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The properties of the ground state and low-lying excited states of one-dimensional 
antiferromagnets with large spin S are studied. For Heisenberg antiferromagnets, the hypothesis 
of Haldane concerning the difference between systems with integer and half-integer spins is 
confirmed. It is shown that in generalized magnets there are regions in which the behavior is 
different from that in Heisenberg models. 

1. INTRODUCTION 

In recent years interest in the study of the properties of 
the ground state and low-lying excited states of a one-dimen- 
sional antiferromagnet (AFM) with an arbitrary value of 
the site spin has increased again. One reason for this has been 
the hypothesis, put forward by Haldane in 1982, that there is 
a critical difference in the behavior of antiferromagnets with 
integer and half-integer spins. ' According to his hypothesis, 
the low-energy properties of all isotropic Heisenberg AFM" 
with half-integer spin are similar to the properties of the 
S = 4 model solved exactly by Bethez: There is no long-range 
order in the ground state, but the correlation length is infi- 
nite, i.e., the correlators decay by a power law. On the other 
hand, for integer spins, according to Haldane's prediction, 
the correlation length in the ground state is finite, i.e., at 
T = 0 an AFM with integer spin is in a "spin liquid" state. A 
considerable number of papers, which have included not 
only theoretical  investigation^^-^ but also numerical calcula- 
t i o n ~ ' ~ - ' ~  and a real experiment," have been devoted to 
checking Haldanes prediction. Although the results of the 
numerical experiments enable us now to speak with confi- 
dence of the existence of a qualitative difference in the struc- 
ture of the ground states of one-dimensional AFM with 
S = 1/2 and S = 1, a complete theoretical description of the 
effect does not yet exist. 

In an earlier paper of one of the authors7 it was shown 
that the standard spin-wave perturbation theory construct- 
ed on the classical (Niel) ground state of the AFM is loga- 
rithmic, and the quantum correction to the Green function, 
calculated for S %  1, is comparable in order of magnitude to 
the bare value of the Green function in the region of wave 
vectors k,,,, - A  - 'Se - "' (A is the interatomic spacing). 
Over large scales the spin-wave description becomes inappli- 
cable and to establish the structure of the spectrum one must 
construct an effective long-wavelength Hamiltonian. 

One of the aims of the present paper is to establish the 
dependence of the structure of the spectrum of a Heisenberg 
AFM on the parity of the doubled spin 2 s  and to determine 
the type of critical behavior for half-integer spins. Another 
aim is to find the boundaries of the universality class of the 
Heisenberg model and to elucidate the possibilities of the 
existence of other types of critical behavior. 

The structure of the article is as follows. In Sec. 2 we 
construct the effective long-wavelength Hamiltonian of a 
Heisenberg AFM with a large but finite spin, and convince 
ourselves that it is equivalent to the Hamiltonian of a a- 

model containing a topological 0-term (a  Smodel) with co- 
efficient 0 = 27~s. The Haldane hypothesis is thereby con- 
firmed, since, depending on the parity of 2S, the model 
realized is either the ordinary a-model ( 2 s  is even), in 
which, as is well known from the exact solution, Is  dynamical 
generation of mass occurs, or the a-model with 0 = 7~ ( 2 s  is 
odd), in which one assumes the presence of a critical point, 
and, consequently, the power-law decay of the correla- 
 tor^'^'^^ that is characteristic for integrable models. In Sec. 3 
we study the consequences of adding to the Hamiltonian a 
term - y(Sl .Sl + , )' that is quadratic in the scalar product 
of the spins, and show that within the phase characterized by 
the presence of short-wavelength antiferromagnetic order 
there is a narrow (for S)1)  region of values of 
y( Ay -S 'e-'"') in which the 6-model description is inap- 
plicable. In Sec. 4 we consider the consequences of taking 
two-ion and single-ion anisotropy into account. In Sec. 5 we 
summarize the principal results of the paper and compare 
our approach with the approaches of other authors. Finally, 
in Sec. 6 we discuss the available experimental data. 

2. HEISENBERG ANTIFERROMAGNET 

We start from a Heisenberg AFM described by the 
Hamiltonian 

The standard way of investigating this for S% 1 is to choose 
the axes of quantization of the spins in correspondence with 
the NCel ground state, in which the AFM is considered as a 
system of two interlocking ferromagnetic sublattices A and 
B, and to go over from the spin operators to bosons-one 
type for each of the sublattices. The latter is implemented 
most conveniently by means of a Dyson-Maleev transforma- 
tion'': 

SA= ( 2 s )  ' (I-u,+an/2S) a,, 

s,f,= ( 2 s )  b,+( 1-bnib,/2S), 

where the integer n labels successive sites in the sublattices A 
and B, and the distance between neighboring sites in each of 
the sublattices is equal to 2A.  The sublattices introduced 
must be completely equivalent, and therefore, in particular, 
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the Fourier components of the Bose operators a, and b,  
should transform in the same way upon change of the wave 
vector k by a reciprocal-lattice period 2r/2A. TO satisfy this 
requirement, the coordinate origins in the two sublattices 
must be chosen to be the same, or, in other words, we must 
assign to neighboring spins in the chain the same site label in 
the doubled cell (the description in Ref. 3 was constructed in 
a similar manner). 

After a number of standard procedures (transforma- 
tion to the Fourier representation, diagonalization of the 
quadratic form, and normal ordering of the Bose operators), 
the Hamiltonian of the AFM acquires the form 

where V =  1 + (r - 2)/2rS, E~ = Isin kAl, and the term 
H4 contains nine different fourth-order anharmonic terms: 

It is assumed that each process in (4)  has its own momen- 
tum-conservation law. The amplitudes Qi and Gi differ 
from the corresponding expressions in Ref. 23 by the phase 
factors that arise when the same site label is used for a pair of 
neighboring spins: With each operator dk  we associate a fac- 
tor eikA , and with each d ,,? we associate a factor e - j k A  . For 
non-Umklapp processes the amplitudes Qi and Gi coincide. 
For small wave vectors of the quasiparticles the explicit 
forms of the amplitudes are 

@,=a,=@, @,=G,=cD exp (-ik3A), 

m3=B3=-@ exp (ik2A), ( 5 )  

@,=-@ esp (i(k,-k,)A), ms=G5=@ exp (-i(k,+k,)A), 

where 

To construct the effective Hamiltonian we must renormalize 
the Hamiltonian (3)  by integrating over momentum scales 
from r/2A to rA/2A, where A < I. We have calculated the 
renormalization of the four-point amplitude for zero total 
momentum of the scattered particles in the two-loop approx- 
imation. The corresponding diagrams are depicted in Fig. 1. 
The fact that the total momentum is equal to zero enabled us 
to avoid the need to ensure the cancellation of the "parasit- 
ic" corrections2' (containing the combination 1 k ,  kz I + k ,  
k, ) to the vertices. The renormalization leads to an identical 
change of the coefficients of all the four-point amplitudes, 
and this proves both renormalizability and the presence in 
the problem of only one coupling constant g. The bare value 
go for the long-wavelength theory is formed by nonlogarith- 
mic corrections built up over short distances. A contribution 
to go is made both by intrinsic corrections to the vertex and 
by corrections to the Z-factor of the Green function and to 
the velocity of the spin waves. To terms of order 1/S2 the 
value of go is 

FIG. 1. The diagrams that must be taken into account in order to find the 
renormalization of the Hamiltonian ( 2 )  in the two-loop approximation. 
The solid and dashed lines denote the Green functions of the magnons of 
the two branches of the spectrum. a )  The diagrams making a contribution 
to the renormalization of the four-point amplitude @, for zero total mo- 
mentum of the quasiparticles. Half of the diagrams are written out; the 
other half are obtained by replacing all the internal solid lines by dashed 
lines (and vice versa) with a simultaneous change of direction of the ar- 
rows in each of the diagrams given. b )  The diagrams determining the 
renormalization of the magnon Green function (the thick line is the exact 
Green function). 

Inclusion of the logarithmic corrections in the two-loop ap- 
proximation leads to an equation for the coupling constant 
that coincides with the equation for the invariant charge in 
the u-modelz4: 

The next step is to establish the equivalence of the effective 
long-wavelength Bose Hamiltonian to a Hamiltonian of the 
u-model type (with the same cutoff parameter A): 

expressed in terms of a unit vector field n and the generator 1 
of rotations, the commutator of which with an arbitrary vec- 
tor q is equal to 

The normalization of the argument of the 8-function is cho- 
sen so that the quantity 8ij/2A goes over into 8(xi  - xj ) in 
the continuum limit. 

We shall parametrize the continuous variables n(x) 
and 1 (x )  in terms of the pair of Bose operators a (x)  and b(x) 
as follows: 
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The normalization of the commutators 

corresponds to the fact that a ( x )  and b(x) contain only 
Fourier components with I k I < .rrA/2A. The commutation 
relations between li and I,, and also between li and n,, are 
fulfilled identically. In addition, 

i.e., for A -0, n turns out to be a unit vector with commuting 
components. The parametrization thereby preserves the 
geometrical structure of the a-model. 

Using the representation ( lo),  we have obtained from 
(8)  a Bose Hamiltonian expressed in terms of the continuum 
fields a and b. After the transformation to the operators c 
and d that diagonalize the quadratic form this Hamiltonian 
acquires the same operator form as the original Hamiltonian 
(see the formulas (3)  and (4)  ) . 

Choosing the coefficient A in (8)  from the condition 
that the quadratic forms coincide, we obtain the following 
expressions for the coefficients pi and Gi-the analogs of ai 
and G, in (5):  

1 ,  q2=q2=q exp ( - i h k 3 A ) ,  

q3=q3=-q exp  ( i h k , A ) ,  q4=-cp exp [ili. ( k , -k , )  A ] ,  

q5=q5=q e s p [ - i h  ( k 3 + k 4 )  A ] ,  (1 1) 

The values of the coefficients A and 0 are determined by the 
equality @ = q, and by the condition that the phase factors in 
( 5 ) and ( 1 1 ) coincide. The first condition leads to a simple 
equation for A: A (A - 1 ) = 0. The value ofA is fixed unique- 
ly by comparing the phase factors: The presence of such a 
factor in (5) gives A = 1. The value o f 0  is determined from 
the condition that the common coefficients of the four-point 
vertices be equal. As expected, f l  coincides with g o .  

We emphasize that, for finite spin, comparison of the 
Bose Hamiltonian with the continuum a-model is justified 
only after the short-wavelength renormalization has been 
carried out and the cutoff parameter A has been established. 

The Hamiltonian (8)  is none other than the Hamilto- 
nian of the a-model with a topological 6-term, the coefficient 
of which is equal to 6 = 2rAS = 2n-S. Since the properties of 
the 8-model are substantially different for 6 = 2 m  and 
6 = 2 ~ ( n  + 1/2) (see the Introduction), Haldane's hy- 

pothesis concerning the dependence of the structure of the 
ground state on the parity of 2Sis thereby confirmed. More- 
over, it can be stated that the long-wavelength dynamics of 
Heisenberg antiferromagnets with different (at least large) 
spins is described by one and the same 6-model. If we assume 
that this description also remains valid for small S, including 
S = 1/2, then, on the basis of the phase diagram of the 8- 
model with a single critical point,'9p20 it is possible to estab- 
lish the nature of this critical point by starting from the exact 
solution for S = 1/2. The value of the central charge c of the 
corresponding conformal theory turns out to be equal to uni- 
ty in this case. 

Arguments in favor of the equivalence of the behavior 
of all one-dimensional Heisenberg antiferromagnets with 
half-integer spins to the behavior of a chain with spin S = 
1/2 were put forward by Haldane. Certain arguments in fa- 
vor of this assertion were also given in Ref. 6 .  

3. THE GENERALIZED MODEL 

We turn to the generalized model, by adding to the 
Hamiltonian the term 

As before, we shall assume that S% 1 and set f = yS- 1. 
After the standard transformations that led earlier to the 
formula (3),  we arrive at a Bose Hamiltonian in which not 
only the common coefficients in the fourth-order anhar- 
monic terms, but also the dependences of the corresponding 
amplitudes on the wave vectors, are changed: Besides the 
terms that were contained in the Heisenberg Hamiltonian, 
other terms, having a different dependence on the momenta 
in the short-wavelength region, also appear. In addition, of 
course, anharmonic terms of higher orders will also arise. 

We illustrate the change of the structure of the four- 
point amplitudes using the example of the amplitude @, : Its 
analog @; in the generalized model has the form 

where 
4 

with 

In the region of small wave vectors the momentum depen- 
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denceof Y, , like that of cP, , is determined by formula ( 5 ) ,  so 
that the bare (including the effect of the normal ordering but 
not of the renormalizations) coefficient of the four-point 
vertex, 

turns out to be a function of y. The coefficients of the other 
four-point vertices vary in an analogous manner. 

In the given case, however, the four-point anharmonic 
terms do not have a term in l/Sand this leads to a substantial 
renormalization of the four-point vertex. We emphasize that 
we are referring to the nonlogarithmic renormalizations that 
give corrections togo in zeroth order in 1/S. The logarithmic 
corrections contain powers of 1/S and in the given approxi- 
mation are not taken into account. In the long-wavelength 
limit the renormalization of go is determined by the ladder 
sequence of diagrams represented graphically in Fig. 2a. The 
diagrams that are of zeroth order in 1/S but do not appear in 
the ladder sequence are depicted in Fig. 2b. The first two of 
these are direct corrections to the vertex on account of the 
four-point and six-point anharmonic terms, and the last dia- 
gram is a correction to the 2-factor of the Green function. In 
the first nonvanishing order in 7 these diagrams cancel each 
other. The diagrams of Fig. 2b have the same Internal struc- 
ture; this permits us to hope that the cancellation will still 
occur when the bare vertices in the diagrams are replaced by 
exact vertices. 

For zero total momentum of the magnons, summation 
of the ladder sequence depicted in Fig. 2a leads to the follow- 
ing result (for imaginary frequencies) : 

where w is the total frequency of the magnons being scat- 
tered ( I w ] 4 1 ). It can be seen from ( 15) that if? lies outside 
the neighborhood of yo = - n/l2,there is no real renormal- 

FIG. 2. The diagrams determining the renormalization of the four-point 
vertex in the generalized AFM in zeroth order in 1/S. a )  The ladder 
sequence of diagrams that leads, when summed, to formula ( 15). b )  Dia- 
grams that are of zeroth order in 1/S but do not appear in the ladder 
sequence. The first two diagrams are the direct corrections to the vertex 
on account of the fourth-order and sixth-order anharmonic terms, and the 
last diagram is a correction to the Z-factor of the Green function. Accord- 
ing to the calculation, in the first nonvanishing order in y ( to which corre- 
sponds the use of the bare values of the amplitudes) the total contribution 
from these diagrams is equal to zero. 

ization of the vertex in zeroth order in 1/S. However, if 
- yo/ 5 S 3e - '"', then for the characteristic wave vectors 

kc,,, -A-'Se -"' the four-point vertex does not have the 
form dictated by the Hamiltonian ( 7 ) .  In this region the 8- 
model description is found to be inapplicable and there arises 
the possibility of the onset of new behavior. 

It is natural to suppose that when terms of higher order 
in (S, .S,+ , + S(S + 1 ) ) are added to the Hamiltonian a 
loss of stability by way of the formation of bound pairs of 
magnons with w2 < O  will occur on entire surfaces in the 
space of the parameters of the Hamiltonian, and near these 
surfaces the four-point vertex loses the form dictated by the 
gradient expansion and the Smodel description becomes in- 
applicable. In addition, loss of stability on account of con- 
densation of bound states of a large number of magnons is 
possible. These conjectures are based on an exact analysis of 
one-dimensional f e r r ~ m a ~ n e t s , ~ ~ . ~ ~  in which an analogous 
mechanism of loss of stability of the ferromagnetic state is 
realized, and near the stability boundaries the gradient 
structure of the vertices is also lost.26 

At the same time, within the phase characterized by 
short-range antiferromagnetic order, regions in which the 
behavior of the antiferromagnet differs from the 8-model 
behavior are, in principle, possible. For the general model of 
spin S these could be phases characterized by the critical 
behavior inherent to integrable spin-u ( 1 <u<S) models." 
This conjecture is also based on an analysis of one-dimen- 
sional f e r r ~ m a ~ n e t s , ~ ~  for which, in certain regions of the 
space of the parameters of spin-S Hamiltonians, the proper- 
ties of the integrable spin-u models ( l<u<S)  are pre- 
served. In particular, for the model with bilinear and biqua- 
dratic terms investigated in this section we may expect that 
in the neighborhood of a certain point y* (S) a phase with 
critical behavior inherent to an integrable model with spin 
S = 1 will be realized. It appears to us that everywhere out- 
side a small (for S% 1 ) neighborhood of y* the 8-model de- 
scription will remain valid for so long as the antiferromag- 
netic state is stable over short length scaies (the possible loss 
of stability of the antiferromagnetic state is related to the 
vanishing of the spin-wave velocity). 

The conclusion that the 8-model behavior is valid 
everywhere outside a neighborhood of y* is confirmed by the 
results of recent numerical experiments for S = 1 (Ref. 15) : 
The gap in the spectrum vanishes only in the neighborhood 
of the integrable model. However, the numerical results ob- 
tained have been questioned, and therefore require further 
verification. 

4. THE ROLE OF ANISOTROPY 

As a rule, in real antiferromagnets both two-ion and 
single-ion anisotropy are present. The corresponding terms 
in the spin Hamiltonian have the following form: 

For definiteness we confine ourselves to the case D = 0. 
Allowance for the anisotropy leads to two effects. The first is 
connected with the fact that the AFM is converted from an 
isotropic AFM to either an easy-plane or an easy-axis AFM, 
and therefore the logarithmic growth of the fluctuation cor- 
rectionstothevertexceasesatascalek,, -A-'(D /J  + / a ( )  
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determined by the anisotropy. When the value of k,, turns 
out to be greater than k,,,, - A-'Se - "' , the fluctuation ef- 
fects inherent to isotropic antiferromagnets are not mani- 
fested, and the difference between integer and half-integer 
spins thereby disappears: In both case the ground state will 
be characterized either by long-range antiferromagnetic or- 
der of the Ising type or by a power-law decay of the correla- 
tors. We emphasize that this occurs irrespective of which of 
the types of anisotropy is causing the deviation from the iso- 
tropic situation. 

The second effect is associated exclusively with the sin- 
gle-ion anisotropy: When the value of D is comparable to 
JS(S + 1 ) (this value is given by mean-field theory), for the 
case of integer site spin the orientational order is washed out 
at T = 0 by quantum fluctuations. This effect has already 
been described repeatedly in the literature." The breakdown 
of the orientational order occurs because, when the single- 
ion anisotropy is taken into account, the most favorable state 
for integer S is the ground state with zero z-component of 
each of the spins. This state is separated by a finite energy 
gap - D from the first excited state, in which one of the spins 
has S; = f 1. We emphasize that, despite the outward simi- 
larity to the situation in an isotropic AFM, the nature of the 
establishment of the spin-liquid state in the present case is 
entirely different and is connected exclusively with the influ- 
ence of the anisotropy on the behavior of the isolated spin. 
Therefore, we cannot agree with the statements in the litera- 
ture6.' that an AFM with integer spin is in a spin-liquid state 
for any value ofD. For large integer S, at least, this is certain- 
ly not so: Orientational order is established for D = Dl  
- JSe - "' , and disappears for D = D, - JS > Dl. The phase 
diagram of the anisotropic magnet with integer S> 1 de- 
scribed by the Hamiltonian ( 1 ), ( 16) is presented in Fig. 3a. 
For the reasons indicated above, it differs substantially from 
that given in Ref. 6. To the left of the line 1 and to the right of 
the line 2 there is long-range magnetic order (ferromagnetic 
in the first case, and antiferromagnetic in the second case) in 
the ground state. A phase characterized by orientational or- 
der lies in the center of the phase diagram. The regions in 
which the ground state is a singlet ("spin liquid") lie above 
the curve 3 and between the curves 2 and 4. In the first case 
the disorder arises as a consequence of the quantum nature 
of the individual spins, while in the second case it arises on 
account of fluctuations associated with the presence of two 
interacting Goldstone modes in the bare spectrum. At the 
intersection with curve 2 a transition of the Onsager type 
occurs, while at the intersections with curves 3 and 4 transi- 
tions of the BerezinskiY-Kosterlitz-Thouless type occur. In 
all cases, on the lines of the transitions the exponent 7 char- 
acterizing the law of decay of the correlations is equal to 1/4. 
The phase diagram for the anisotropic magnet with half- 
integer S differs from that given in Fig. 3a by the absence of 
the lines 3 and 4. 

For small spins the phase diagram can be modified 
somewhat, since the lines 3 and 4 can intersect before either 
of them intersects with curve 2. The expected form of the 
phase diagram in this case is given in Fig. 3b. The dashed 
curve denotes the line of a transition between two different 
singlet phases. On this line the properties of the intermediate 
phase with X Y  symmetry at the critical point (7 = 1/4) are 
preserved. Evidently, the phase diagram of an anisotropic 
magnet with S = 1 has precisely this form. The basis for this 

FIG. 3. The phase diagram of the ground state of an XXZ magnet with 
integer site spin, in the variables D and a ( D  is the single-ion anisotropy 
constant, and a is the two-ion anisotropy constant). To the left of the line 
1 there is long-range ferromagnetic order, and to the right of the line 2 
there is long-range antiferromagnetic order. The region of existence of 
orientational order is shaded. Above the curve 3 and between the curves 2 
and 4 the ground state is a singlet state. The diagram for half-integer spins 
differs in the absence of the lines 3 and 4. a )  The diagram for the cases, 1 .  
b)  The diagram for the case S- 1 .  The dashed line separates two different 
singlet phases. 

is the fact that the values calculated from the quasiclassical 
formulas for the index 7 (Refs. 28,29) ] of D, for a = - 1 
(the X Y  model) and of a,, for D = 0 are found to be 

The smallness of D, /W (for a = - 1 ) and a,, + 1 implies 
that the lines 3 and 4 should intersect in the immediate vicin- 
ity of the point a = - 1, D, = 0. 

The phase diagram presented in Fig. 3b agrees well with 
the result of the numerical calculations of Refs. 10-16; not 
only is the general form of the diagram the same, but so too 
are the values of D, and a,, , which in the numerical experi- 
ment are found to be equal to 0.4J and - 0.9, respectively. 
The application of the quasiclassical formulas in the case 
S = 1 is partly justified by the fact that for the X Y  model, the 
neighborhood of which is of interest to us in the present case, 
a calculation in the quasiclassical framework leads to an 
expression for 7 which, owing to the numerical smallness of 
the coefficients of the 1/S-expansion, practically coincides 
with the first term of this expansion and agrees well (a  point 
of particular importance) with the exact result for S = 1/2 
(Refs. 28, 29). 

5. CONCLUSIONS 

We shall formulate the principal conclusions stemming 
from the analysis performed above. In the framework of the 
two-loop approximation we have established the equiv- 
alence of the Heisenberg antiferromagnet and the a-model 
with a topological 0-term with coefficient 6 = 2~-S. This 
equivalence makes it possible to confirm Haldane's hypothe- 

1092 Sov. Phys. JETP 66 (5), November 1987 D. V. Khveshchenko and A. V. Chubukov 1092 



sis of a critical difference in the properties of one-dimension- 
a1 antiferromagnets with integer and half-integer spins: For 
integer S there is a finite gap in the excitation spectrum, 
while for all (at least large) half-integer S at T = 8 the same 
critical behavior obtains. If we conjecture that this is true 
also for S = 1/2, we can establish the type of critical behav- 
ior in the a-model with 0 = n: It turns out to be the same as 
in the Gaussian theory with c = 1. 

For a general model of spin S near the boundary of sta- 
bility of the antiferromagnetic state the applicability of the 
8-model description breaks down, since for the characteris- 
tic wave vectors the four-point vertex loses the form dictated 
by the gradient expansion. In the remainder of the region of 
values of the parameters for which short-range antiferro- 
magnetic order exists the equivalence to the 8-model will be 
valid everywhere except for narrow (for S> 1)  regions in 
which the type of critical behavior is supposedly the same as 
in the integrable spin-a models ( 1 <a<S). 

We note that the first attempt to construct an effective 
Hamiltonian describing a one-dimensional antiferromagnet 
was undertaken by Affleck. In the limit S- co he obtained a 
&model Hamiltonian coinciding with (8 ) .  However, for fin- 
ite S the value of the coefficient of the topological term was 
found to be equal to 8 = 2n(S(S  + 1 ) ) "*, which was a con- 
sequence of the fact that the change to the continuum model 
was made directly from the lattice Hamiltonian. In addition, 
in Affleck's approach the addition to the original lattice 
Hamiltonian of terms of higher orders in the scalar product 
of the spins had no effect on the structure of the effective 
long-wavelength Hamiltonian. In our opinion, a consistent 
derivation of the effective Hamiltonian should include the 
short-wavelength renormalization, which has been accom- 
plished in the present paper. In later papers by Aff le~k ,~  it is 
stated that for any AFM with finite half-integer spin there is 
another universal critical behavior, which differs from the 8- 
model behavior, is describable by the Wess-Zumino model 
with c = 3 s  /(S + 1 ) and with central charge k = 2 s  in the 
current algebra, and is inherent in exactly integrable mod- 
e l ~ , ~ ~  while the 0-model description is realized in the limit 
S- co . The combination of statements made in Refs. 3 and 4 
is in contradiction with a theorem of Zamolodchikov, from 
which it follows that the value of the conformal anomaly in 
the theory describing the critical point in the a-model with 
8 = n cannot exceed c = 2 (the number of free bosons de- 
scribing the ultraviolet behavior of the 8-model). 

6.COMPARISON WITH EXPERIMENT 

From the preceding account it is clear that in order to 
check Haldane's predictions we need antiferromagents that 
best satisfy the requirements of one-dimensionality and iso- 
tropy. Of the presently known magnets with integer spin the 
compounds CsNiCl, and RbNiCl, ( S  = 1) meet to these 
conditions best. These compounds have been discussed in a 
previous paper by one of the authors. Below we shall discuss 
one-dimensional antiferromagnets with half-integer spins. 
With a good degree of accuracy, CsVCl, (S = 3/2) and 
TMMC ( S  = 5/2) belong to this group. In both compounds 
the ratio of the exchange integrals within a chain and 
between chains amounts to - lop4. The anisotropy in 
TMMC does not exceed 2% of the exchange, and for CsVC1, 
the corresponding data are not available. We have already 
said in the preceding section that according to the predic- 

tions of Affleck the type of critical behavior of an AFM with 
half-integer spin is different for each specific S. On the con- 
trary, the-results of the present paper are evidence that for 
practically all antiferromagnets with half-integer S (at least 
for S S 1 )  the critical behavior is the same, and, by hypothe- 
sis, coincides with the critical behavior of an AFM with 
S=  1/2. 

To discuss the possibility of an experimental verifica- 
tion of one or other of the theoretical predictions it is neces- 
sary to indicate the temperature Tqu at which quantum ef- 
fects are manifested. This temperature should necessarily 
exceed the temperature of the three-dimensional phase tran- 
sition; otherwise, the quantum effects inherent to the one- 
dimensional magnets will not be observed. The value of Tqu 
corresponds to the energy of a quasiparticle with the charac- 
teristic wave vector k,,,, , and is given by relation 

whereg, is given by formula (6 )  and Vs is the velocity of the 
spin waves: 

The value of the proportionality coefficient B can be deter- 
mined as follows : for integer S, Tqu is none other than the 
gap, formed by the quantum fluctuations, in the energy spec- 
trum. According to the data of the numerical experiments, 
for S= 1 we have E, =0.4J  (Refs. 10-14), whence 
B = 5.68. A calculation with this value of B leads to the 
following results: For TMMC, Vs = 70.7 K ,  so that 
Tqu ~ 0 . 5  K, which is smaller than the temperature T3, 
= 0.85 K of the three-dimensional phase transition; for 

CsVCl,, Vs = 978 K ,  so that Tqu -177 K, whereas T3, -1 13 
K. Therefore, the possibility of observing quantum effects is 
available only in CsVCl,. Nevertheless, Affleck compared 
the results of his theory, generalized to the anisotropic case, 
with experimental data for TMMC and found good agree- 
ment between theory and e ~ p e r i m e n t . ~ ~  In our opinion, this 
agreement is due to the fact that for large S the results of 
Affleck practically coincide with the quasiclassical results. 
Indeed, for example, Affleck predicts for the index r ]  the 
value 1/5 for S = 5/2. Experiments on inelastic neutron 
scattering give the similar value r ]  = 0.16 (Ref. 33). How- 
ever, this same value can be obtained by making use for a < l 
of the quasiclassical formula29 

and taking into account that the anisotropy amounts to 2% 
of the exchange. For S = 5/2,7 turns out to be equal to 0.15, 
which is in excellent agreement with experiment. In an anal- 
ogous way, the behavior of the magnetic susceptibility can 
also be explained in the quasiclassical framework. 

To avoid misunderstandings, we note that both the the- 
ory of Affleck and the theory presented in the present paper 
aim to describe the behavior of antiferromagnets over large 
scales, when the quasiclassical approximation is inapplica- 
ble. 

Less certain is the situation in CsVC1, where the esti- 
mates predict the existence of a relatively broad "quantum 
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region" of temperatures (from T,, to T,,). From the avail- 
able eAgerimental data of measurements of the susceptibility 
in a broad range of temperature (from 700 K to T,,) we can 
determinex( T = 0)  approximately by extrapolating the re- 
sults obtained in the quantum region. This extrapolation 
givesx(0) = 3.3. l o p 4  K -  ' For the susceptibilityx(0) the 
theory predicts the value ~ ( 0 )  = k/2aVs, where 
k = 2 s  = 3 if the results of Affleck are correct, and k = 1 if 
the behavior of all Heisenberg magnets with half-integer 
spin is the same. Comparison with the experimental data 
gives k - 2 (Ref. 34), which does not make it possible to give 
preference to either of the theories discussed. The situation 
could be clarified by experiments to measure the specific 
heat. If we assume that the anisotropy in CsVCl, has the 
same order of smallness as the exchange between the chains, 
then in the temperature range from T,, to T,, the specific 
heat should follow a linear law36: C = aTc/3 V,, with 
c = 3S/(S + 1) = 9/5 in Affleck's theory, and c = 1 if the 
critical behavior does not depend on the spin. 
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"By a Heisenberg AFM we understand an antiferromagnet describable by 
a Hamiltonian that is bilinear in the spin operators. 

"The cancellation of these corrections has been verified in the one-loop 
approximation. 
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