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The hydrodynamic drag force that acts on a spherical particle surrounded by a large number of 
similar particles in afluid flow unrestricted at infinity is calculated by the renormalization group 
method. Stokes and inertial (in the case of moderate Reynolds numbers) flows-around are 
considered for particles located at one-, two-, and three-dimensional lattice sites. It is shown that 
the drag force is much weaker in systems with a large number of particles because of collective 
screening. 

The question of the hydrodynamic resisting force exert- 
ed on a particle surrounded by a large number of other parti- 
cles in a flow unrestricted at infinity arises in connection 
with the motion of particle clouds, in the determination of 
the shape of macromolecular structures from viscosimetric 
data, etc.' In such situations the resisting force is weaker 
because of the fact that, in a collective system, the particles 
screen each other off, reducing the effective difference 
between the velocity of an individual particle and the veloc- 
ity of the fluid flowing past it. The resisting force was first 
computed by Smoluchowskii' for many-particle systems in 
unrestricted Stokes flow. His result corresponds to the weak- 
interaction limit. 

Let us consider a system of spheres of the same radius a. 
In the case of a one-dimensional disposition ( d  = 1) the 
centers of the spheres are located on a straight line r at dis- 
tances I from each other. In the cases of two- and three- 
dimensional ( d  = 2 and 3) dispositions of the spheres the 
centers of the spheres occupy the sites of a square (L XL, 
where L is the length of a side; L>1) and a simple cubic 
(L X L X L )  lattice. We shall, for definiteness, assume that 
the system of spheres is immersed in a fluid flowing with 
velocity Uin the direction perpendicular to the straight line 
r (d  = 1 ); the plane in which the centers of the spheres are 
located (d  = 2); and one of the faces of the cubic lattice 
(d = 3 ) .  Let us first consider the case of slow Stokes flow at a 
Reynolds number defined in terms of the diameter of a 
sphere: Re+O. Let us take a group of m spheres. Let us note 
that in the d = 2 and 3 cases, as such a group, we shall take 
spheres whose centers occupy the sites of a (m'I21 x m1I21) 
square and a (m'I31 X m1131 X m'131) cubic lattice. On the 
group of m spheres a total force f,,, = F(m,y, fo), where F i s  
an unknown function, y = 1 /a, and& = 6n-paUis the force 
acting on an isolated moving sphere (in the present case the 
Stokes force; p is the viscosity of the fluid). From dimen- 
sional considerations in the situation in question, we obtain 

where q, is some other unknown function. 
Let us associate with this group a sphere of radius a,, 

such that the Stokes force 6n-pa, U that acts on it during its 
motion in the absence of other spheres is equal to f, . Then 
from ( 1) we obtain 

We take N/m groups, similar to the first group, of 
spheres of radius a. Let us form from them a new group A 
geometrically similar to the first group, and with the same 
relative separation y of the spheres. In this unified group A a 
sphere is, on the average, acted upon by the force F(N,y, f,)/ 
N, while each of the groups (of m spheres) forming the 
group A is acted upon by the force 

$*=mF ( N ,  y ,  f o )  llV=mfocp ( N ,  y ) / N .  (3  

We now combine the N/m spheres of radius a, into a 
group B geometrically similar to the original group of m 
spheres of radius a. The centers of the spheres in the group B 
will be located at distances 1, from each other. Then a 
sphere (of radius a, ) in the group B will, on the average, be 
acted upon by the force 

$ ,=P(N/m,  y,, f,) ( N / m ) - I  =mf,rp(Nlm,  y m ) / N ,  

On the other hand, the total force acting on the group A 
is determined by the interaction of the N /m original groups 
of m spheres, and, consequently, is equal to 

Here F, and p, are some unknown functions; the extent 
to which the flux of each of the original groups is impeded is 
characterized by the quantity ma and some set of dimension- 
less parameters E~ of its shape, that take account of, in partic- 
ular, the separation of the spheres in the group. 

Consequently, 

Similarly, for the group B we have 

with corresponding to the interaction of the spheres, so 
that p l (N/m,  yrn,eil)  = e)(N/m,y, 1. 

Let us choose 1, ' such that 

i.e., allowing for (2)  and the expression for y, in (4),  we 
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take I,' = Iq,(m,y)/m ' - 
The basic assumption used below consists in the fact 

that the correction factor to the force acting on an isolated 
moving body (in the present case f, ), a factor which is due 
to the collective hydrodynamic interaction, practically does 
not depend on the shape of the body, and is determined only 
by the distances between, and the effective dimensions of, 
the bodies. In other words, it is assumed that the values of 
the function q,, do not depend on the magnitudes of the argu- 
ments E, . 

That the dependence of the correction factor 7 on the 
shape parameters E ,  should indeed be quite weak is borne out 
by the following examples. For y  $ 1  and N s  1 ,  we can, using 
Smoluchowskii's well-known result,' obtained from the cor- 
rection factor to the Stokes force in the group A in the form 

As the number N of spheres increases, 7, deviates more 
and more from unity, which indicates the dominant influ- 
ence of the long-range interaction and, consequently, in the 
general case, the loss of information about the shape of out- 
lying bodies, which impede the flux in the vicinity of the 
body under consideration. 

The second example is connected with flows round two 
parallel prolate spheroids against which a Stokes flow runs 
along the normal to the semimajor axis. Calculations1 show 
that the dependence of 7 on the ratio of the semiaxes of the 
spheroids is much weaker than the dependence on the rela- 
tive distance between the two bodies. 

Thus, on account of the assumption made above, we 
have, in accordance with ( 6  )-( 8),  ICI, = tlr, , and, conse- 
quently, using ( 2 ) - ( 4 ) ,  we arrive at the functional renor- 
malization-group (RG) equation2 

In the weak-interaction limit (i.e., for 1nN / y  g 1 ) we 
obtain ( 9 )  from ( 1 3 ) .  On the other hand, Eqs. ( 1 3 )  can be 
obtained directly with the aid of ( 10) and ( 9 ) ,  but then the 
expression for v ( y )  will have the same degree of accuracy as 
( 9 ) ,  i.e., will be accurate to within quantities O ( Y - ~ ) .  

In the two- and three-dimensional cases it is possible to 
determine the RG function only to within O ( y P 2 ) .  Using 
Smoluchowskii's formula,' we obtain 

Hence 

and the solution to Eq. ( 1 1  ) in the d = 2  and 3  cases will be 

The functional equation ( l o ) ,  under the assumption 
that q, is a smooth function of its arguments, reduces to the whence 

As the dimensionality of the space increases, the collec- 
tive effect is enhanced and the quantity 7 progressively de- 
creases at fixed values of N and y. 

The drag force is much weaker in systems with a large 
number of particles because of the collective screening. 

It is of interest to obtain estimates for the case of inertial 
flow past a system of spheres. In the region 
2  X lo4 5 Re 5 2 X lo5 the drag coefficient C, for a sphere 
practically does not depend on the value of the Reynolds 
n ~ m b e r . ~  It is reasonable to assume that the correction to the 
drag coefficient for a sphere in this region of Re values also 
does not depend on the Reynolds number. Consequently, 

fo='/zCDpU2naz, fm='/,CDpU2nam2=focp(m, y ) ,  ( 17) 

differential equation 
a,=a[cp ( m ,  y )  1'" 

N ;. ( N ,  y )  av(m3 Y )  I (p  is the fluid density in the free stream). 
d N a m  ,=, The subsequent discussion is similar to the analysis for 

( 1 1 )  
the case of slow Stokes flow, so that 

In the d = 1 case, using the expression for q, ( 2 9 )  from l,'=l[cp(m, y )  ] 'h /ml - l /d ,  ( 1 9 )  
Ref. 1 ,  we obtain for the RG function the equation 

and we again arrive at Eqs. ( 10) and ( 1 1 ) . 
In the case of inertial flow the expression for the RG 

3 9 
= c p ( 2 , ~ ) - c p ( l , y ) = l - - + -  function in the d = 1,2, and 3 cases apparently has the form 

2~ 8 ~ -  ( 1 5 )  at sufficiently high values of y, but the quantity k, 
59 -- 465 15813 +---- - v ( Y ) .  should naturally differ from the quantities given in ( 12) and 

32y3 128y4 3584y5 ( 12) ( 15).  In principle, in the inertial regime the coefficients k, 
for d = 1 ,  2, and 3  can be determined experimentally, after 

( ) for the = case with for ( 1 2 ) ,  which the results will be given, as before, by the relations 
we find 

( 13) and ( 16) with the new k, values. In the d = 3  case the 

cp(N, y )  =iZ"(#), q,=cp(N, ~ ) / N = N " ( Y ) - ~ .  quantity k, can be estimated in the following manner. Let us 
( 1 3 )  consider a group of eight spheres located at the vertices of a 
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cube in the y = 2 case (i.e., the spheres touch). Let us re- 
place this group by an effective sphere with radius a, = 2a 
and, hence, the same volume. The drag force acting on this 
group will be 

Approximating the function p( 8,y) in the entire range 
of values of y>2 by the expression p(8,y) = 8(1 - k/y) ,  
and using (20), we find that k = 1 and k, = 8/7. In the 
d = 1 and 2 cases similar estimates should, apparently, lead 
to greater errors. 

By comparing the value k, = 8/7 obtained here with 
the value k, = 6.5 1 for the case of Stokes flow, we can verify 

that the screening of the particles in the inertial regime is 
weaker (and that 7, is greater) than in creeping flow. 
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