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An approximate analytic theory of vortex rings in excitable active media is developed. The main 
parameters, shapes, and temporal evolution of vortex rings are calculated within the framework 
of this semiphenomenological theory. 

The study of formation and dynamics of structures in 
strongly chaotic media is becoming an important branch of 
the physics of nonlinear phenomena. The major role of auto- 
structures in the formation of hydrodynamic turbulence is 
not the only reason (see Ref. 1 ). The onset of striations, "hot 
spots," and spatial lamination influences strongly the oper- 
ation ofdistributed semiconductor sys te rn~ .~ .~  It is suggested 
that the variegated properties of self-organizing structures 
can be used for information processing in a new class of mi- 
croelectronic devices (see Refs. 4-6). 

A special type of regular structure in two-dimensional 
active media is a rotating spiral wave. Similar to vortices in a 
superconductor or in superfluid helium, it has a topological 
charge, is stable, and can be treated as an elementary struc- 
ture (the analog of the elementary excitation) or an active 
medium. In three dimensions, the counterparts of spiral 
waves are vortex rings (see Fig. 1 ) .  Although spiral waves 
and vortex rings were observed so far only in experiments 
with the Belousov-Zhabotinskii chemical reaction,' and also 
in some biological systems,' even a very simple analysis 
shows that the same autowave structures can be found in 
their entirety in solid active media based on semiconductors, 
ferroelectrics, or magnetic s~~erconductors .~  

We develop here, for the first time, an approximate ana- 
lytic theory that describes the main properties of vortex 
rings and their evolution in time. We shall show that, in 
contrast to spiral waves, vortex rings are unstable. Depend- 
ing on the medium they either collapse or spread out with 
time. At large ring dimensions, however, the contraction or 
expansion rate is low, so that vortex rings can have long 
lifetimes. 

The analysis set forth here is based on a kinematic de- 
scription of autowave structures, previously proposed by us 
in Refs. 10-13 and used by us to calculate the main param- 
eters of spiral waves in excitable media. 

1. KINEMATICS OF AUTOWAVES 

We consider here active media whose individual ele- 
ments are related by diffusion or heat conduction. We as- 
sume that physical or chemical reactions take place in each 
separately considered physically small element of the medi- 
um. These reactions are accompanied by a change of the 
concentrations of the reacting particles and by release or 
absorption of heat. From the standpoint of the semipheno- 
menological description proposed in this paper, the nature of 
the reacting particles is immaterial. They can be molecules 
of some chemical compounds, electrons and holes in semi- 
conductors, and so on. It is important only that definite as- 
sumptions be satisfied regarding the character of the wave 

processes in the media of interest. Principal among these 
assumptions are the ability of the medium to support propa- 
gation of solitary waves, after the passage of which the medi- 
um returns to the initial state. These are precisely the media 
referred to as excitable (details follow). 

To describe a distributed reacting system it is necessary 
to specify the distributions of the concentrations of the react- 
ing particles x,, x,, ..., x,, and the temperature field T. If we 
formally define a vector u whose components arex, ,~, ,  ..., x, , 
and T, the most general form of the equations of such an 
active medium is 

where F(u)  are nonlinear functions describing the reactions 
and their thermal effects. The elements of the matrix D are 
the diffusion and heat-conduction coefficients. 

The general equations ( 1 ) describe an extensive group 
of various effects. In particular, they characterize the propa- 
gation of a flame in a burning medium. This is a classical 
problem, investigated in detail many times (see Ref. 14). We 
emphasize right away that the excitable media of interest to 
us belong to a different class, not typical of combustion phys- 
ics. 

It is more convenient to present an exact definition of an 
excitable medium not in terms of some special assumptions 
concerning the specific form of the linear functions F (u )  in 
Eqs. ( 1 ), but starting with some properties of the solutions 
of these equations. We regard an active medium as excitable 
if it meets the following three conditions: 

a )  There exist only one homogeneous stationary "rest" 
state, which is stable to small perturbation. It is always possi- 
ble to define u such that u = 0 in the state of rest. 

FIG. 1. 
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b) There exists only one one-dimensional solution, sta- 
ble to small perturbations, in the form of a solitary traveling 
pulse 

The profile of the pulse and its velocity are uniquely deter- 
mined by the properties of the medium. 

c )  The collision of two such excitation pulses results in 
their annihilation, i.e., in complete mutual extinction. 

Specific examples of active media in which such condi- 
tions are met are given, in particular, in Ref. 15. They in- 
clude a medium with a Belousov-Zhabotinskiy reaction, 
semiconductor and also the tissue of the cardiac 
m u ~ c l e ' ~  and current-carrying magnetic superconductors 
(note that in the last two cases Eqs. ( 1) have a different 
interpretation, but this does not change the character of the 
phenomena). It precisely in excitable active medium that 
one observes the complicated autowave regimes referred to 
at the beginning of the article. A direct analytic calculation 
of autowave regimes in excitable media is possible only in a 
number of very simple cases, under special simplifying as- 
sumptions concerning the forms of the nonlinear functions 
F(u). At the same time many numerical calculations were 
made for autowave processes in excitable media (see Ref. 
10) and many interesting effects that require a theoretical 
explanation were observed. Complicated autowave struc- 
tures were observed also in experiment, in a medium with the 
Belousov-ZhabotinskiY reaction. 

We have previously proposed a semiphenomenological 
kinematic approach that permits (under certain additional 
assumptions concerning the properties of the medium) ana- 
lytic calculation of the main parameters and of the form of 
the spiral waves. It makes possible also an investigation of 
nonstationary regime such as the establishment of the shape 
and of the rotation frequency of a spiral wave, resonance of 
spiral waves when the properties of the excitable medium are 
periodically varied, the drift of spiral waves in inhomogen- 
eous media, and others. This kinematic approach is formu- 
lated in the language of wavefront dynamics and is similar to 
some degree to the geometric-optic approximation in the 
theory of linear waves. 

Any semiphenomenological approach is based on de- 
scription of the medium using a small number of parameters 
(such as the refractive index), the calculation of which is a 
separate problem and can be based on macroscopic equa- 
tions. It is somewhat unusual that the role of "microscopic" 
equations in the kinematics of autowaves in excitable media 
is played by Eqs. ( 1 1. The Appendix contains a general pro- 
cedure of calculating the kinematic parameters of the waves 
by using Eqs. ( 1 ), but the actual calculation of these param- 
eters for different excitable media is not part of our present 
problem. Assuming also that the parameters are known, we 
analyze the properties and the evolution of vortex rings in 
the corresponding medium. Note that even in the employed 
phenomenological description it is possible to carry out such 
an analysis only by making a number of additional assump- 
tions concerning the relations between the parameters of the 
excitable medium. 

We examine first the construction of the kinematic de- 
scription for two-dimensional excitable media. It is obvious 
first of all that plane solitary waves can propagate in such 
media. These waves are characterized by two parameters, 

velocity V, and width a of the wave, the latter meaning the 
dimension of this region along the propagation direction, 
where the medium is taken out of the quiescent state. In 
addition to the plane waves there should exist also bent 
waves. The velocity of a wave with a curved front is variable. 
At low curvatures this effect can be taken into account by 
perturbation theory (see the Appendix), and a linear depen- 
dence of the velocity on the curvature k, V = Vo - Dk, can 
be obtained. For a plane wave to be stable it is necessary that 
the coefficient D be positive. The dependence of the velocity 
of flame propagation waves on the front curvature was ob- 
tained in Ref. 17. 

An excitable medium is nonlinear, and the autowaves 
interact with one another. Two colliding waves annihilate 
each other; if, however, one wave moves behind the other, it 
does not "feel" the wave ahead if the distance between them 
is considerably larger than the wave width a. We confine 
ourselves in this paper to regimes in which the distance 
between each wave and the one behind it is much larger than 
a. We can then neglect the width of a separate solitary wave 
and assume it to be completely specified by the oriented 
curve of its front. 

Since the state of the medium before and after the pas- 
sage of the excitation pulse remains the same, the front of the 
autowave can break off inside the medium, and the wave can 
have a free end. In addition to displacement in the normal 
direction, the free end of the wave can "expand" or shrink in 
the course of time. The rate of this tangential displacement C 
depends on the curvature ko of the front as it approaches the 
break point. Let C, be the rate of expansion of the free end of 
the half-wave. At sufficiently low curvatures k,, the expan- 
sion rate Cof the bent wave can then be calculated by pertur- 
bation theory (see the Appendix), and we get C = C, - yk,. 
For the known examples of excitable media, the expansion 
rate decreases with increase of the curvature on the free end 
(i.e., y >  0 ) .  

Numerical simulation of processes in excitable me- 
dia1n,l9 shows that by varying the parameters of the medium 

it is possible to control the value of Co and even reverse its 
sign. Note that at a negative C, the medium does not admit of 
regimes in the form of spiral waves or vortex rings. We as- 
sume therefore that C, is positive. In addition, we assume 
that Co is small enough and the linear dependence of Con k is 
preserved up to a free-end curvature kc, = CJy, at which 
the expansion rate vanishes. We assume also that Dk,, 4 V,. 
These last two assumptions simplify greatly the analysis, in 
view of the appearance of an additional small parameter 
Dk,,/V,. They are met for weakly excitable active media 
with a so-called anomalous regime of circulation of the spiral 
wave.*' If these conditions are not met, the kinematic de- 
scription remains in force [see the remark concerning Eq. 
(5 )  1, but the analytic calculation encounters a number of 
difficulties. 

Thus, within the kinematic framework, the mathemat- 
ical description of autowaves in a two-dimensional excited 
medium evolves as follows. We describe the wave only by 
specifying the curve of its front, using for this purpose the 
natural equation k = k(l)  of this curve. This equation estab- 
lishes the connection between the curve-arc length 1 (which 
is best measured from the free end of the front) and the 
curvature of the front at the corresponding point; it is known 
that the natural equation specifies the curve accurate to its 
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location on the plane. If the shape of the curve varies with 
time, we use k = k(1,t). 

An equation for the function k(1,t) can be easily ob- 
tained by recognizing that: a )  each section of the front is 
displaced with time in a direction normal to itself, at a rate 

and b) the free end of the wave is furthermore contracted 
(C  < 0)  or expanded in the tangential direction at a rate 

where k, = lim k(1). It takes the form (see Ref. 12) I '  
1-0 

The stationary solution of (5)  with the boundary condi- 
tions k(0,t) = kc, and k-0 as I+ w yields a stationary re- 
gime in the form of a rotating spiral wave. When the condi- 
tion Dk,, & V, is met, the frequency of the stationary 
rotation is 

The equality k(0,t) = kc, is always maintained on the free 
end of the stationary spiral wave, and this end therefore 
neither contracts nor expands, but moves along a circle that 
constitutes the boundary of the core of the spiral wave. A 
quiescent state is preserved inside the core (its radius is 
Ro=. Vo/wo); the following equations hold on its boundary: 

The front of the spiral wave has the form of the evolvement 
of a circle-the core boundary, except for a small transition 
region (boundary layer) near the core itself, with a width on 
the order of 

1 Dk,, 

lo = x_ (7) 
In this narrow layer (lo<Ro) k is linear in 1. 

Equation (5) describes also the establishment of a sta- 
tionary circulation of the spiral wave. In many studies of 
nonstationary effects, however, it is useful to resort to an 
additional simplification. Namely, the wave evolution can 
be quasistationary, so that it is possible to separate the ex- 
pansion effects from the establishment of the shape of the 
front of the spiral wave near the core, since their time scales 
differ greatly [T, = D /yw, and T, = (kc, V,) - '  1, respec- 
tively. To have T, % T,, it is necessary to satisfy the condition 

which determines the region of the existence of the quasista- 
tionary regime'(recall that V,/Dk,, is a large parameter of 
the problem). In this regime the form of the front at the core 
attunes itself adiabatically to the instantaneous value of the 
curvature k(0,t) on the free end of the wave, and this curva- 
ture, in turn, varies slowly on account of the expansion or 
contraction, in accordance with the equation 

The 6:rivative (dk/dl) ,=, is determined by Eq. (7) ,  in 

which w, is obtained from (6)  by replacing kc, with k,. Tak- 
ing these remarks into account, the curvature on the free end 
varies with time and is subject to the following ordinary dif- 
ferential equation: 

The kinematic description developed for two-dimen- 
sional excitable media admits of a generalization to include 
the three-dimensional case. Just as before, we assume that 
the autowave is completely described by specifying its ori- 
ented surface of the front. Any surface in three-dimensional 
space has at each of its point two principal curvature radii, 
R ,  and R,. It is shown in the Appendix that the rate of the 
normal displacement of a section of the frontal surface de- 
pends only on the sum of the two principal curvatures, i.e., 
on double the average curvature 2H = 1/R, + 1/R,, in ac- 
cordance with the formula 

On the line of its break, the frontal surface can expand or 
contract. The rate C of this tangential displacement has the 
following dependence (see the Appendix) on the average 
curvature H of the front as the break is approached at the 
given point, and on the tangential (or geodesic) curvature x 
of the break line: 

where y, and y2 are certain positive coefficients; we take the 
curvature of the break line to be positive if it is convex to the 
front at the given point. 

2. EVOLUTlON OF VORTEX RING 

The simplest three-dimensional autowave structure is a 
vortex in the form of a rotating scroll. It can be obtained by 
continuing the spiral wave on a plane along a straight line 
perpendicular to this plane. The core in the case of a right- 
angle scroll is played by a cylinder whose axial line is called 
the filament of the vortex. The vortex filament can be bent, 
and in particular closed to form a circle. As a result we ob- 
tain the vortex ring shown in Fig. 1. Computer calculations2' 
show that, depending on the parameters of the active medi- 
um, a vortex ring can either be compressed (collapse) or 
expand, and more simultaneously in a direction perpendicu- 
lar to the plane of the filament. The rates of these displace- 
ments are proportional to 1/R, where R is the radius of the 
ring filament. Therefore, if the ring filament has a small cur- 
vature its motion is slow, and the ring remains observable for 
a sufficiently long time. 

We use the kinematic model constructed above to inves- 
tigate the evolution of a vortex ring. We choose a cylindrical 
coordinate frame (z,p,p) with the ring axisymmetric about 
z. In view of the cylindrical symmetry of the problem, it 
suffices to consider the evolution of the line produced by the 
intersection of the ring with the plane q, = const, i.e., the 
meridian of the vortex ring (see Fig. 2 ) .  Since this is a line in 
a plane, the kinematic equation that describes its evolution is 
obviously identical with (5) .  In contrast, however, to the 
case of a spiral wave on a plane, the dependences of the veloc- 
ities V and C on the curvature k of the meridian of a vortex 
ring is given by relations ( 12) and ( 13). The average curva- 
ture H for a vortex ring is easily calculated and is equal to 
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with 

FIG. 2. 

tl= (k-p-' sin a) /2 ;  (14) 

while the tangential curvature of wave-front break line is of 
the form 

wherep is the distance from the z axis to the corresponding 
section of the surface, a is the angle between the tangent to 
the meridian of the ring on this section and the p axis (see 
Fig. 2),  a, is the angle between the tangent to thep axis at the 
approach to the free end of the meridian, and p, is the dis- 
tance from the z axis to the free end. From the definition of 
the curvature of a line it follows that22 

1 

a=ao- k dl. (16) 
0 

Since, as emphasized above, the angular velocity and the 
stationary form of the spiral wave are determined by its cur- 
vature near the free end, we must investigate the motion of 
only those sections of the vortex-ring surface which are di- 
rectly adjacent to the core. 

The motion of the free end of the vortex-ring meridian is 
defined by the following equations: 

dpo/dt=-V(0) sin ao-C cos go, 

dzo/dt= V (0) cos ao-C sin a,. (17) 

We assume that the ring filament has small curvature, 
i.e., its radius R is much larger than the radius of the core. In 
the calculations that follow we then confine ourselves to first 
order in 1/R. It follows from (12), (14), and (16) that 

Substitutionof (12), (14), and ( 18) in (5 )  leads to theequa- 
tion 

1 

Examination of ( 19) shows that in the case of a vortex ring 
Eq. ( lo ) ,  which describes the quasistationary regime in a 
two-dimensional medium, becomes modified and takes the 
form 

-- 

Taking (6), (7 ) ,  (13)-(15), and (18) into account, Eqs. 
(20) and (21) can be written in the form 

SR-'(yz-D) cos a. koQ, 

&o=~(~o~) ' "ko"2-DkoR- i  cos ao+ko[y2R-' cos ao 

+ y, ( kc, -ko+R-' sin ao) l  . (22) 

The system (22) determines completely the time depend- 
ences of a, and k, under conditions of the quasistationary 
regime. Solving this system in first order in 1/R and substi- 
tuting the solution in ( 17), we get, averaging over the period 
of the circulation, an equation that describes the evolution of 
the vortex-ring filament: 

We have left out of (23 ) terms that are small as a result of the 
inequality Dk,, < V, and of the quasistationarity condition 
(y,/D) < ( V,/Dk,, ) For the particular case of a two- 
component active medium with identical diffusion coeffi- 
cients, we obtain [y, = D, y ,  = 0 (see the Appendix)] : 

which agrees with the computer calculations and with the 
theoretical considerations of this case [21]. 

3. CONCLUSION 

It follows from ( 13) that, depending on the parameters 
that characterize the excitable medium, a vortex ring either 
contracts or expands with time. Contraction of the ring at a 
rate inversely proportional to the radius R of its filament 
means that any vortex ring in such a medium has a finite 
lifetime after which it vanishes without trace (this does not 
contradict the topological-charge conservation law, since 
the charge of a vortex ring is zero). It might seem at first 
glance that in the opposite case, when the ring tends to ex- 
pand, it should turn eventually into a right cylindrical scroll. 
Actually, however, the situation is more complicated. 

Note that although we consider in this article directly 
only the evolution of a circular vortex ring, the results per- 
mit a qualitative assessment of the time behavior of any ring 
whose filament is arbitrarily (but not too strongly) de- 
formed. In fact, if a small section of such a vortex is consid- 
ered, it can be regarded as part of a vortex ring of some 
appropriate angle. 

Assume that we have produced a small local deforma- 
tion in an initially straight vortex (a  cylindrical scroll) (Fig. 
3a). If the parameters of the medium are such that any vor- 
tex ring is compressed, the deformation will tend to become 
smaller in the course of time. In other words, the vortex 
filament is in this case elastic and tends to contract with 
time. In the opposite case, when the vortex ring expands, any 
"bulge" on the filament swells with time-the vortex fila- 
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FIG. 3. 

ment tends to lengthen (Fig. 3b). As a result, a straight cy- 
lindrical scroll is unstable to small deformations of its fila- 
ment. This should lead to formation of very complicated 
(and possibly also randomly organized) structures in infi- 
nite media. This question calls for a separate attentive ex- 
amination. 

APPENDIX 

We present a mathematical derivation of relations (3),  
(4),  ( 12), and ( 13 ) on which the kinematic description is 
based, and demonstrate methods of calculating the param- 
eters D, y,, and y, in these equations, by starting directly 
from Eqs. ( 1 ) . 

1. We consider first small perturbation of a one-dimen- 
sional traveling pulse, transforming first to a coordinate 
frame (6,t) in which this pulse is at rest. Let 
u = u,({) + Su({,t). Linearizing Eqs. ( 1 ) we get 

s"=f su, (A.1) 

where the linear differential operator f; is specified by the 
matrix of its elements 

a a2 
(I:) ij=Aij (E) +Vo-6u+Dij- at2' 

(A.2) 

where 
3 t  

Since the stationary solution u = u,(c) is degenerate with 
Fspect to any shift, one of the eigenvalues A, of the operator 
P 

should be zero (A, = 0) and corresponds to the shift mode 
a, = au,/ag. 

The linear operator f; is not Hermitian, so that its eigen- 
functions @, (6) need not be orthogonal. If, however, we 
construct also eigenfunctions @I({) of the Hermitian- 
adjoint operator r+, 

r+@l=h,.~l, (-4.5) 

it is easy to show that they will be orthogonal to @, ({), i.e., 

(@I,@,, ) = SU, . We shall use this property presently. 
2. Let a curved wave, but sufficiently small curvature, 

propagate on a plane. We consider a section of the wave on 
which it has a curvature k and is convex in the propagation 
direction. We introduce a polar coordinate frame ( r , p )  with 
a center that coincides with the local center of curvature of 
this section of the front. In terms of these coordinates, Eqs. 
( 1 ) take the form 

We note now that the variables u change only in a region of 
width on the order of a (the dimension of the excitation 
pulse) near the front. If the curvature radius R = l /k  is 
large compared with a, we can put approximately r = R in 
the second term of the right-hand side of (A.6) and obtain 

Assuming the curvature k to be small, we seek the solution of 
(A.7) in the form 

with a velocity V still unknown, and require only that the 
expansion of Su in terms of the eigenfunctions @, contain no 
shift mode (see Ref. 23). This condition yields 

where the coefficient D is defined as 

D= (mu, ,^om0) = Dij a),'(\) a)., ( 5 )  (A. 10) 
i j  

If all the diffusion coefficients are the same and there is no - 
cross diffusion (D,, = DS,, ), then D = a, since 
(OO,@,) = 1. 

3. Assume the existence of a self-similar solution in the 
form of a plane wave with a break; the wave moves along the 
normal at constant velocity V, and expands tangentially at a 
rate C,: 

u u  ( ) E="-Vot, r=y-Cot, 

U, (&, q)+O as &+*m, ul(E, q)'const as r++ m, 

U, (g,  q ) + 0  as (A . l l )  

Consider small perturbations of this self-similar solution: 
u = U ,  ( 6 , ~ )  + Su({,v,t). Linearizing Eqs. ( 1 ) with respect 
to the perturbation, we get 

6;=hu. (A. 12) 
h 

The linear operator A is of the form 

(A. 13) 

where 

(A. 14) 

Since the self-similar solution is degenerate with respect to 
horizontal and vertice shifts (6-6 + const, 
7 --t 7 + const), the operator A should have a twofold degen- 
erate zero eigenvalue corresponding to two shift modes: 
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h 

Since the operator A is not Hermitian, its eigenfunctions 
(including Yo, and Yo,), need not be orthogonal. y e  con- 
sider, however, the Hermitian-adjoint operator A'. Its 
eigenv2ues are the complex-conjugate eigenvalues of the op- 
erator A, 

~ + ~ f ' = k [ * Y [ .  (A. 16) 

The eigenvalue A, = 0 is twofold degenerate. In the corre- 
sponding invariant subspace it is always possible to choose 
two vectors Y: and Y: such that tkey are orthogonal to all 
the eigenvectors Y, ofthe operator A, including Yo, and Yo,, 
i.e., so as to satisfy the conditions 

( Y o  Y )  6 0 ,  (Y,O, Y i )  =801 (A. 17) 

4. Assume that on approaching the free end the wave 
front has a small curvature and is convex in the direction of 
motion. By the same reasoning as used to derive Eq. (A.9) 
we can show then that, with account taken of the curvature, 
the normal-displacement velocity V and the tangential "ex- 
pansion" rate Con the free&nd are equal to 

V=Vo-(YIPo, DYot )  ko, 

C=C,- (UP2', D Y , , )  k,. 

(A.18) 

(A. 19) 

The coefficient y in the equation C = C, - yk, is thus given 
by 

Note that if all the diffusion coefficients are equal and there 
is no crossing diffusion (DL, = Da,,), then y =  0 and 
V= Vo - Dko. 

5. We consider now a three-dimensional excitable medi- 
um. An arbitrary surface is characterized at each of its point 
by two curvatures k, and k,  or by their combinations, the 
Gaussian G = k,k, and average H = (k ,  + k,)/2 surface 
curvatures. The flat continuous front, for which k, = k, 
= 0, moves obviously with the same velocity V,, as a single 

pulse along a straight line. If the surface curvatures k, and k, 
are small, their influence on the velocity can be taken into 
account by perturbation theory. When a section of the sur- 
face has the form of a right cylinder (k t  #O, k, = 0), it 
moves along the normal to itself at the same velocity 
V = Vo - Dk as the section of the front on the surface with 
curvature k,. Simple reasoning shows that in the first (lin- 
ear) perturbation-theory approximation the effects of the 
two curvatures k, and k, are additive. This means that in the 
general case, when the section of the surface is characterized 
by two nonzero principal curvatures, itswelocity along the 
normal is2' 

6. Consider now the motion of the break of a surface in a 
three-dimensional excitable medium. A section of a surface 
with a break is characterized by three parameters: two prin- 
cipal curvatures k ,  and k, and the geodesic curvature x of 
the break line. If all these curvatures are small compared 
with the reciprocal width l/a of the pulse their effect can be 

treated by perturbation theory. It can be shown that in the 
linear approximation the contributions from k t ,  k,, and x to 
the normal displacement velocity V and to the tangential 
rate of expansion on the break are additive and indepen- 
dent.3' Thus, the general case can be obtained by considering 
beforehand the motion of a straight break of a cylindrical 
surface (k,  #O, k, = x = 0)  and the expansion of a plane- 
surface section in the form of a circle (k,  = k, = 0, x # 0).  
As a result we get 

where 

and y is given by (A.20). 
Note that if the diffusion coefficients of all components 

are equal and there is no cross diffusion ( D i j  = Bij) we 
have 

7. It does not follow from the foregoing analysis that the 
normal velocity of the front section near the break should be 
equal to the velocity of the normal displacement of the sec- 
tion of the continuous front [see Eqs. (A.2 1 ) and (A.23) 1. 
Only at Dii = ijaij do the coefficients a and D coincide 
( a  = D = D) , and the coefficient Dvanishes) . This means in 
practice that, as a rule, the sections near the break will be 
displaced somewhat more slowly along the normal than the 
sections of a continuous front, and therefore even an initially 
planar circular front with a break will be deformed with time 
(and initiate a vortex ring). 

This effect can be taken into account within the frame- 
work of the kinematic approach developed above. Its inclu- 
sion, however, makes the calculations much more cumber- 
some without changing significantly the final results. Since 
the coefficients D, y, y,, a and p should be regarded in the 
kinematics equations as independent prescribed parameters, 
we have confined ourselves in the present article to the case 
when a = D and f l =  0. This simplifying assumption does 
not mean, for example, that no spiral wave can be created 
from a break of a straight wave. It is easy to verify that even 
under this assumption the self-similar solution (A. 11) in the 
form of a straight half-wave is absolutely unstable in the 
kinematic treatment: any small deformation near the free 
end grows with time and we reach ultimately a stationary 
regime in the form of a stationarily rotating spiral wave. 

Note added in proof (6  October 1987): The results of 
computer experiments performed by us most recently on a 
model of an excitable medium show that compression of a 
vortical ring may also not cause it to vanish. It is possible to 
choose the excitable-medium parameters such that at a suffi- 
ciently small radius of the vortex ring its compression is 
stopped and it is only shifted in a direction to the plane of the 
filament. This effect is observed, for example, in a two-com- 
ponent model of type ( 1 ) proposed in Ref. 10, for the follow- 
ing coefficient values: k, = 1.7, kg = 2, a = 0.1, o = 0.1, 
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E = 0.18, k, = 6. The existence of vortex ring of constant 
size does not contradict the foregoing kinematic-analysis re- 
sult, which were obtained for large values of R. However, the 
formation of stable vortex rings with small radius R, having 
a long lifetime, calls for a special analysis which is outside 
the scope of the present paper. 

The authors thank Ya. B. Zel'dovich and M. I. Rabino- 
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