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An analysis is given of the evolution of a "periodic" surface structure on the surface of solid 
semiconductors or dielectrics under the influence of laser radiation when the concentration of 
conduction photoelectrons or electron excitations is a function of position along the plane surface 
of the material. In particular, it is shown that the region of localization of this structure can be a 
rapidly varying nonmonotonic function of the laser power density. 

The different aspects of irreversible "periodic" struc- 
tures formed on the surface of solids under the influence of 
laser radiation now have an extensive literature devoted to 
them.'-5 AS a rule, this literature is concerned with the con- 
ditions under which the medium reaches high temperatures 
and its surface becomes ~orrugated.~.' In the case of semi- 
conductors and dielectrics, it is also interesting to consider 
situations in which the laser radiation does not produce 
much heating of the material and its surface remains planar, 
but conduction photoelectrons or electron excitations, 
whose concentration depends on position along the surface 
of the specimen, are produced in the surface layer around a 
local and specially introduced inhomogeneity in the dielec- 
tric properties of the material. 

Since this heating is not accompanied by phenomena 
such as evaporation, generation of acoustic waves, and so on, 
it is possible to examine in a relatively simple form the inter- 
action between the electromagnetic radiation and the solid 
material in which this type of surface structure is discussed 
in the present paper. 

1. To be specific, let us suppose that the electromagnetic 
wave 

E=E(O' cxp(-ikx sin 8-ikz cos 8) (1)  

E,= (I?::'+ -!- sinh (hqzl) F,(z') dz' )e-"' 
- , A, 

where subscript q labels the Fourier components. The sym- 
bols + and - indicate that the value of the corresponding 
variables is taken at z = + 0 and z = - 0. Moreover, 

is incident on a medium (semiconductor or dielectric) that h.,=ik(nSix) (1-q2/ek2)'", &lh=n+ix. 
fills a half-space and has a planar surface. In this expression, 
k = W / C  is the wave number, B is the angle of incidence, and It is well-known that, outside the medium, the electric 

the axis lies along the normal to the surface ofthe field satisfies an integral relation between the field at an arbi- 

medium. F~~ simplicity, we shall suppose that the amplitude trary point on the surface and its normal derivatives on the 

~ ( 0 )  of the wave has a time dependence of the form surface.' In our case, we are dealing with a plane surface and, 

E(o) (~)  = E ( O ) ~ ( ~ ) ,  where ~ ( ~ 1  = 0 fort < O  and ~ ( ~ 1  = 1 for after the Fourier transformation, this integral relation as- 

t > 0. Let us also suppose that theelectromagnetic field in the sumes 

medium is determined by the equation 

a2 d 2  (, + , + rk2-grad div (2) where 

where E = 1 for z > 0 and Z. = E = const for z < 0. The vector E ~ ~ ~ = E ,  (cos 8, sin 0) 6 (k sin 8 - 9 )  , 
E has only two (Ex and E,) nonzero components ; G,= [2n ( ( - i k )  '+q2)  "'] - I r  
f = - k 2 A ~ E ,  and he  = 0 for z > 0 and AE = AE(x,z) for 
z <0. Equation ( 2 )  is complemented by the condition and S ( . . . ) is the delta function. The conditions 
div[ (E < AE)E] = 0. 

In the ensuing analysis, we shall have to determine the div E(+)=div[ ( e + A & ( - ) ) E ' - ' ] ,  

field E inside the medium. We shall do this by deriving the i H(+)=H(-) ,  H = - curl E. integral equation for E in the region z < 0. Let us Fourier- k  
transform (2) with respect to the variable x ,  and solve the then yield 
resulting equation, assuming that the vector f is known and 
using the well-known boundary conditions for the electric d E L ! '  - = i s  ( - +) E;:) -h,~::l  
field components Ex and E,. For z < 0, we obtain d z  
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3 Ezq -- --- kq E;;) - k (A~(- )E: - ) )~  
3z E E 

After substituting these derivatives in (4) ,  we look 
upon the resulting set of equations for the quantities E 1,; ' as 
a set of two linear algebraic equations and, by solving it, we 
obtain the above quantities as functions of the electric fields 
only for z < 0. 

Next, substituting the values of E 1,;' found in this way 
in ( 3 ) ,  we obtain what is essentially a set of integral equa- 
tions for the Fourier components of the electric field inside 
the medium: 

E,,(z) =E,,(z)+AE,,(z), 
(5 

where 

EZq (z) =EL,-) e-~qz, 

~,y,b-) = - 2nGq [ j e-'qzF, (z) dz 
1-2nGqhq -_ 

U 

A, Dq= 5 e-'qZFzq (z) dz - - (Ae(-)E:-' 
E 

1 9  

- m 

1 
= (*Eli'+ -j sinh ( ~ , z f )  F ~ ~ ( ~ ' ) ~ Z ' )  e-'qZ 

A4 -, 

2 

1 + - j sinh [Aq (z-n') ] F,, (2') hf, 
Lq -m 

We note that, when AE = 0 in ( S ) ,  the quantities AE,, ( z ) ,  
AE,, ( z )  vanish and zxq (z) , zzq (z) are the Fourier compo- 
nents of the electric field in the variablex for a homogeneous 
medium filling the half-space. 

2. We shall suppose in (2 )  that 

In the case of a dielectric or a semiconductor, the quantity 
N(x,z,t) in this expression is the concentration of electron 
excitations or photoelectrons in the conduction band that 
appear in the material as a result of the absorption of energy 
quanta +b of the electromagnetic field. The attendant 
change in the permittivity of the medium is (ah&/ 
dN) N(x,z,t). 

The quantity (dA&/dN)AN'O' (x,z,t) is the change in 
the permittivity of the medium produced by external factors 
unrelated to the electromagnetic field ( 1 ) . It will be conven- 
ient to write it in a form in which AN''' (x,z,t) may not 
actually be the real excitation concentration. We note that 
the significant point for the ensuing analysis will be the de- 
pendence of AN''' (x,z,t ) on x. 

The simplest kinetic equation for N is9." 

where Im(dA&/dN) is the imaginary part of the derivative 
dA&/dN, No is a constant equal to the concentration of the 
particles of the medium at the inversion threshold, 

E(x,z,t) is determined by (5) ,  and .r is the intrinsic lifetime 
of an electron excitation in the medium. We note that, in 
approximate estimates, it is convenient to remember that 
Im(dA&/dN) -- - 2a/k  (Ref. lo) ,  where o is the character- 
istic cross section for the absorption of a photon fiw by a 
particle in the medium. 

The set of equations given by (5)  and (7 )  is self-consis- 
tent and its solution determines both the space-time struc- 
ture of E and the concentration N of the excitations. This 
will, in fact, be the solution for the evolution of the surface 
structure produced under the influence of laser radiation on 
solids. 

We shall assume in (2)  that the quantity AE given by 
(6) satisfies the condition 

so that the solution of (5) can be sought by the method of 
successive approximations, in which we continue our atten- 
tion to the zeroth and first iterations. Moreover, we shall 
consider only media for which 

By virtue of (9),  and for angles of incidence that are not 

too large ( I E  I ' cos 8% 1 ), the field component Ex in the me- 
dium is significantly greater than E,, so that the latter will be 
omitted from the ensuing discussion. 

In view of the foregoing, and recalling ( 6 ) ,  (8),  and 
(9 ) ,  we find from (5)  that 
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(sin 0+q/k)' 
X-- 

[ (-i) '+ (sin O+q/k) 2]'h-2"(a+ib) 
' (10) 

where 

),=ik(n+ix), a=x/[2'i2(n2+xz)], b=n/[2'"(n2+x2) 1, 

and N, and AN F' are the Fourier components of N(x,z,t) 
and AN''' (x,z,t) in the variable x. 

In the expression for the field Ex given by ( 10) we re- 
tain only that part of the correction F(x,z,t) in AE that leads 
to a more complicated dependence of Ex on x than is indicat- 
ed by the factor exp (ikx sin 8) .  It is precisely this term that 
is responsible for the periodic structure; the remaining 
terms, which are of the same order in AE, provide no contri- 
bution to this structure. 

We note that the presence of the quantity ( - i)' in the 
expression for the function F(x,z,t) indicates that the inte- 
gration with respect to q in the complex plane of q is per- 
formed along the real axis over a contour lying below this 
axis. For the complex conjugate function F * (x,z,t), the con- 
tour integration lies above this axis. 

We now substitute into ( 7 )  the solution Nin the form of 
the two terms N(x,z,t) = 2(z , t )  + AN(x,z,t), where the 
first term represents the x-independent part of the solution. 
In view of the expression for the electromagnetic field given 
by ( 10) and the inequality (8) ,  and using the approximation 
to (7 )  that is linear in AN(x,z,t), we obtain the following 
integrodifferential equation: 

where 

is the light reflection coefficient of the half-space occupied 
by the medium. 

For subsequent calculations, it is convenient to write 
the solution of ( 1 1 ) in the form 

where y is a positive constant, chosen so that the integrand 
has no singularities to the right of the contour of integration 
with respect to the complex variablep. Moreover, 

6N(' )  (x, t )  =lk(2x-in) (x , ,  z t) 1 

- m 

2 (a+ib) (sin 0+q/k) 1 
[ (-i)'+ (sin O+q/k)2]'h-21h (a+ib) pr+? 

where 

and F[1,2- (b/a)i ,  3 - (b/a)i;  - Q / G ( ~ T +  I ) ]  is the 
hypergeometric function. 

To determine the quantity AN(x,z,t) in ( 12), we recall 
that, by virtue of the inequality (9 ) ,  the integrand P(p,q) in 
the integral with respect to q contains the small parameters 
a2, b '4 1. Hence, as follows from ( 12), the main contribu- 
tion to the integral with respect to q is provided by the fol- 
lowing ranges of values: 

Let us divide the integral with respect to q in ( 12) into a 
sum of integrals over the indicated regions. Integrals of the 
form 

I 
m-20 

t- are then found to arise, where A = 2 (a  + i b ) ~  / g ( p , ~ ) .  
These integrals can be evaluated using the series expansion 

a 

and the expressions for the Hermite polynomials 
m 

The final results are 

f T+l== 

AN ( ,  z ,  t) =ezkXz J d l f  J dpep('-")R ( p ,  z) 
0 7-im 
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X [eiql"O (x) cp ( p ,  x) +e-iqzXB (-x) rp (p, -2) 1. 

V ( P ,  ~ ) = L ( P ,  Q)exp [ikx(a+ib)'LZ(p, Q) I 

+2 (2x)"%(a-b) .L(p, Q) 

X exp [ i k~ (a+ ib )~L~(p ,  Q) 1, 

e (x )= l  for x>1, 0(x) =0 for s<O, 

where r( - j,y) is the incomplete gamma-function. We 
note that the first term in the expression for q,(p,x) is due to 
electromagnetic waves propagating within the medium, 
whereas the second is due to the appearance of surface elec- 
tromagnetic waves.' Accordingly, the surface structure 
(14) will be a superposition of two structures, which we 
shall denote by SS1 and SS2. 

Thus, ( 14) and ( 10) together constitute a solution of 
our problem and determine the space-time "periodic" struc- 
ture of the light field and the concentration of electron exci- 
tations (or nonequilibrium photoelectrons in the conduc- 
tion band of the semiconductor) along the surface of the 
specimen. 

3. We now turn to an analysis of (14). To do this, we 
first evaluate the integral with respect to the complex vari- 
ablep. This can hardly be done in the general case because 
the expression for L (p,Q) includes the hypergeometric func- 
tion of the variable p [cf., (12) and ( 14) 1. We can glean 
some information about the form ofL (p,Q) as a function ofp 
from the asymptotic expression 

and L (p,Q) -- 1 - r, if 

According to ( 14), the function L (p,Q) should be de- 
termined on the right half-plane. It is clear from ( 15) that 
when ( 16) is satisfied, the quantity L(p,Q) as a function ofp 
is determined on the entire plane of the complex variablep. 
The form of L(p,Q) is then so simple that the integral with 
respect top  in ( 14) can be evaluated. Since this is possible 
only in this case, and this situation is of interest in practice, 
we shall confine our attention to it. 

Bearing in mind (12), (15), and (161, we find from 
(14) that 

j dtt 
w 

l;j?(Z, Z, t )  =ez""' e-'t-l'"' j a x r  6N(u1 (xf, t ' )  
u T  - - 

Y (t-t', x-2') + C.C. , 
(17) 

'I' ( t ,  x )  = - 
i -- k(a+ib)'[e'qlx0(x)) (t, x) 

(227) '" Q 

dz cxp [ -2- ( l i ~ )  12 (x, Z. Q) ] 

Q ikx(a+ib)' 
za (x, Z, Q) = r , Q z-zkx(n+ib)' 

r ( 5 .  Z, Q)=-{~(x ,  Z, Q) [u(x ,  Z.  Q)+QIQ]}"2, 
~ ' ( x ,  2, Q, t)=l-[2u(x, z, Q)+Q/Q]tlt, 

B'(t, x, 2, Q) = - [ 2 u  (x,z, Q) 

I,( . . . 1, and I, ( . . . ) are Bessel functions of an imaginary 
argument, and 

11 (2, t )  = 2 ~ 2 " % ( a - b ) e ~ ~ [ i k x ( a + i b ) ~ ]  

Since the main contribution to the integral with respect 
to z in the expression for the function g(t,x) is provided by 
the region z (kx (a2  + b 2 ) ,  and since lim u (x,z,Q) = - Q / - 
Q, 

z/(klxI (a2+b2))+0 
lim u(x, z ,  Q) =0, 

z/(klx[ (aZ+bz))-+O 

the above integration can be carried out and {(t,x) assumes 
the more convenient form 

1 y t -  1 
'j ( t ,  x) TZ exp - _- + -- _ - -- [ : 4 ( (1 r ) - ihx(a+ib) '+Ql /~~ 

. {(-ilcx)" (n+iD) [ -~h- .~(a+ih)~+Qt /Q~]  ) - I .  (18) 
Let us consider the most interesting situation, in which 

Ip I % 1 and Rep > 0. These conditions do not exclude any of 
the possible cases of the evolution of the space-time structure 
( 17). The first inequality means that ( 17), i.e., condition 
( 16), is valid for power densities Q for which Q /Q) 1. We 
then have a threshold value Q = Q, above which there is no 
stationary surface structure (17). The quantity Q, is deter- 
mined from the behavior of ( 17) as t - co . It follows from 
(17) and (18) that, when Q>Q,, 

and the quantity given by ( 17) is proportional to exp [Q /Q, 
- l ) t ] ,  i.e., it increases exponentially with time, which cor- 

responds to absolute instability." We note that the increase 
is associated with SS 1. 

Let usbeginby sub~titutingSN'~' (x,t) = ( ~ ' " / k ) S ( x )  
in ( 17) [N'O' is a constant and S(x)  is the delta-function] 
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and let us investigate the Q  dependence of AN(x,z, t)  for 
large t ,  such that, in the terms in which the corresponding 
integrals with respect to t  converge, the upper limit of inte- 
gration can be considered infinite, whereas, in those in which 
a divergence is possible, the limit is taken to be t .  

From ( 1 7 ) ,  we have 

A N ( x ,  z ,  t )  = - i  ( 2 n ) - " ' e Z k X z ( Q / ~ )  N('!(a+ib) '  
[eiaX0 ( x )  f ( x ,  t )  +e-'"0 ( - x )  f ( - x ,  t )  ] + c.c., 

t ( 2 0 )  

where &(x , t )  is defined by ( 18 ) and 

f2 ( x )  =2  (2n)'"O ( a -  b )  e x p [ k x  ( p  ( q )  +i .v(q)  ) 1 
. {[ ( l + B / 2 A )  q - B / 2 A ]  ( l + i x )  - i x } .  ( 2 1 )  

Wenote that the function f , ( x )  in ( 2 1 )  does not depend 
on the time t,  i.e., in principle, a stationary SS2 will always be 
present, its appearance being due to surface electromagnetic 
waves. In ( 2 1 ) ,  

p ( q )  =aqZ+p,  %=A ( l + B / 2 A ) ' ,  B=-B2/4A+C, 
A = - 2 [ a b ( l - ~ ~ ) + ( a ~ - b ' ) ~ ] ,  x = I m p / R e  p, 
B=2x (a'- b2-2ab) ,  C=2abx2, q=1-Q/Q,,  

Qv=VL ( I + B / 2 A )  Q t ,  

where Q, is defined by ( 19) and 

For low power densities Q  /Q,  4 1 ,  we have 

t  Q Q L t  - > - k l x l  ( a 2 + b 2 ) > ( - )  -, 
7 I Q I  I Q I  T 

the expressions for f ,  ( x , t )  and f , ( x )  show that the surface 
structure AN(x,z,t) in ( 2 0 )  is stationary and the function 
f (x , t )  = f ( x )  that determines it is given by 

2 2 wherep(q= l ) = a + O =  - 2 a b , v ( q =  1 )  = a  - b  . 
When the power density Q  is high enough, so that 

11 - Q / Q , I < l ,  and 

t  Q ->----kIxI (a2 t b ' )  
191 

it follows from the expressions for f l ( x , t )  and f , ( x )  that 
( 2 0 )  is determined by the function 

where 

is the incomplete gamma-function and f , ( x )  is defined by 
( 2 1 ) .  When 1 - Q / Q ,  >O and ( 1  - Q / Q , ) t , l ,  we find 
from the last expression that we have a stationary surface 
structure, i.e., stationary SSl and SS2, determined by the 
function f( ( x , t )  = f ( x ) ,  given by 

i 

(')= 4 ( k x )  " (a+%)  ( I -Q/Q, ) '  + f z  ( 5 ) .  
( 2 3 )  

When 1 - Q / Q ,  <O and ( Q / Q ,  - l ) t % l ,  we obtain 
from this expression a nonstationary surface wave for which 

i ( t / ~ )  exp[ ( Q / Q t - 1 )  t lr]  
f ( x ,  t )  " -- 

4 ( k x )  ( n t i b )  (QIQ,- 1 )  4- f 2  ( x )  I 
( 2 4 )  

i.e., SSl is nonstationary and SS2 is stationary. 
Let us compare ( 2 2 )  and (23 1, ( 2 4 ) .  First, we note that 

the S S l  amplitude due to the bulk electromagnetic waves 
varies significantly as Q  increases. The reduction in this am- 

plitude with increasing 1x1 is described by 1x1 - ' for Q g  I 
and by JXJ- '  for Q? ) Q  1 .  

As far as the analogous relation for SS2 due to surface 
electromagnetic waves is concerned, everything is deter- 
mined by the functionp = p ( Q )  [cf. (21 ) ] .  Here, we have a 
large number of possibilties. Let us consider some of them. 
To be specific, let us suppose that 

The corresponding function p = p ( Q )  is shown in the fig- 
ure, from which it is clear that for A < 0, the SS2 amplitude 
decays with 1x1 for Q < Q ,  and Q > Q , ,  where 

= [ 1 t ( - a/,@ " le, [cf., ( 2  1 ) 1 .  On the other hand, 
when Q ,  < Q  < Q,, the amplitude increases. " For fixed x, the 
amplitude at first increases as a function of the power density 
Q, reaching its maximum at Q  = Q,, and then decreases. 

When A > 0 ,  there are two possibilities, depending on 
the ratio of B and 4AC. When B > 4AC, we have curve 2, 
i.e., for small values of Q, the SS2 amplitude increases with 
increasing lx 1, but this is replaced by a reduction for Q  > Q,  
and, eventually, when Q  > Q,, the amplitude increases again. 
Here, the SS2 amplitude for fixed x  but varying Q  at first 
decreases, reaching a minimum at Q  = Q,,  and then in- 
creases again. 

For B < 4AC, we have curve 3, i.e, only an increase in 
the SS2 amplitude is possible and there is a minimum at 
Q  = Q, for fixed x .  

FIG. 1 .  Different cases of the dependencep = p ( Q ) .  Curve 1 corresponds 
to A < 0 and curves 2 and 3 to A > 0 and, correspondingly, to B' > 4ACand 
B < 4AC. The shaded regions represent values of Q for which the spatial 
structure produced by surface electromagnetic wave decays with 1x1. 
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Thus, the size of the region in which the SS2 is localized 
in space can be a relatively complicated, nonmonotonic 
function of the power density Q. Both the SS2 amplitude and 
its period may depend significantly on the power density Q 
[cf. (21), (23), and (24)]. 

We note that condition (25) signifies the validity of the 
inequality Q, < Q, for curve 1 and Q, > Q, for curves 2 and 3. 
It follows that, for A < 0 (curve 1 ) and Q < Q,, the surface 
wave is completely stationary and is described by (23). On 
the other hand, when A > 0 holds (curves 2 and 3 ) ,  the sur- 
face structure is described by (24) for Q >  Q,, i.e., it is non- 
stationary, because the SS 1 amplitude then increases expon- 
entially with time. Because of this increase, it may not be 
possible to observe the stationary part of the surface struc- 
ture. However, for power densities Q for which the amplifi- 
cation of the SS2 amplitude is possible, and for values of Q 
for which amplification is replaced by attenuation, the con- 
ditions for the observation of the stationary part of the struc- 
ture become more favorable. This is so because the region 
within which the stationary SS2 is localized may now be 
significantly greater than the corresponding size for the non- 
stationary part of the structure [cf., (24) 1. 

Let us now consider another case, i.e., let us substitute 
SN'O'T = SN'O' rkS(t)S(x) in ( 17). In the most interesting 
situation, in which 

a>b, R e P o ,  Q<Qt, 

the surface structure is determined exclusively by SS2, for 
which we have 

[eiqp'O ( x )  $ ( t ,  x )  f e-IqzXO (-2) ( t ,  -x.) ] + C.C. , (26) 

where 

a-b 1 
arctan ,y + - sin ( - arctan y ) ] , ) a+b 2 

1 a-b 1 
u =(+) '" [sin( - arctan y - -cos( - arctan ,y)], 

2 ) a 2 

It follows from the expressions for A(x,t) and from 
(26) that the SS2 amplitudes with spatial periods d l  = 2r /  
9, and d2 = 2r/q2 that lie, respectively, to the right and left 
of the origin, are equal and given by 

Their maxima occur at 
1 Qt (n+b)?s2 

Xmax = * - -- 
2k Q,T a2b2 ' 

Hence, it follows that these points move with constant veloc- 
ities given by 

to the right and left of the point x = 0, respectively. 
At x = x,,,, the amplitude is 

8 A,,, ( t )  = - . 2". (1 +xZ) err .kr  

5 

It is clear from this expression that the maxima of the SS2 
amplitude (26) for 

increase exponentially with time and move in space with ve- 
locity v given by (27). The evolution of the space-time struc- 
ture (26) then corresponds to the evolution of a convective 
instability." We note that, since s- 1, we have 
Qc - Q, bs2/a < Q, for a % b, i.e., the convective instability 
can occur for power densities much lower than the absolute 
instability threshold. 

Let us now consider possible materials for which the 
above results are valid. The main requirement is that the 
inequalities (8)  and (9)  be satisfied. This is possible, first, 
for nonluminescing dielectrics that absorb electromagnetic 
radiation of frequency w and contain emission centers that 
radiate under the influence of this radiation. It is clear that, 
when the concentration of these centers is high enough, so 
that Nc % k 3, holds the surface structure will take the form of 
luminescing bands of different intensity. Second, the in- 
equalities (8)  and (9)  are satisfied for sufficiently highly 
doped n-type semiconductors. Depending on the light fre- 
quency w ,  the surface structure is determined by the vari- 
ation in the concentration of excitons or free photoelectrons 
along the surface of the sample. For excitons, the surface 
structure can be observed in the form of luminescing bands 
of different intensity. On the other hand, in the case of free 
photoelectrons, this structure can be observed by recording 
the scattering of light at the frequency that is not absorbed by 
the semiconductor. 

Finally, let us estimate the order of magnitude of the 
principal quantities encountered above, and consider 
whether the conditions for which these effects occur are sat- 
isfied. Take the case where a k b, a'% b '. In the spectral re- 
gion in which light absorption is strong, we can put I E I  - 10, 
which corresponds to (9) .  Since 

it follows from the foregoing that a' -0.1, b ' -0.01. 
From the definition of [cf., ( 11 ) ] and the fact that 

I Im(6'Ae/6'N) I - u/k (see above), we have 
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so that, for the typical situation for which h- 1 eV, 
T- 1 - R- 1, and a- 10-l6 cm2, it turns out that 
g- lo5 W/cm2. 

From the definition ofp  [cf., (12)] and the inequality 
Rep) 1 adopted above, it follows that 

and that 

Re(dAe/dN) <O and IRe(dAe1dN) I/IIrn(aAelaN) 1B1. 

The last two conditions are fully realistic, so that we 
may take Rep - 10. From the expressions for Q,, Q,, and Q, 
[cf., (19), (21), and (28)], we then have 

In particular, the velocity of propagation of the SS2 ampli- 
tude maximum (27) turns out to be v - l / ( k ~ b  2, - lo5 cm/s 
if we suppose that k- 10' cm-' for Q- Q,. 

We note in conclusion that, for the parameter values 
chosen above, all the other inequalities that were assumed to 
be valid are satisfied. In particular, the increase in tempera- 

ture due to heating by the laser radiation is small, i.e., about 
10 K. 
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