (3.7) for the coeffi- 
cients f ( R ) ,  which play the role of order parameters, has 
the form 

- 
Here we understand by the combination gyp G ( r ) E t ,  ( r )  
not contraction but rather element-by-element multiplica- 
tion according to the indices A andp. As in the case of (2.1 ), 
we will solve Eq. (5.3) under the assumption of an isotropic 
electron spectrum, i.e., using expression (2.4) for the 
Green's function G t  ( r ) .  In this case, it is not difficult to 
verify that for the basis functions (5.2) the representation Fl 
of Eq. (5.3) determines Hc, independent of orientation of 
the external field relative to the crystal symmetry axes. Ac- 
tually, the form of Eq. (5.3) does not change under the 
transformations 2' = RIuAi", y P  = Rpav'a, etc., which give 
rise to a transition from a basis 2' to a basis A'" and from 
solutions v P  to solutions f a ,  where the latter are related to 
the former by the three-dimensional rotation matrix R -'. 
Isotropy of Hc2 for a multicomponent order parameter is a 
characteristic only of the Fl representation. The field H,, for 
the other multicomponent representations E and F, is aniso- 
tropic even for the case of an isotropic electron spectrum. 

If we do not consider the effect of a magnetic field on the 
electron spin (i.e., ignore the indices A andp  of the Green's 
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function) and omit the contribution of the spontaneous orbi- 
tal moment and diamagnetism, Eq. ( 5.3 ) is significantly 
simplified: 

q p  (R) -3gT d3r A,C. (r) G-. (r) 

Here Am is a matrix consisting of a product of the basis 
functions (5.2) : 

Solving Eq. (5.4) (see Ref. 10 and Appendix A) shows 
that the phase with maximum H,, has an order parameter of 
the form 

8 . .  

qPd$,^.i- { ~ o f o  ( R )  [- ia (7, - zr,) $ (Ba - ika)  izl 
- (ao + yo - 2) f2 ( R )  [- ia (iu + i?,) + (Qa + i fcz) ?,I). 

(5.6) 

In Appendix A, we show how to determine the coefficients 
a,, fl,, A,; f ( R )  is an eigenfunction of the Schroedinger 
equation for particles with mass m and charge 2e in a mag- 
netic field A(R)  = (0, Hx, 0).  The order parameter (5.6) 
can also be usefully written in spinor form: 

The phase which results [in analogy with the isotropic 
case" we will call it the Scharnberg-Klemm (SK) phase] is 
a linear combination of two complex vector phases with or- 
der parameters - A& (;) and - A 2  (?). Each of the com- 
plex vector phases in its turn is a linear combination of the A- 
phase and the @-phase. The complex vector phases possess 
spontaneous magnetism, which contains both a spin (the & 
phase) and an orbital (the A-phase) component. The spon- 
taneous magnetic moments of the A& and A,, phases are 
oriented along and opposite the external field, respectively. 

It is important to point out the solutions (5.6)-(5.8) to 
Eq. (5.4) corresponding to the maximum value of Hc, , are 
unique-i.e., combinations of the form (5.7) with opposite- 
ly directed spontaneous moments in each of the terms 

are no longer solutions to Eq. (5.4). In this respect the phase 
transition to the superconducting state in the presence of 
strong spin-orbit interaction differs from the transition in 
the absence of spin-orbit interaction discussed in Sec. 4. In 
the latter case, without including the effects of spontaneous 
magnetism the two independent ampltudes A:, and A:, ap- 
pear at the same value H = H:,. Including spontaneous 
magnetism removes the degeneracy of the A;, and A;, 
states, and leads to the appearance at H = Hf2  first of the@- 
phase with A:, #O, A',, = 0, and then at lower fields of an 
additional state with A', , #O, A:, = 0. The absence of degen- 

erate solutions for H = H :F in superconductors with strong 
spin-orbit interactions implies also the absence of a splitting 
of the phase transition for arbitrary directions of the external 
field. Thus, the assertion of the authors of Ref. 17-that the 
splitting in a magnetic field of the phase transition from the 
Fermi liquid'to the superfluid state in the presence of aniso- 
tropic spin-orbit interactions takes place only for field direc- 
tions along the cubic-symmetry crystal axes-is correct only 
for an uncharged Fermi liquid. 

The upper critical field of the SK phase (5.6)-(5.8) 
(see Appendix A)  equals 

where 

exp ('/e+3'") 
3 = 

20 (9+38") (40 
a = , H = -  

81 291f (3) 
nEo, . (5.10) 

In order to include the effects of local magnetism, it is 
necessary first to solve Eq. (5.3). The solution to this equa- 
tion is again the SK phase: 

in which other new functions figure into the coefficients: 
a;1,- ' 7  @ A', yAT (see Appendix B); A&, A,& are determined 
by Eq. (5.8). Calculation of H,, gives four types of correc- 
tions to H:: (5.9), (5.10) due to local magnetic effects (see 
Appendix B) . For T = 0 we have 

8 ~ : F / ~ ; : ~ ~ ~ = h , + h ~ + h ~ + h ~ ,  

For T- Tc , 

~ H ~ F / H : F ~ I ~ ~ = ~ , +  h2. 

Here, 

are corrections due to spin ferromagnetism, orbital ferro- 
magnetism, paramagnetism and diamagnetism, respective- 
ly; m and m* are the mass the effective mass of the electron. 
It is immediately clear from expressions (5.14)-(5.17) that 
in a Fermi gas where m* =.m, the corrections h ,  and h, due 
to spontaneous magnetism are always large compared to the 
para- and diamagnetic corrections. 

Inclusion of the spontaneous magnetization decreases 
Hc, (T )  in the SK phase. This happens because the sponta- 
neous magnetism increases the weights of the state A +  (see 
(5.1 1 ) )  with magnetic moment oriented along the field 
compared to the weights of the A -  state with oppositely 
oriented moment. The pure A +  state which appears in phase 
(5.1 1 ) corresponds to a smaller value of H,, [its amplitude 
is - f 2 ( R ) ]  than the pure state A -  [its amplitude is - f o (R)  1;  therefore, when we include the spontaneous 
magnetism the field H zF becomes smaller. Thus, the slope 
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dHc2 /dTas T- Tc will by no means always increase because 
of the spontaneous magnetism, contrary to the assertion 
made in Ref. 17. 

For heavy-fermion compounds, where m */m - lo2 
- lo3, at T = 0 the largest correction is h,, which is caused 

by spin paramagnetism. The estimate (5.16) for h, can be 
rewritten as h,- - (Ho/Hp)2, where H, - Tc/pB is the 
paramagnetic limit. For such a large ratio m*/m it is even 
possible that Ho/Hp z ( m */m ) ( Tc / E  ) > 1, and expres- 
sion (5.12) for H zF( T = 0) ceases to be valid, because the 
paramagnetic limit comes into play to bound the upper criti- 
cal field. In such cases we must consider the possibility that 
the order parameter, which has the symmetry of the F, rep- 
resentation, will be mixed with contributions from other rep- 
resentations with lower critical temperatures. 

6. PARAMAGNETIC BOUNDS FOR TRIPLET 
SUPERCONDUCTIVITY 

For definiteness let us discuss the situation where the 
state with the highest critical temperature Tc , which belongs 
to the symmetry representation F,, is mixed with a state with 
symmetry representation F, and a critical temperature - 
Tc < Tc. The order parameter can again be written in the 
form of the linear combination (5.1 ): 

are the basis functions of the F, representation, while for 
p = 4, 5,6, 
da:=2-'h ( g a i i + i a g i ) ,  dai5=2-" ( t a l i +  %..ti), 

dai6=2-% (3,gi+ pa&, )  (6.3) 

are the F2 representation basis functions. 
If we neglect contributions from the orbital ferromag- 

netism and diamagnetism, Eq. (5.3) has the form 

For p = 1-3, the quantity g" = g determines Tc 
= w, exp ( - l/N,,g), while for p = 4, 5, 6 the quantity 
gP = gdetermines IT, = w, exp ( - l/N,g). Equation (6.4) 
is solved in a way analogous to Eqs. (5.3), (5.4) (see Appen- 
dices A and B) . For convenience in doing this we pass to the 
variables 

9~=[2-" (q,+iq?), 2-'"(q4-iq5), 

and expand them in the complete set of states f, (R):  

Y 

Rather than present the extremely tedious calculations, we 
willdescribe the results qualitatively. 

The upper critical field as defined by Eq. (6.4) is aniso- 
tropic, i.e., depends on the direction of the external field 
relative to cubic axes. For Tc > PC this anisotropy is not sig- 
nificant as T- Tc , where with accuracy - 1 - T/Tc the 

field Hc2 is determined only by contributions from the F, 
representation, for which Hc2 is isotropic. At low tempera- 
tures the anisotropy of Hc2 is felt to the extent that the con- 
tribution with symmetry F2 is mixed in. 

The upper critical fields corresponding td the phases 
with symmetries F, and F, for T = 0 without including para- 
magnetic renormalization are estimated to be [see (5.9)] 
H, - @,T f /u: and go - @,F :/v;. The paramagnetic bound 
on the upper critical field can be expressed in various forms 
depending on the relative magnitudes of the characteristic 
fields H,, and H, - Tc /pB . 

In the case H, ) H, > H, discussed in the previous sec- 
tion, the paramagnetism gives only small corrections to the 
magnitude of the upper critical field, which is basically de- 
termined by the quantity H,. 

When the inequality H, > H, > & holds, the upper 
critical field becomes much smaller than H,. Its value is de- 
termined by competition between paramagnetism and the 
mixing of representations. In particular, when the stronger 
inequality Ho$Hp )go holds, the paramagnetism sup- 
presses the phase with symmetry F, but preserves the phase 
with symmetry F2. The upper critical field is thus deter- 
mined essentially by the quantity H,, i.e., in superconduc- 
tors with triplet pairing the strong spin-orbit interaction can 
lead to an important paramagnetic bound on the supercon- 
ductivity. 

Finally, for H, > a)  H, , the- paramagnetic bounds 
again become irrelevant. The solution to Eq. (6.4) turns out 
to be close to thee-phase, for which there is no paramagnetic 
limit, while the upper critical field satisfies Hc2 - H,. 

7. CONCLUSION 

The experimental behavior of the upper critical field in 
UBe,,, a superconducting heavy-fermion compound with 
cubic symmetry, is characterized by a number of peculiari- 
ties. First of all, for temperatures close to T, the upper criti- 
cal field does not depend on the direction of the external field 
relative to the cubic axes; the anisotropy of Hc, begins to 
appear only as the temperature decreases.19 Secondly, for 
temperatures near zero the upper critical field of this materi- 
al exceeds the paramagnetic limit by an order of magni- 
t ~ d e . ~ '  Finally, the decrease in the field H,, ( T) is practical- 
ly linear over the entire temperature interval from T /  
Tc ~ 0 . 1  to T/Tc ~ 0 . 9 ;  only near T does this decrease in Hc, 
become more rapid.'' 

Symmetry considerations7 imply that any anisotropy in 
Hc2 as T- Tc which is not connected with an anisotropic 
effective mass (which does not occur in cubic superconduc- 
tors) is necessarily a sign of superconductivity with a multi- 
component order parameter. The absence of this kind of an- 
isotropy, it would seem, unambiguously indicates that for 
UBe,, the transition to the superconducting state in a mag- 
netic field in the limit T -  T, takes place into one of the 
phases whose symmetries are characterized by the one-di- 
mensional representations A ,  and A,. The authors of Ref. 4 
prefer to characterize UBe,, by the representation A,, which 
implies that the thermoelectric power does not have an acti- 
vation form.16 However, if the cubic anisotropies of the spec- 
trum and interactions are for some reason sufficiently small, 
the isotropic behavior of Hc2 as T- Tc is not inconsistent 
with phases which possess the symmetries of the three-di- 
mensional vector representations (see Ref. 5) .  The anisotro- 
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py of Hc2 observed in UBe,, as the temperature is lowered is 
then naturally explained in terms of the admixture of other 
representations with anisotropic values of Hc2. As we saw 
from the example of a mixture of the representations F, and 
F2 (Sec. 6), the upper critical field in a superconductor with 
triplet pairing, even in the presence of strong spin-orbit in- 
teractions, need not be subject to bounding by the paramag- 
netic limit. As regards the remarkably linear behavior ofHc2 
over a largedemperature interval, while this behavior is ex- 
plained by mixing of representations by paramagnetism, " it 
could also be a result of some dependence of the pairing in- 
teraction on magnetic field which is unknown at this time 
(see also Ref. 26). 

In conclusion, one of the authors (V. P. M. ) is grateful 
to G. E. Volovik and L. P. Gor'kov for some healthy scepti- 
cism in relation top-pairing superconductors with isotropic 
dispersion laws which they expressed during discussions of 
the results of this paper, and also to N. E. Alekseevskii for 
discussing the experimental situation and for kindly sending 
reprints of papers on UBe,,, and D. I. Khomski for useful 
exchanges of information relating to the properties of super- 
conducting compounds with heavy fermions. 

APPENDIX A 

Solution of Eq. (5.4): 

Following Ref. 10, we transform to the variables 

and functions 

Let us also define the raising and lowering operators 

for the set of eigenfunctions f, (R) of the Schroedinger 
equation for particles with mass m and charge 2e in a mag- 
netic field A =  (0, Hx, 0).  Here II= (H,, H,, Hz)  
= - i ( a / a R )  - (2e/c)A(R). 

Assuming that does not depend on the coordinate z 
along the field direction, and expanding 

m 

in the complete set f, (R) ,  we obtain for the coefficients 
A P, from (5.4) the infinite system of algebraic linear equa- 
tions 

where 

The functions 

are determined by the equations" 

a, = 2 g ~ x  d3r sid 0C. ( r )  6-. ( r )  
2 0 

yr=3gT d3r cbs2 0C. ( r )  C-. ( r )  

. erp (- 1 e 1 ~ r 2 ) , ~ (  I ~ I H ~ , ~  ). 
(,,, 2c C 

Here L, ( x )  are Laguerre polynominals, r, = r sin 8. The 
determinant of the system (A5) will be zero if one of the 
following conditions hold: 

a,+y,=2, 

(aS+yN-2) (aN+2+yN+?-2) -pN2=0, 

c ~ x = I .  (A81 

It can be verified that the maximum value of Hc2 (T) is 
determined by the equation 

which corresponds to a solution of the system (AS): 

where Cis an arbitrary constant. The vector and spinor nota- 
tion for the order parameter (A101 are presented in the main 
text of the article [formulae (5.6)-(5.8) 1 .  

Combining Eq. (A9) and the equation for the critical 
temperature 

a0 ( 0 ,  T C ) = Y O  (0, T c ) = ~ z  (0, Tc)=72 ( 0 ,  T , )  =l, (A1 1) 

we can write the equation Hc2 ( T )  in a form which contains 
no logarithmic divergences: 

Making use of (A7), we rewrite Eq. (A 12) in dimensionless 
variables (2.7) : 
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Equation (A1 3) determines the upper critical field in phase 
(A10) for arbitrary temperatures. The solutions (A13) for 
T =  Oand T-T, are given by formulae (5.9) and (5.10). 

1 APPENDIX B 

P L ~  P PlZ 1 From Eq. (5.3) we obtain a system of algebraic equa- - (i-p12+ -) 8 wp (- - - -) - -1) 
a, 4 (2nS-11 tions for the expansion coefficients A P, of the order param- 

t eter (A4) in the basis functions f, (R): -"[z, 4nh J " s i n 2 e e x p ( - ~ - d - )  p' 4 PI ' I2  '0, 
2' ,, an G-~AQN-~ + ( z p  -aPQ) ANq + I@pAQN+2=~, (Bl )  

h" 

an= i12n+ll ' (A13) where 

The functions 

ag'l'v=a:"v ( H ,  T), p N " = B N A w ( H ,  T) , ~ N ~ = ' ~ N ~ ( H ,  T) 

are determined by the expressions 

a$v=3gT ~ j d 3 r ~ [ s i o ' t l ( i - ~ )  
Lpo2cL 

0 

vpsH m + -- 1: LGmL(r) G-: (r) +c: (I) c!. (r) I 
e p  rn' 

5 

sin2 0 eZH2 pNAY=3gT z j d 3 r - ( I - -  2 2poZc2 rl ' )  
0 

The indices A and p take on the values .t, 1 or + 1, - 1. The 
index Y = & 1. 

I .  
Setting to zero the determinant of the system (Bl) ,  we 

obtain a set of relations analogous to the relations (A8). The 
maximum value of H,, is determined by the equation 

[the analog to Eq. (Ag)], which corresponds to solution of 
the system (B1 ): 

i.e., taking into account the overdetermination of the func- 
tions a, Band y, we again obtain phase (A10). 

Along with the functions apv(H, T), 0 $ ( H ,  T), 
&(H,T), we determine the functions 

1 . - [C," (r) G-,lL ( r )  +emP ( I . )  G-.' (r) 1. 
2 

(B6) 

With a goal of eliminating the logarithmic divergences 
in Eq. (B4), we determine the temperatures T L  and T s  as 
solutions to the equations 
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at*. +' (H ,  T,') +P++(H, T,') -2=0, 

from which we obtain 

Combining (B4) and (B8), we obtain an equation for 
Hc, ( T) which does not contain any logarithmic divergences 

{aot"- ' (H,  T) +yot ( H ,  T) -a t+. - ' (H,  T) -vt t  ( H ,  T) 
-[a+~3-1(ff,  T,")+T~ ( H ,  TH")  -at4#- '(H, T )  -ptt  ( H ,  T)]) 

. {az fr ,+l  (H, T) + y L r r ( H ,  T) -fzti,+'(H, T ) - p u ( H ,  T) 
-[a t&.+'  ( H ,  T H ' ) + y J * ( f I ,  T H 1 )  - a ? J , + l ( H ,  T ) - 7 ;  ( H, T)]) 

- [ !o t4 (H ,  2') 12=0. (B9) 

Equation (B9) determines Hc2 in the phase (B5), taking 
into account the effects of paramagnetism, diamagnetism 
and spontaneous spin and orbital magnetism at arbitrary 
temperatures. The qualitative results of solving this equation 
for the case of small renormalization of Hc2 at T = 0 and for 
T -  Tc are given by Eqs. (5.12)-(5.17). 
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