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The interaction of light with a thin film of a nonlinear resonant medium located at the interface 
between two linear media can be described by a set of nonlinear Maxwell-Bloch-like differential 
equations which effectively take the presence of the reflected wave into account. The set of 
equations obtained is completely integrable. Using this approach, we solve for the passage of a 
soliton-like pulse of light through a film with an arbitrary line profile for inhomogeneously 
broadened two-level systems in the film. 

1. INTRODUCTION The presence of a thin polarizing layer at the interface 

The theory of light propagation in resonant media has must be taken into account in the boundary conditions for 
been developed in large part through the use of the inverse the Ex and H, components of the electromagnetic field: 

scattering method (ISM)' to solve the Maxwell-Bloch E, ( O f ,  t )  -E, (0-, t )  =0, 
(MB) nonlinear 

Recent investigations of surface and thin-film spectros- H,(O+, t )  -H,(O-, t )  ==-4ndP,/dt, - 
copy have awakened interest in a new class of problem in 
which a nonlinear resonant medium is a thin film at the in- where P, (t)S(z) is the polarization of the film. The electric 

terface between linear media. In such systems, both the fields in media I and I1 and the polarization of the film take 

propagation of nonlinear surface waves along the film6 and the form 
- -  - 

the passage of light pulses through the interface7 have been El'' ( z ,  t )  = ' / , [ E ,  ( z ,  t )  exp [ i  (k lz -oLt)  ] 
examined. 

The equations describing surface-wave propagation ef- 
fectively reduce to the one-dimensional MB equations for an 
unbounded m e d i ~ m . ~  The surface-wave problem is thereby 
directly subsumed into the general scheme of the inverse 

A qualitatively different situation occurs with 
the passage of light pulses through an interface, where the 
presence of a reflected wave prevents a direct application of 
the ISM (recall that the MB equations are only integrable 
for the class of solutions describing unidirectional propaga- 
tion of light). In a previous paper,7 we considered the sim- 
plest case of exact resonance, in which the problem reduces 
to the solution of an ordinary differential equation. The gen- 
eral case, with inhomogeneous broadening and off-resonant 
behavior taken into account, has remained unstudied. 

In the present paper, we show that in general, the inter- 
action of light with a thin film is described by an integrable 
set of Maxwell-Bloch-like differential equations which ef- 
fectively take the presence of a reflected wave into account. 
The set of equations obtained allows for the use of the ISM. 
The passage of a light pulse of given shape through a nonlin- 
ear film may then be formulated and solved as a scattering 
problem for a point potential, without the usual formulation 
in terms of the Cauchy problem in the theory of nonlinear 
waves for an unbounded medium. As an example of our ap- 
proach, we solve for the passage of a soliton through a film 
with an arbitrary inhomogeneous broadening profile. 

2. BASIC EQUATIONS 

+ E, (z ,  t ) e x p [ - i ( k , z + o ~ t )  1 + c.c. 1, (2a) 

where E, , , ,  (z,t) are the smooth envelopes of the incident, 
reflected, and transmitted fields, with carrier frequency w, ; 
k ,,Z = @L (&I,, 

Substituting the equations (2)  into the boundary condi- 
tions ( 1 ) and, within the scope of the resonant approxima- 
tion, neglecting derivatives of the smooth envelopes, we find 
a t z = O  

By virtue of the continuity in ( l a ) ,  the electric field in the 
film is the same as that of the transmitted wave, E, (0,t). 
Eliminating the field E, from (3),  we obtain 

where in addition to the Fresnel term, there is a contribution 
proportional to the polarization of the film. 

In a model with noninteracting two-level systems, the 
matter equations are the Bloch equations for the atomic po- 
larization a ( t )  and population a, ( t )  : 

A 

Assume that the nonlinear resonant medium has the i - 0 3 ( A , t ) = p { E t ( 0 , t ) o ( A , t ) - E l ( O , t ) ~ ( A , t ) ) ,  d (5b) 
form of a thin layer (of thickness d 4 A L ,  where A, is a typi- d t  
cal wavelength of light) at the interface-(z = 0)  between two where A = w12 - wL is the frequency offset of the pulses 
linear media with dielectric constants (Z < 0 )  and from the transition frequency w,, of the given atom, p is the 
E,(Z > 0).  A pulse of light is incident on the interface from dipole moment of the transition, and the overbar denotes 
medium I. For simplicity, we deal here with a normally inci- complex conjugation. The layer polarization is related to the 
dent plane wave polarized along the X-axis. function a(A,t) by 
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where n is the surface density of two-level systems, andg( A) 
is the distribution function for the atomic transition frequen- 
cies. Relaxation terms have been omitted from ( 5  ), since we 
are assuming that the incident pulse is much shorter than the 
characteristic relaxation time of a two-level atom in the lay- 
er. 

The set of equations (4)-(6) completely describes the 
problem formulated above, determining the field E, trans- 
mitted through a nonlinear film when the pulse shape of the 
incident field E, is given. 

In the simplest case, with no inhomogeneous broaden- 
ing and exact resonance (A = O), and with a real field E, ( t )  
(which in turn is assured by the field E,(t) being real), the 
Bloch equations (5  ) give a solution 

1 

o  ( r )  = ./,i sin ly ( t )  , Y! (1) = p dt' E t ( t r ) .  (7)  
- - 

Substituting (7) into (4),  we obtain an ordinary differential 
equation for the function V/(t): 

solutions of which have been studied in a previous paper.' 
The general case (4)-(6) can be investigated using the 

approach described below. 

3. THE INVERSE METHOD 

We transform Eqs. (4)  and (5 )  to a form enabling us to 
use the ISM. In order to do so, instead of the local algebraic 
relation (4),  we introduce for consideration a differential 
equation for the auxiliary field E(z,T), which depends on the 
coordinate z and the cone variable T = t - z: 

with the necessary constraint 

because of the discontinuity in E(z,r).  Equation (9)  de- 
scribes the unidirectional propagation of the field E(z,T), so 
that field can be specified arbitrarily for z < 0. Assuming 

2 ~ ~ ' ~  
E ( ~ < 0 ,  r )  = Eo ( T I  Ein (T) , 

E ~ " ~ + E , %  
(11) 

we find the field for z > 0 from Eq. (9)  : 

With ( 1 1 ) and ( 12) taken into consideration, the right- 
hand side ofEq. ( 10) is obviously the same as the right-hand 
side of Eq. (4),  and therefore the auxiliary field E(z,T) at 
z = 0 has the same value as the physical field E, (0,t) at the 
interface. Thus, we may formulate the problem of a light 
pulse passing through a nonlinear film as a scattering prob- 
lem for a set of Maxwell-Block-like equations with unidirec- 
tional propagation: 

where for z < 0, u (z,r) is a given field u, ( T ) ,  and the field 
E, (T)  transmitted through the film is given by 

where u,,, (7) is the solution of the system (13) for z>0 .  
Here we have introduced the notation 

s ( A ,  r ) = o ( A ,  r ) / a o ,  s J A ,  r ) = o s ( A ,  7 ) / 2 z 0 ,  
U ( Z ,  r )  ='12pE (z, 7 ) .  

The set of nonlinear equations ( 13) is completely inte- 
grable, and can be written as a consistency condition 

for the overdetermined set of equations 

dcplaz= Vcp, (1%) 

where in the present case, the 2 x 2 matrices U and V are of 
the form 

U = i  

d A g ( A )  -s3(A, z ) ,  F(A ,  T )  v - i a  (z) j ----- [ 
A-A+i0 s ( A ,  r ) ,  s 3 ( A ,  r )  

1. (16) 

Following the general ISM approach,' it is necessary to 
determine the scattering data ain (A ) and b, (A), solving the 
Zakharov-Shabat spectral problem ( 15a) with the given 
field uin (7). The evolution of the scattering data along thez- 
axis is governed by Eq. ( 15b), and in a standard manner, this 
reduces to a solution of the set of equations 

where by definition 

The solution of ( 17) relates the scattering data a,,, ( A )  
=a(A,z > 0) and b,,, ( A )  = b(A,z > 0) to their initial values 
a, (A ) and bin (A ) : 

( A )  =sin ( h ) ,  ( 18a) 

b o U t ( A ) = b , , ( h )  [ l + i r ( X ) / 2 1  [ l - i I ' ( h ) / 2 ] - ' ,  (18b) 

In our case, the equations (18) are the analog of the 
Gardner-Greene-Kruskal-Miura evolution equations. ' 
The field at z > 0 is obtained by solving the Gel'fand-Levitan 
equations with scattering data a,,, (A), bout ( A ) .  

4. ONE-SOLITON SOLUTION 

For the soliton aspect of the problem, the Gel'fand- 
Levitan equations are algebraic. Here we examine a one-soli- 
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ton solution, which addresses the passage of an isolated 
pulse of light of duration y-I, 

through a nonlinear film; up to the Fresnel factor, this is the 
same as the pulse generated by the self-induced transparency 
effect.' 

In the potential 

corresponding to the pulse ( 19), the coefficient a,, ( A )  takes 
the form 

a;, ( A )  = (A-iq)l(h+ i q ) ,  (21a) 

while bin ( A )  = 0 when Im A = 0, and 

The fact that the spectral problem ( 15a) is identical to the 
Zakarov-Shabat problem enables us immediately to write 
out an explicit expression for the field u,,, ( r ) :  

where the phase shift p, and the displacement rc of the cen- 
ter of the soliton are given in terms of the coefficient b,,, ( A )  
at /Z = iy: 

l+ir ( iq)  12 
'po=arg boU,(iq) = arg 

I - ir ( iq) /2  ' 

here we have made use of ( l8b). 
According to ( 14), the field transmitted through the 

film is given by 
e-"Po 

E,  ( r )  = l[L + (24) 
CL ch(q7) ch[q  (7-.tc) I 

i.e., it is a sum of two solitons, with relative phase shift and 
center shift given by (23), and with amplitudes and dura- 
tions the same as those for the soliton incident on the film. 

Equations (18) and (23) hold for arbitrary inhomo- 
geneous broadening profileg( A 1. For instance, for a Lorent- 
zian profile 

where y is the line width and A, is the offset of its maximum 
from the frequency of the incident field w, , Eqs. (23) take 
the form 

5. CONCLUSION 

In this paper, we have considered the passage of a light 
pulse through a nonlinear film at the interface between two 
linear media. The approach developed here can also be used 
to investigate other phenomena in the optics of nonlinear 
resonant films, such as photon echoes, radiative dissociation 
of excited atoms in the film, and so forth. Furthermore, the 
suggested approach can be directly extended (by analogy 
with Refs. 7, 9, and 10) to arbitrary angles of incidence and 
variable polarization of the incident field. 

The authors thank V. M. Agranovich, A. I. Maimistov, 
and E. A. Manykin for stimulating discussions. 
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