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It is shown that a system of superconducting wires, connected by Josephson junctions and placed 
in a magnetic field, undergoes a transition to a low-temperature state of the spin-glass type. The 
dependence of the phase-transition temperature T, on the magnetic field H is found. In the 
vicinity of T, superconducting fluctuations lead to a logarithmic growth of the effective 
conductivity of the system with decrease of the frequency w and of the relative temperature 
T = T / T ,  - 1; the effective inductance is proportional to min( l/w, 1/r2).  It is shown that the 
low-temperature state of the system depends on the path along which it was reached in the ( T,H) 
plane, the history-dependent equation of state is derived, and the existence of a diamagnetic 
response to a change of the magnetic field is predicted. An experiment making it possible to 
resolve the question of the existence of a phase transition in a vector spin glass is proposed. 

1. INTRODUCTION 

The only analytically studied model of a spin glass is the 
Sherrington-Kirkpatrick model l s 2  in which the interaction 
between the spins does not depend on the distance between 
them. However, in practically all spin glasses the interaction 
between the spins decreases rapidly with increase of the dis- 
tance between them, and therefore the results of this model 
do not permit a direct quantitative comparison with experi- 
ment. Below, we shall study a model of a physical system 
which, on the one hand, can be prepared experimentally, 
and, on the other hand, is very similar, in one of its limiting 
cases, to the Sherrington-Kirkpatrick model and so admits 
an analytical solution. This physical system is a system of 
specially arranged superconducting junctions placed in an 
external magnetic field. Systems of this kind are convenient 
for modeling various phase transitions. For example, in Ref. 
3 the effect of hierarchical structure on a phase transition 
was studied experimentally, while in Refs. 4 and 5 the influ- 
ence of incommensurability was studied. A system of super- 
conducting balls connected by Josephson links forming a 
percolation network was studied in Ref. 6. The same system, 
placed in a strong magnetic field, was considered by John 
and Lubensky in Ref. 7, in which it was shown that this 
system is equivalent to a spin glass with two-component 
spins. However, as in all the models enumerated above, in 
the John-Lubensky model only nearest neighbors interact, 
while in the Sherrington-Kirkpatrick model all the spins in- 
teract with one another. 

In the present paper we proposeand investigate a model 
(analogous to a spin glass in which all the spins interact with 
one another) of a system of superconducting junctions in a 
magnetic field. It will be shown that in this system a macros- 
copically coherent state with randomly frozen phases of the 
order parameter and with diamagnetic response is realized 
at low temperatures. Possible generalizations of the model 
and its application to the investigation of spin glasses are 
discussed. 

2. DESCRIPTION OFTHE MODEL 

To realize a physical system in which every element 
interacts with every other element is rather complicated; 
however, a system in which all the elements are divided into 

two groups such that each element from one group interacts 
with all the elements of the other is considerably simpler to 
make. We shall consider a model system consisting of N ver- 
tical and N horizontal superconducting filaments, arranged 
in two parallel planes in such a way that each vertical fila- 
ment is connected by Josephson junctions with all the hori- 
zontal filaments, and vice versa. The distance between 
neighboring parallel filaments is assumed to be random, and 
its average value equal to I. We shall study the behavior of 
this system in a magnetic field perpendicular to the planes in 
which the filaments lie. We shall assume that the energies of 
the Josephson links of the different junctions are equal, but 
most of the results will also remain valid in the case when J 
fluctuates not very strongly from junction to junction. The 
Josephson junctions between the filaments can be both me- 
tallic and dielectric; for us it is important only that the ener- 
gy J of these junctions is small- much smaller than the 
transition temperature T,  of an individual superconducting 
filament. In addition, we neglect the effect of the magnetic 
field created by the superconducting currents flowing 
through the Josephson junctions in comparison with the ef- 
fect of the external magnetic field (this corresponds to the 
condition JN< Hfilc/e). The superconducting filaments can 
be realized in different ways, it being important only that 
their thickness be smaller than the penetration depth of the 
magnetic field, so that their presence does not change the 
magnitude of the external magnetic field. In the region of 
extremely weak magnetic fields, such that the flux of the 
magnetic field through the entire system is much smaller 
than a quantum of flux, the effect of the magnetic field on the 
phase transition can be neglected, and in this region the tran- 
sition occurs at the temperature T,  = JN. We shall be inter- 
ested in the region of stronger fields: 

in which the influence of frustration of the links between 
different elements becomes important; on the other hand, 
the fields should be sufficiently weak, i.e., smaller than the 
critical field of an individual filament. At temperatures not 
very close to the superconducting-transition temperature of 
an individual filament the fluctuations of the modulus and 
nonuniform fluctuations of the phase of the order parameter 

198 Sov. Phys. JETP 66 (I), July 1987 0038-5646/87/070198-13$04.00 (c) 1988 American Institute of Physics 198 



can be neglected, and each filament is described entirely by 
its phase p ( r  ), which depends only on the coordinate along 
the filament. The current flowing along an individual fila- 
ment is small. and so 

where A is the vector potential, which we choose in the gauge 
A, = Hx (x  and y are the coordinates along the horizontal 
and vertical filaments, respectively, and we take the coordi- 
nate origin to be at the center of the system). In this gauge 
the phase of the order parameter of the horizontal filaments 
does not depend on the coordinate along the filament and is 
equal to pi (x) = p i ,  while the phase of the order parameter 
of a vertical filament is p, ( y )  = x, yl; + p, (x, is the co- 
ordinate of the jth vertical filament, and I, is the magnetic 
length I = &/2eH). The phase difference across the junc- 
tion between the ith horizontal and the jth vertical filament 
is equal to pi - pj - x, yil; 2, the energy of such a contact 
is equal to J c o s ( p i  -pi -xj  y i l K 2 ) ,  and that part of the 
energy of the entire system which depends on the phases of 
the individual filaments is equal to 

where 

The Hamiltonian (2.2) is analogous to the Hamiltonian for 
a spin glass with a two-component XY spin. As in a spin 
glass, the average value of J,. is equal to zero (when the 
condition (2.1 ) is fulfilled). However, in contrast to the case 
of spin glasses, the quantities J, are not independent for 
different pairs (i, j ) ,  and, therefore, in addition to the usual 
quantity K, = 7; we shall also need averages of products of 
an arbitrary even number of J,. : 

Here repeated indices do not imply summation, and all in- 
dices appear exactly twice; the bar denotes averaging over 
the coordinates xi  and y,; J ,  = J; .  Performing this averag- 
ing, we obtain 

where L = NI is the length of each filament. 

3. SPECTRUM OFTHE MATRIX J,, 

Before turning to the study of the physical characteris- 
tics of the system with the Hamiltonian (2.2), it is useful to 
study the spectrum of the random matrix J,, whose eigen- 
functions $;*' and eigenvalues E, are specified in the usual 
way: 

We introduce the corresponding Green function: 

A 

Then the density of eigenvalues E, of the matrix J is 
1 

p ( E )  = - - 1111 g,, (E+iO) . 
n 

(3.2) 

The calculation of the average one-point Green function 
g ( E )  = g,, ( E )  can be represented conveniently in dia- 
grammatic form (see Fig. l ). Diagrams with intersecting 
dashed lines make a contribution of order 1/N (this is con- 
nected with the interaction, adopted in the model, of all the 
spins with all the spins). The corresponding analytical 
expression has the form 

where 

~=r ,  ( N g  ( E )  )'lrl-lK.... 

Using (2.4) and calculating the sum (3.4), we obtain for 
g ( E )  the cubic equation 

In strong magnetic fields, I, -0 and Eq. (3.5) reduces to a 
quadratic equation (well known in the theory of completely 
random mat rice^"^), with a semicircular solution for the 
density of states (as H -  w ) : 

In weak fields ( I  > I  2N) the density of states has a peak at 
E = 0 and two domes near E = 27~1:~ J ~ / I  2: 

where 

z = ~ J ' N - (  I E I  - 1 

With increase of the magnetic field the amplitude of the S- 
function peak decreases by the same law as in formula (3.7), 
and at the field 

vanishes. With increase of the field the side domes broaden 
and, at the field H,, coalesce into one, which for H> H,  takes 
the form (3.6). At the field H,, there is one quantum of flux 
per strip between two neighboring parallel filaments. 

The boundaries E, of the domes at arbitrary fields are 

FIG. 1 .  Diagrammatic Dyson equation for the average one-point Green 
function (shown by a shaded circle). The heavy point corresponds to the 
bare Green function the heavy lines correspond to the quantities J,, and 
the dashed lines denote the averaging over the disorder. 
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determined by the appearance of an imaginary part in the 
solutions of Eq. (3.5). As E-E, these solutions have a 
square-root singularity: 

Therefore, regarding Eq. ( 3.5 ) as determining the inverse 
function E (g) , we obtain 6'E (g)/dg = 0, whence, using 
(3.5), we have the equation 

1+ (2nlH2J2/1?) g2 (E,) 
iVJ'gz (E,) - - 1. 

[I- (2~1l,~'J~/l~)g'(E,)  1' 
The solution of this biquadratic equation has two (for 
H >  Ho ) or four real roots. Substituting them into (3.5), we 
find the boundaries of the spectrum. Below we shall be inter- 
ested in the upper boundary Eo of the spectrum. Solving 
(3.5) and (3.9) simultaneously, we obtain 

For H) Ho the expression (3.10) reduces to E, = WN 'I2, 
corresponding to (3.6). Thus, the correlations between the 
matrix elements JU can be neglected for H) H, . In the oppo- 
site limit HgH, (here we always have (2.1) in mind), we 
obtain from formula (3.10) or (3.7) 

When the field H = H,,, the boundary of the spectrum is 
equal to Eo = 3J(3N)'I2/2, and the density of states has a 
singularity at low energies: 

When the field H 2 H o ,  the density of states at E = 0 is equal 
to 

A 

FIG. 2. Approximate form of the density of statesp(E) of the matrix J for 
different values of H :  a)  H ( H , ;  b) H ,  - H ( H , ;  c) H  - H ,  ( H , ;  d )  
H>Ho. 

Qualitatively, the form of the spectrum for different fields is 
illustrated in Fig. 2. 

4. THE TRANSITION TEMPERATURE 

Even below the superconducting-transition tempera- 
ture of an individual filament, thermal fluctuations of the 
phases can lead to disordering of the phases; the true phase 
transition occurs at a certain temperature T, < T,. In a sys- 
tem of finite size a true phase transition is, of course, impos- 
sible, but the smearing of the phase transition is small in 
1/N, in the following we shall disregard effects of this kind. 
The transition temperature T, is defined as the value of T a t  
which a finite thermodynamic average value mi  = (S i  ) ap- 
pears in an infinitesimal fictitious external field hi  (this field 
is introduced by adding to the Hamiltonian (2.2) a term 
- Reh ySi ). To determine T, we write for m,, in the linear 
approximation, an equation analogous to the Thouless-An- 
derson-Palmer equation,'' well known in the theory of spin 
glasses (see also Ref. 11 and the Appendix to Ref. 12): 

The last term in (4.1 ) (the Bragg-Williams term) is the cor- 
relation correction to the usual mean-field equations; the 
necessity of taking this correction into account in glasses was 
first demonstrated in Ref. 10. For spin glasses with XY spins 
the quantity a was calculated in Refs. 11 and 12: 
a = ( 1/4T2) E, J i .  In our case this expression is valid only 
in the limit H /Ho - CO; the quantity a in arbitrary fields will 
be calculated somewhat later. 

From (4.1 ) there follows an expression for the general- 
ized susceptibility xu = 6'mi/6'h,: 

In the representation of the eigenfunctions $ j A '  from (4.2) 
we obtain 

The phase transition occurs at that temperature at which the 
singularity in X ,  first appears; i.e., the equation for T, has 
the form 

where the upper boundary E, of the spectrum is determined 
by the formulas (3.9) and (3.10). By virtue of (4.2) and 
(4.4) the quantity x , ~  (T , )  coincides with the quantity 
gi, (E,,) = g(E,,) introduced earlier (see (3.1 ) ). On the oth- 

er hand, the linear-response relation 

for "stiff spins" ( IS, I = 1 ) in the high temperature phase 
leads to the equality 

Thus, we have 

Substituting this expression into (3.9), we obtain a quadrat- 
ic equation for the quantity T f  : 
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We shall obtain first of all the equations of motion for 
the phases of the superconducting filaments. The total cur- 
rent Iq flowing through the Josephson junction between a 
vertical and a horizontal superconducting filament (with 
phases pi and pi, respectively) is made up of three parts: a 
superconducting current, equal to 

- .-.+ 

I \ 
\I I L 

l i h  I 2 H / H ,  
a normal current, equal to 

FIG. 3. Dependence of the transition temperature T, on the magnetic 
field H (the solid curve). The dashed curve shows the conjectured line of a 
first-order phase transition at lower temperatures (see the Conclusion). (where R is the resistance of the contact), and a Nyquist 

noise current f ij. The quantity Zij is a random Gaussian vari- 
able: 

A dqij 2eJ .=--+- 
" 2eR  dt A 

sin cpij+Cij, 

the solution of which has the form 
1 ~ ' ~ ~  [ 2 ( 8: ) '" ] 'la 

T, = - 2" I+-+ If- where 
2eH (t) cpij=cpi-cpj - - 

f c 
XiYj. 

A graph of the dependence (4.7) is presented in Fig. 3. We 
note that the approach to the limiting dependences For the low-frequency dynamics under consideration, 

that part of the total current which is associated with the 
capacitance of the contacts is small, and so its contribution 
to the total current can be neglected. The equation of motion 
follows from the current-conservation law 

JN'" 
T, = - 

2 
for H > Ho and 

for IH, / L  <H <Ho is extremely slow. Formula (4.8) coin- 
cides with the known formula for an XY spin glass, and cor- 
responds to the absence of correlations between the quanti- 
ties J,, in a strong field. 

To calculate the transition temperature we did not need 
the explicit form ;of the Bragg-Williams term in Eq. (4.1 ). 
However, this term can be of independent interest. It is equal 
to the sum of the diagrams of the one-loop approximation 
(analogous to the diagrams depicted in Fig. 1, in which the 
shaded circles correspond to the one-point susceptibilty, 
equal to 1/2T for the "stiff' model). Summing the diagrams 
by means of the formulas (2.4), in analogy with the result 
(3.5) we obtain 

The part due to the normal current in Eqs. (5.3) is equal 
to 

The phases of different filaments are weakly correlated with 
each other; therefore 

and the term EjQ,j can be neglected. As a result, we obtain 
the final form of the dynamical equations: 

Substituting this valueofa into formulas (4.2) and (3.5) for 
the one-point susceptibility, we obtain for the latter the value 
1/2T, as we should. 

It will be convenient below to measure the time in dimen- 
sionless units: 5. DYNAMICS OF THE MODEL ABOVE THE TRANSITION 

POINT 

1 .  The properties of spin glasses manifest themselves 
most clearly in their low-frequency dynamics. Above the 
transition temperature the relaxation times are microscopic, 
but increase as the transition point is approached. Below the 
transition point certain times become macroscopically large. 
The physical quantity most convenient for measurement in 
the system under consideration is, as in ordinary spin 
glasses, the response of the system to an external magnetic 
field. However, in contrast to ordinary spin glasses, the mag- 
netic field in this system does not act on the individual spins 
but changes the magnitude of the interaction between them. 

(The temperature T of the thermostat can, generally speak- 
ing, be a function of time.) In the variables Eqs. (5.4) have 
the form 

J 
y t + z  I ( sin qtJ+tl3)=0, 

2 <ti, (t)ikl (t') ) = - 6 (t-ti)6ik6,?. 
N 
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Here and below, the time t denotes the dimensionless vari- 
able i. 

To investigate the system (5.4) it is convenient to write 
its formal solution in the form of a functional integral. l 3  The 
average value of the current Ii/ (5.1) fiowing through the 
junction (i, j )  is given in this formalism by the expression 

( ~ i j ) = j  a + a ~ I i j e x ~ { A [ $ , q I ) ,  (5.7) 

where, in the new variables, 

2e (x +,+I sin qij) 

The action A has the form A =Ao + A, ,  where 

In A, we have neglected the term Zi/ICli$,/N, which is small 
for large N. 

In the action A we have not written out the term that 
arises from the Jacobian but does not contain the auxiliary 
field $. As usual, the role of these terms in the perturbation- 
theory series reduces to the cancellation of terms containing 
response functions G at equal times.I3 

The action A, can be written conveniently in the form 

where J, and S, are defined in the same way as in formula 
(2.2). The summation in (5.10) is such that the indices i, j 
run over the values for both the horizontal and the vertical 
filaments. 

We first find the one-particle Green functions 

G,(t, t ' )=- (S , ( t )$ , ( t l ) s j ' ( t ' ) ) ,  (5.11) 
D,,(t, 2') =(S,*(t)SJ(tf)  ). 

The Green function G describes the response of the system to 
a fictitious external field and is retarded: G(t,t ') = 0, if t < t '. 
In a constant field and above the transition temperature the 
system is in thermal equilibrium. Therefore, the functions G 
and D are connected by the fluctuation-dissipation theorem, 
which in the units (5.5) has the form 

dDij' (t, t') 
~ , ~ ( t ,  t f )  = - e(t-t'). 

at 

Expanding the expression (5.11 ) in a series in A , ,  we obtain 
for the function G the Dyson equation 

where G '  denotes the sum of the one-particle-irreducible 
Green functions, which can be written in the form of a series 
in powers of J2: 

In zeroth order in J2 ,  with the action A,, the Gaussian inte- 
gral in (5.11) is easily calculated: 

G,(t) =e-'O(t), G , , ( o ) = l / ( l - i o ) ~  I + i e .  (5.14) 

In first order in J2, 

-2Y(t, tr, tz, t') Dj,(tr, t2) Idti dt,, (5.15) 

where the irreducible correlators X and Yare equal to 

X(t, t,, t,, tV)=(S(t)*(t ,)  (S*(tl)S(tZ)+ h.c.1 11.(tf)S'(t'))0 
-Go(t, ti)Go(t2, t '),  (5.16) 

At large times t ,  - r2 the correlators X and Y decay like 
exp( - 4(t ,  - t2 ), and therefore in the function G ' the 
slow dynamics is unimportant. At low frequency 

In the static limit w = 0, as follows from (5.12), the function 
G coincides with the single-time correlator D, which, in its 
turn, is proportional to the static susceptibility and can be 
found from the static formulas of the preceding section, 
whence 

where a is the TAP parameter,'' equal to the expression 
(4. lo) ,  At low frequencies 

The difference of the parameter y from unity takes into ac- 
count the renormalization of the relaxation time on account 
of fast processes. As follows from formulas (5.14) and 
(5.171, 

In weak magnetic fields H < Ho,  the parameter J 2 N  /4T2 
is small and y is close to unity. In arbitrary fields and in the 
spin-glass limit H)H, the parameter J 2 N / 4 T 2  near the 
transition point is of order unity and in the stiff model under 
consideration it is necessary to take into account all the 
terms in formula (5.20). We have not found a way of sum- 
ming them, but there are no grounds to suppose that this sum 
has a singularity as T -  T,. The small numerical factor 1/5 
in formula (5.20) is connected with the rapid decay of the 
irreducible correlators X and Y, and it may be supposed that 
it will remain present in the next orders. 

The physical relaxation is described by the full Green 
function G, which satisfies Eq. (5.13). This equation coin- 
cides with formula (3.1 ) after the replacement G '- E - ', 
JU /2T- Ji/ . The averaging reduces to summation of the dia- 
grams of Fig. l and leads to Eq. (3.5). which now has the 
form 

w h e r e G = G ( o )  = Gi,(w) =1  +S(w).  
At low frequencies the Green function differs little from 

unity (S(w) 4 1) and satisfies a quadratic equation, which, 
near T, , has the form 

where T = ( T  - T, )/T, and w, 7< r; for r we have 
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Here, x=al~,J'/2Tfl'=(J2N/4Tf)(Ho/H), and - ~ ~ k ( f l ) ) S , ( t l ) S k ' ( t l )  ( V l < ( f 2 )  
x = H,,/H, in deriving the second equality of (5.23) we took (5.28) 
(4.7) into account. In the limiting cases for r we obtain -41 ( I 2 )  IS, ( f?)Si ' ( t2)  ( $ 1  ( t 3 )  -$, (t3) IS1 ( t 3 ) S , ' ( f ~ )  

- -- - --- r=r= I (uBn,), I,= (A)  "' ( I ~ K H ~ ) .  
2 [Iu m , y , J v j ( t )  J J l < ( f l )  J k l  ( t : )  J , , ( t ? ) + .  . . } e s p ~ . l i , + . l ~ ~ O ,  

Solving (5.22) and going over to the time representation, we where A,, is the effective action obtained after averaging 
obtain over the coordinatesxi , yj . The condition N ,  1 enables us to 

1 r '/I I t  make use of the mean-field approximation, in which correla- 
~ ( t )  =-L(T) F e x P ( - - ) ~ ( f ) 9  f , ,  (5'24) tors of spin variables taken at different points are decoupled 

to give a product of correlators. Taking into account that the 
where to = T r p 2 .  We find the correlation function D - correlator containing two variables S and two $ at the same 
(DU = aUD) with the aid of (5.12):. point is identically equal to zero, we obtain 

where erf(x) is the error integral. 1 + d t d l , d t 2 & -  
( 2 T )  xty,Jtj ( t )  J,k(ti)Jki (t2) Jfi(tS) 

We emphasize that the formulas (5.24)-(5.25) are ap- I, 1 

plicable only at sufficiently long times: t, r-I. 
We shall study the response of the system ofjunctions to 

a change of the field, which we represent as the sum of a 
constant part Ho and a varying part H I  ( t ) :  

11 ( t )  =A, ,+W,  ( t )  

The field change H ,  ( t )  will be assumed to be small in 
comparison with the constant part of the field. 

A convenient macroscopic quantity related to the cur- 
rents is the total magnetic moment created by them: 

where M ,  and M, are created by the normal current and the 
superconducting current, respectively. In the dimensionless 
variables that we are using the normal current is equal to 

and, therefore, it creates a magnetic moment 

To calculate the superconducting part of the magnetic 
moment we shall make use of the functional-integral formal- 
ism. We obtain 

where the actions A,  and A ,  are given by formulas (5.9) and 
(5.10), respectively, the sum over i in (5.27) runs over the 
vertical filaments, and the sum over j runs over the horizon- 
tal filaments. We shall average the expression (5.27) over 
the coordinates of the vertical and horizontal filaments. We 
obtain 

x ( $ j ( t 1 )  -$i ( t i ) )S , ( t I )S , ' ( t i )x iy ,J i , ( t )  Jji ( t i )  

The next terms of the series (denoted by ...) in (5.29) 
have the same structure as the first two written out: In them, 
the correlator of 2n matrices J, is multiplied by the sum of 
the convolutions of one function D(t,t ' )  and 2n - 1 func- 
tions G(t,t '), arranged in arbitrary order with equal coeffi- 
cients. 

Below we shall study only the response of the system to 
a slowly (in comparison with t, ) varying magnetic field. The 
correlator xi yj J, ( t )  ... J,, (tk ) decays rapidly if the differ- 
ences of all the times appearing in it become smaller than the 
characteristic time of the variation of the magnetic field. The 
correlation functions D( t )  and G(t)  are small at large 
t ) r - '  (see (5.24)-(5.25)); here D( t )  ,G( t ) ,  and there- 
fore the main contribution to the integration over the times 
in (5.29) is given by those regions in which the differences of 
the time arguments of the function D and of just one of the 
functions G are large (in comparison with t,). In each of 
these regions, in the calculation of the correlator xi yj 
JU ( t )  ... JIi (t, ) we can neglect small time differences and set 
m ,  + m, times equal to t, and the other 2n - m ,  - m ,  
times equal to t ': 

J,, ( t )  . . . Jqi ( t )  x iy jJi j  ( t )  . - J t l  ( t )  Jlrn ( t ' )  . . . J n p  (t:) - -* 
2nlH2 "-' eL2 

= I" [-I ia26 [% ( H  ( t )  - H ( t o ) ]  L2 

After this the integral over these time differences in 
each of the regions can be calculated using the relation 

J G ( t ,  t ' )  d tP=l  
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(above T, this relation is exact, and below T, it is correct in 
leading order in T, - T). Summing then the resulting series, 
we shall have 

4e NL2T JLN l+x M =--- (--;. -) 5 d t ' [ D  (t, t r )  G (t, t') + h.c. 1 
Ac 1+x 4T I-xZ 

Near the transition point the expression in round brackets in 
(5.31) is equal to 1, and the characteristic variations of the 
field H are also small: (eL2 /2&)AH 4 1 (see Sec. 6);  there- 
fore, the function $(x)  can be replaced by the first term of its 
series expansion: 

The formula (5.32) is valid when the characteristic time 
scale of the variation of the field H ( t )  is much greater than 
r - I .  The expression for the linear response is obtained from 
(5.32) ifforD(t,t ') andG(t , t f )  wesubstitutethecorrelation 
functions D ( t  - t ') and G(t  - t ' )  calculated in the constant 
field Ho . 

Using (5.24)-(5.25), we obtain an expression for the 
superconducting response to a weak alternating field 
HI ( t )  = H, e - '"' with frequency w ( r :  

The first integral in (5.33) diverges logarithmically at 
small t. This formal divergence is connected with the inap- 
plicability of formulas ( 5.24)-(5.25 ) for t 5 r -- I .  In fact, 
the integral must be cut off at t- r ;  the second integral can 
be calculated exactly.I4 Taking into account also the normal 
contribution (5.26) and going over to the original units of 
time, we obtain 

where t, = t , r r - '  with r defined in (5.23), C i s  a constant 
of order unity, and F?, = iwH, L ' / c  is a Fourier component 
of the emf induced in the system by the alternating magnetic 
field. The expression (5.34) is applicable for 

In the limit wt, 1 we obtain 

Thus, the effective conductivity of the system increases 
logarithmically with decrease of the frequency; the last term 
of (5.36) corresponds to an effective inductance 2 a w - I. 

In the opposite limit wt, ( 1 we have 

In this case the conductivity increases logarithmically with 
decrease of r = ( T - Tc )/Tc,  and the inductance is propor- 
tional to the largest relaxation time; Y a t , . The scale of 
these effects is determined by the magnitude of r ,  which is 
close to unity for H 2 Ho and small for H<Ho (see (5.23) ). 

6. STATICS AND SLOW DYNAMICS OFTHE MODEL BELOW 
THE TRANSITION POINT 

Below the transition point certain relaxation times be- 
come infinite, and the system is "locked" in one of its meta- 
stable states, from which it can escape only by overcoming a 
thermodynamically large energy barrier. Which particular 
metastable state the system is found in depends on the his- 
tory of the system; i.e., even for an adiabatically slow vari- 
ation of the parameters (e.g., IT, H) the final state of the 
system depends on the specific path along which the system 
has moved in the space of the parameters, but does not de- 
pend on the rate of motion along this path. For this the rate 
of motion should be small, but still larger than the exponen- 
tially (in the quantity n )  small rate of the transition through 
the barriers. Small deviations from equilibrium in the vicini- 
ty of one metastable state relax in a time of the order of 
t, = t , r r - '  (see (5.5) and (5.23) ). Weshallstudy only the 
slow dynamics of the system, i.e., its response to a change of 
the external parameters that is slow in comparison with t , ;  
here we shall neglect the influence of fast-relaxation pro- 
cesses. In view of this it will be convenient to decompose the 
correlation function D(t,t ' )  and the response function 
G(t,t ') (5.11 into two parts-a fast and a slow part: 

G'(t, t') =(S*(t)$(t t)S(t ' )  >, 
G(t, t f )=-<S( t )$ ( t f )S ' ( t ' )>=G( t - t ' )+A( t ,  t ' ) ,  

(6.1) 

where the "fast" functions G(t )  and E ( t )  have a power-law 
decay for t ) t , / r ,  and the "slow" functions A and q vary 
over times of the order of the characteristic time t, of the 
variation of the parameters of the system, which is much 
greater than t, /r. The "fast" functions G ( t )  a n d E ( t )  satis- 
fy the fluctuation-dissipation theorem (5.12). Adiabatic 
slowness of the variation of the parameters makes it possible 
to obtain a closed system of equations relating q(t,t ') and 
A(t,t ' )  to the entire history of the variation of the param- 
eters. We turn now to the derivation of these equations. For 
the calculation of G(t,t ') and D(t , t  ' )  we shall use, as in the 
preceding section, the functional-integral formalism. We ob- 
tain, e.g., for D(t , t  ') 

D(t,  t)  = tS, '  (t)S.(tP) )=J D p  DqS: (t)  S. ( I 1 )  exp @,+A,), 

A ,  = -1J d t r  ($i-lp,)l.jSiS~. 
2 

'J 

(6.2) 

Here and below we have included the factor l/Tir. the defin- 
ition of J,. After averaging over the coordinates x i  and y, we 
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obtain the generating functional for the correlators D(t , t  ') 
and G(t,t '): 

D ( t ,  1') = I b$ DcpSi'(t)Si(t') exp(Ao+d. . , ) ,  

The condition N )  1 enables us to make use of the mean-field 
approximation, in which, in the calculation of a one-point 
correlator consisting of variables at a point i, the factors ap- 
pearing in (4.3) and pertaining to other points can be re- 
placed by their averaged values: 

where 
1 

Q(t, t') = Tz J,,(t) Jl8(tv)D(t,  tl) 
I ,  

+LEI (Itl (1 t i J f J ( t )  -- J,, ,( tJ JA1  ( t 2 ) J l ,  (t ') 
' 6  , , r , i  

X [ G e ( t .  ti) G'(L1, tL)D(f2. t ' )  

In deriving (6.4)-(6.5) we have made use of the fact 
that theone-point correlator (I), (t)I), ( t  ')Sf ( t )ST( t  I ) )  can 
be obtained by differentiating a quantity identically equal to 
1, and so is equal to 0: 

We resolve the functions Q(t,t ') and R (t,t ') into a fast and a 
slow part: 

The functions D(t , t  ' )  and G(t,t ' )  each consist of a fast 
and a slow part (formula (6 .1)) ,  and the terms in Q(t,t ' )  
andR(t,t ') containingonly thefast partsE(t,t ') and G(t,t ') 
lead to the rapidly decaying functions Q(t,t ' )  and k (t, t I ) .  

The part of the effective action A,, due to the functions 
~ ( t , t  ') and k (f,t ') leads to a renormalization of the magni- 

tude of the thermal noise and of the fast-relaxation law. 
Since in times of the order o f t ,  the external parameters of 
the system change slowly, over these times thermal equilibri- 
um can be established within the given metastable state. For 
the slow dynamics, only the slow parts of the functions 
Q(t,t ') and R (t,t '), containing at least one factor A(t,t ') or 
q(t,t '), are important. 

Below we shall confine ourselves to studying the system 
near the transition point T,, where both functions q(t,t ' ) 
and A(t,t ') are small and, as will be shown below, 9-7 and 
A -r2. Throughout this part, 7 = ( Tc - T)/Tc > 0 below 
the transition point. We can also assume that the changes of 
the external parameters are small ( r  & 1 and eAHL2 /* 1 ) 
and take them into account only in terms of lowest order in q 
and A in formula (6.5) for Q(t,t ') and R (t,t '). Only one of 
the slow functions (q or A) appears in these terms, and - 
therefore the arguments of J,, in the correlator J...J in for- 
mula (6.5) coincide either with t or with t '. We shall calcu- 
late such correlators. Just as in the derivation of formula 
(2.4), we obtain 

J ij ( t )  . . . .I ,;/ ( t )  J I ,  (t') . . . J,,i (t') -- -- 

In the next terms of the expansion of (6.5) in powers of 
q(t , t  ' )  and A(t,t ') we can assume that the external param- 
eters are constant and set the temperature equal20 T, In 
formula (6.5) the time integration of the fast parts G(t,t ') of 
the response functions can be performed independently and 
between infinite limits. We denote 

Substituting (6.6) and (6.7) into (6.5) and collecting terms 
of first and second order in A (t,t '), we obtain an expression 
for R,,(t,t ') (the slow part of R (t,t ') ) :  

whereg,,, = g(t,,,  ) and T,,, = T(t,,,  ). In thecalculation of 
Q, (t,t ') it is sufficient to confine ourselves to terms of first 
order in A(t,t '); as a result we obtain 

C'"(t1, t?)  = t f f ( t , ,  t,) q(t1, t , )  

- 1, I ( l l [ - I . ( l , .  I )  ( ~ ( 1 ,  t . J+l>( t . tL ) )  

+ ( ~ / ( t , , t ) + ~ J ( [ , .  t ) ) A ( t , ,  t ) ] .  (6.9) 

The integral Jdt 'A(t,t ') describes the response of the 
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system to a time-independent perturbation, and therefore 
the quantity A(t,t ' )  is inversely proportional to the time 
scale of the variation of the external parameters of the sys- 
tem; this physical argument will be confirmed below. Taking 
into account that at  large times b ( t )  decays like t - ' I 2 ,  we 
find that the term in (6.9) containing b( t ) can be neglected 
if the characteristic time tp of the variation of the external 
parameters of the system satisfies tp 9 t ,  , which we shall as- 
sume to be the case in the following. 

The second term in the effective action (6.4) has the 
same form as the action for a spin S ,  situated in an external 
field 

In order to bring the first term (A $') in A,, to the same 
form, we introduce an auxiliary Gaussian field z ( t )  with cor- 
relator Q(t,t ' ): 

where the square brackets denote averaging over z ( t )  : 

1 L B z ~ z ' C ' ( Z )  mP{- j ~ ( t )  Q-I ( t .  t r )  z ( t ' )  (lt (It' 1 
[ C ( - ) I z E  

B Z ~ : '  exp{- j z' ( t )  0-1 ( t ,  t ' )  z ( t ' )  (lt dt' } 
' 

Tocalculate the correlatorsD(t,t ' )  and G(t,t ' )  with the 
action (6.10)-(6.11) we change the order of integration 
over z ( t )  and S ( t ) ,  average first over the fast thermal fluctu- 
ations (i.e., integrate over $( t )  and S ( t )  ), and then average 
the resulting expression for the correlators over the slow 
field z(t) .  

The characteristic times of the variation of the field 
h ( t )  are the same as those of the variation of the external 
parameters of the system; therefore, over the time - t ,  need- 
ed for equilibrium to be established h ( t )  can be assumed to 
be constant and the average valuep(t)  of the spin S ( t )  can 
be determined from the static formulas 

Near the transition point the characteristic magnitudes 
of ( t )  are small: [A ' 1 :  -q-r, and it was this which en- 
abled us to confine ourselves to expanding p ( t )  to terms of 
fourth order in ( t )  in formula (6.12). 

The slowness of the function R, (t,t '1 makes it possible 
to replace S * ( t  ') in the integral Sdt 'R * (t,t ')S * ( t  ' )  by its 
average valuep* ( t  '). We obtain 

E ( t ) = ~ ( t )  + j ~ . ( t ,  t ~ ~ ( t ~ ) d t ~ + h ( t ) .  (6.13) 

In the expression (6.13) for h ( t )  we have included the 
field h ( t )  conjugate to the spin variable S ( t ) ,  in such a way 
that the response function G(t,t ' ) can be obtained by differ- 
entiating [ (S ( t )  ) ], with respect to h ( t  '): 

d [ t S ( t ) ) l , - [  d p ( t )  ] G ( t ,  t ' ) =  - - - -- - 
f l t i  ( t ' )  O I z ( 1 ' )  z . 

Equations (6.12) and (6.13) form a nonlinear integral 
equation for p ( t )  in terms of z ( t ) .  This equation can be 
solved by iterations in the small quantity R,,(t,t ' ) .  In the 
expression for the response it is sufficient to retain just terms 
of first and second order in R, (t,t '), and in the coefficient in 
the term ofsecond order in R, (t,r ' )  we can confine ourselves 
to lowest order in lh(t)  1'. For the slow part of the response 
function we obtain 

+ 1 dtx R.(f. t")A(t f ' .  t f ) .  (6.15) 

Averaging over z ( t )  with the correlator Q,, (t,t '), we 
obtain 

A ( t ,  t t ) = [ l - Q o ( t ,  t ) - ( I , , ( t r ,  t ' )  +2QO2(t ,  t )+2Qoe(t ' ,  t ' )  

+ I dlu Rn ( t ,  t") I\ (t". t l ) .  (6.16) 

We shall also calculate the slow part q(t , t  ' )  of the corre- 
lation function by first averaging over the fast thermal fluc- 
tuations in a fixed field z and then averaging over z. The 
averaging over the thermal fluctuations at the times t and t ' 
can be performed independently, and therefore 

Expressingp ( t )  in termsofz(t) and R, (t,t ') by means of the 
formulas (6.12) and (6.13 ), and retaining only terms of first 
order in R,, we obtain 

+ 1 dtrr R,' ( t ,  t f r )  Qo (t", t ' )  + dtf' Q, ( t ,  t") R. ( t ' ,  t") . (6.18 

The equations (6.16) and (6.18) together with the for- 
mulas (6.8) and (6.9) form a closed system of nonlinear 
integralequationsdeterminingq(t,t ' ) and A (t,t '). Thefunc- 
tionsg(t) appearing in the quantity R, (formula (6.8) ) can 
be expressed in terms of q(t , t)  by means of the fluctuation- 
dissipation theorem, which is valid for the fast parts of the 
correlation functions: 

In the order in T under consideration, q(t , t)  andg( t )  do 
not depend on the history of the system and can be found 
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without a complete solution of the nonlinear integral equa- 
tions (6.18), (6.161, (6.8), and (6.9).  For this we consider 
the particular case of these equations when t- t '. The func- 
tions R,, (t,t ' )  and A(t,t ' )  are retarded, and therefore in this 
limit integral terms of the type Jdt "A(t,t " )A( t  ",t ') can be 
omitted. In the leading approximation in r ,  . ,V(t , t l)  = 1, 
R,,(t,t ' )  = A(t,t I ) ,  and Q,, (t,t ' )  = q(t,t '); therefore, using 
these relations in the terms of leading order in r, = r ( t ) ,  we 
obtain 

1 I +zgL ( l )  ( I - - x ) -  , - l (t. 1 ) .  (6.20a) 
( I - -T,)-  ( l - % g - ( t ) ) -  l + ~  

The system of equations (6.20) admits the trivial solu- 
tion with A(t,t ' )  = R ,  (t , t  ' ) = 0. This solution coincides 
with the static solution obtained in the replica method with 
unbroken replica symmetry (for the analogous result in the 
case H $  H, see Refs. 1 and 151, is unstable, and leads to 
nonphysical results at low temperatures. The system of 
equations (6.20) also admits another solution, with 
A(t,t '1 #0. Unlike the solution with A(t,t ' )  = 0, this solu- 
tion leads to violation of the fluctuation-dissipation theorem 
for the slow part of the response. The equations (6.20a) and 
( 6 . 2 0 ~ )  form a linear homogeneous system of equations for 
thequantities Ro (t , t  ' )  and A(t,t ' ) .  Thecompatibility condi- 
tion for this system reduces to an algebraic equation for 
Q,, (t,t) and q( t , t ) ,  which, together with Eqs. (6.20b) and 
(6.20d), forms a closed algebraic system of equations for 
q(t , t) ,  Qo ( t , t ) ,  and the magnitude of the integral term in the 
right-hand side of (6.20b) and (6.20d). Solving this system 
in the required order in T ,  we obtain 

3 
q ( t .  t )  =T, 4- -- 

G ( l + l ] )  
712, QO ( t ,  f )  ='C't+ [3/1(1$?1) +2] T~'. 

(6.21) 

I > =  J ( l t i [ ~ . ( ~ .  t ~ , ( l - ( ~ .  l f j + q ( / ,  101 ( t ,  t o  l= ( f+T)) - 'T , i .  

The Edwards-Anderson order parameter is the limit 

qxr, = lim (S '  (0) S ( t )  ), 
1- m 

where by t +  cc we mean times large compared with t ,  but 
small compared with the times of passage through the bar- 
riers separating different metastable states and small com- 
pared with the characteristic time t,, of the variation of the 
external parameters; therefore, q, coincides with q(t , t)  
(see (6.2 1 ) ) .  In the order in r under consideration, q, does 
not depend on the history of the system and coincides with 
the result of the theory of ParisiI6 (q, = q(x  = 1)  in the 
theory of Parisi) and Sompolinskyl7 for two-component 
spins.'' 

Having substituted q(t,t) and Q, (t , t)  from (6.21 ) into 
the system of equations (6.16), (6.18), (6.8), (6.9), we re- 

tain in these equations only the terms of leading order in 7, 

and make the change of variable h = 4( 1 + 77)A/3. We ob- 
tain 

where r1,2 --r(tlV2 ) .  The form of Eqs. (6.22) does not de- 
pend on the magnitude of the constant magnetic field, which 
determines only the scale of the quantity A( t l  ,t,) (the de- 
pendence v ( H )  is determined from the formulas (6.9), 
(4.6), and (4.7) ) . The equations (6.22) admit a purely real 
solution 5 = h* ,  q = q*. The solutions of the system of 
equations (6.22) for a constant field H but different ~ ( t )  
(i.e., different rates of cooling) can be obtained from one 
solution 

with r = t. If ~ ( t )  is a monotonic function, then 

and 

satisfy Eq. (6.22). If ~ ( t )  is a nonmonotonic function, then 

as before, but the expression for A (t,t ') turns out to be more 
complicated; namely, A(t,t ' )  = 0 for all t ' such that there 
exists a t "  > t '  such that r ( t ' ) > r ( t 1 ' )  (see Fig. 4 ) ;  for all 
other values o f t  ' the expression for A (t,t ') is unchanged. In 
the spin-glass theory of Refs. 2 and 17 the difference between 
the spin-glass susceptibilities measured by the method of 
cooling in a field and without a field was investigated; in our 
notation this quantity is equal to Jdt 'A(t,t '). The quantity 
Jdt 'A(t,t ' )  does not depend on the cooling process (i.e., on 
the form of r ( t  ' )  with r ( t )  = 7,) and is equal to 3r6/4 (the 
coefficient of r: was obtained from the solution of the system 
of equations (6.22) with r = t ) ,  which coincides with the 
result obtained by the replica method. l8 

FIG. 4. Example of the dependence of the anomalous response A ( t , t ' )  
(shown by the thick line) for a nonmonotonic variation of the tempera- 
ture r ( t  ') (depicted by the thin line). 
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In the system studied here the physically measurable 
quantity is the magnetic moment of the currents that are 
induced by the magnetic field. We shall consider the most 
natural situation, when the magnetic field changes by AH 
after the end of the cooling process. We shall assume that the 
cooling process ended at time t , , the field began to vary slow- 
ly at time tl, had changed by AH by time t,, and did not 
change further, and the measurement of the induced mag- 
netic moment was performed at a later time t: t > t, > t, > ?, . 
The magnetic moment (at the time t )  is given by the formula 
(5.32). In the situation under consideration the factor 
( H ( t )  - H ( r  ' ) )  in the integral (5.32) vanishes for t ')t,, 
and for t ' < t, is constant and equal to AH; therefore, a contri- 
bution to the integration over the time in (5.32) is given only 
by the region t l( t , ,  in which the functions D ( t , t l )  and 
G(t,t ' )  can be replaced by their slow parts q(t,t ' )  and 
A ( t,t '). Moreover, in the approximation linear in AH we can 
use q(t,t ') and A (t,t ' )  calculated for the situation without 
change of the field, for which A(t,t ' )  vanishes for t ' >?, ; 
therefore, in (5.32) the integral of the product of the func- 
tion q(t,t ') and A(t,t ' )  coincides with theintegral P defined 
in formula (6.2 1 ) . (When the time dependence of the field in 
Eqs. (6.22) for q(t,t ' ) and A(t,t ' )  is taken into account this 
statementbecomesincorrect,sinceA(t,t ') #Ofor t, > t ' > t,. 
) This gives the possibility of obtaining an answer for the 
linear response without solving the full system of equations 
(6.22): 

where the parameter x is given by (4.6) and (4.7). Express- 
ing the quantities in (6.23) in terms of the original param- 
eters of the problem, we have, finally, 

In the limits of strong and weak fields, x is equal to 0 
and 1, respectively; therefore, in these limiting cases B takes 
the values B = 4 for HSHo and B = 2"' for H < H o .  The 
response (6.24) is diamagnetic, as in ordinary superconduc- 
tors. 

The linear-response approximation is valid as long as 
the effect of the term contain AH in Eq. (6.22) on the solu- 
tion q(t,t ') and A(t,t ' ) can be neglected i.e., as long as 

For a larger change of the field H (AH,,, - 6kr /eL2) ,  the 
superconducting magnetic moment reaches its maximum 
value. This can occur either smoothly with increase of AH 
( M ,  -M,,,, ), or discontinuously when the adiabatic solu- 
tion of Eqs. (6.22) becomes unstable. The question of which 
of these two scenarios is realized requires a special analysis. 
In any case, an estimate of the quantity M,,,, can be ob- 
tained by substitution of the estimate for AH,,, into formu- 
la (6.24): 

7. CONCLUSION 

1. We have shown that a system of irregularly arranged 
Josephson junctions, placed in a not too weak magnetic field 

(such that the flux of the field through the entire system is 
much greater than a flux quantum-see (2.1 ) ), undergoes a 
phase transition to a macroscopically coherent disordered 
state. This state is the superconducting analog of a spin glass 
with two-component XY spins. The phase-transition tem- 
perature T, is given by the formulas (4.7)-(4.9) and Fig. 3. 
As the temperature T approaches the transition point T,. 
from above, critical slowing-down of the fluctuations of the 
phases of the individual filaments occurs, and this is mani- 
fested in the appearance of an anomalous part in the re- 
sponse of the system to a weak alternating magnetic field 
(see (5.34)-(5.37)). The effective conductivity grows lo- 
garithmically with decrease of the field frequency w and of 
the quantity T = T/T, - 1 representing the distance to the 
transition point. In addition, the response is characterized 
by the appearance of an effective inductance Y a min (w - I, 

t ,  ), where 

is the maximum relaxation time (see (5.34) ). These effects 
do not contain any small factor in strong fields H 2 H, (the 
field Ho is defined by the condition eH, ,Ll /~f ic  = 1 (see 
(3.8) ), and are proportional to ( H  /H, ) for H< H,, (in 
contrast to ordinary superconductors, in which these effects 
are small in the Ginzburg-Levanyuk parameter Gi < 1 ) .  The 
characteristic scale of the frequencies w and relaxation times 
t, at which these effects should be observed is determined by 
the formula (5.35) and does not depend on the relative mag- 
nitude of H and H,; the corresponding temperature interval 
is small for H<H,: 75 (H/H,,) '12. 

At temperatures T <  T, the system possesses a diamag- 
netic response to a quasistatic change of the magnetic field 
(i.e., a change with a characteristic time scale t, much 
smaller than the exponentially large (in N )  times of transi- 
tions between different metastable states); see (6.24). An 
analogous result for vector spin glasses was obtained in Ref. 
19, in which it was shown by the replica method in the mean- 
field approximation that the transverse spin stiffnessp, -r3. 
The diamagnetic contribution to M ,  is much greater than 
the dynamical contribution (5.34) for a sufficiently slow 
variation of the field: 

An estimate for the maximum magnitude of M, (the analog 
of the critical current in superconductivity) has been ob- 
tained in (6.25). 

It should be noted that although the ratio H /H, does 
not appear explicitly in the formulas (6.24)-(6.25) and 
(7.2), the applicability of these formulas for H<Ho is limit- 
ed by the condition 

inasmuch as the expansion parameter near the transition 
point for H<Ho is essentially lr//rH (taking (6.19) into 
account, we find that the expansion in q in (6.20a) and 
( 6 . 2 0 ~ )  is valid for q 5 1 - n, , which, for H< H,,, is equiva- 
lent to (7.3) ) . The properties of the low-temperature phase 
for Irl 2 T, require a separate investigation; it is not ruled 
out that a first-order phase transition occurs at 

I T /  = T; -7,; the corresponding transition line is shown 
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qualitatively by the dashed curve in Fig. 3. Another possibil- 
ity is a crossover at r-rH to a state with the same symmetry 
but characterized by different dependences of the physical 
quantities on r. 

In this paper we have considered the situation in which 
the transition temperature T, of the system is much lower 
than the temperature To of the superconducting transition 
in an individual strip, so that the magnitude of the Josephson 
coupling J does not depend on the temperature. This restric- 
tion is not fundamental; the qualitative picture is also pre- 
served for T, zz To, but the specific temperature dependences 
are changed, since one has to take into account the depend- 
ence of J on To - T. In the leading approximation in T we 
must assume that 7 = ( T - T, ) ( T; ' - 6' In J / a T ) .  

2. We have considered a rather particular example of a 
disordered system of microjunctions between superconduct- 
ing regions, characterized by the fact that each region has 
microjunctions with a large number of regionsZ = N. In the 
commoner physical situations this number is of order unity 
(e.g., in systems of superconducting balls in a dielectric ma- 
trix or in a matrix made of normal metal). The relationship 
between such systems and the system considered by us is the 
same as that between real spin glasses, with short-range in- 
teraction, and the Sherrington-Kirkpatrick model. The 
modeling of spin glasses on the basis of systems of supercon- 
ducting microjunctions gives the possibility of studying sys- 
tems with a variable number Z of links experimentally, and, 
thus, of studying the transition between a Sherrington-Kirk- 
patrick model with Z-N and systems with short-range in- 
teraction. It may be that this will make it possible to ascer- 
tain experimentally whether a phase transition exists in an 
isotropic planar spin glass. We emphasize again that, unlike 
magnets, in which there is always at least a weak anisotropy 
in spin space, in superconducting systems such anisotropy is 
forbidden by the condition of global gauge invariance. A 
phase transition in an isotropic planar spin glass with finite 
Z was predicted theoretically in Ref. 12: however, the exist- 
ing numerical experiments2' indicate, rather, the absence of 
a phase transition. We suggest, however, that the system 
sizes achievable for the modeling are too small to permit 
reliable conclusions. Systems with a variable number of links 
can be created, e.g., from superconducting needles randomly 
dispersed so that each needle has microjunctions with many 
others but the length of a needle is much smaller than the size 
of the system (a  "haystack"). 

Systems of superconducting balls with a small number 
of links, such that the system as a whole is near the percola- 
tion threshold, were studied in Ref. 7, in which it was shown 
that in the mean-field approximation the phase diagram in 
strong magnetic fields has a low-temperature region corre- 
sponding to a spin glass. In Ref. 7, only the equilibrium ther- 
modynamics was considered, without allowance for break- 
ing of the replica symmetry, and therefore the diamagnetic 
response effect investigated by us could not be obtained in 
Ref. 7. 

In the system studied by us all the energy barriers be- 
tween different metastable states are large in terms of the 
parameter specifying the total number of elements of the 
system. Neglecting the rare passages through such barriers, 
we obtained Eqs. (6.22), which describe the state of the sys- 
tem and its dependence on the history of the system, i.e., on 

the path in the (H,T) plane by which this state was reached. 
I t  is interesting, however, that the state of the system in this 
approximation does not depend on the shape of the T( t )  
curve if the temperature is changed at a constant magnetic 
field, even if this change of temperature is nonmonotonic. 
The form of Eqs. (6.22) is universal-it does not depend on 
the absolute magnitude of the magnetic field H in the region 
of their applicability (eHL 2/cfi> 1, T = ( T, - T)/ 
T, 4 (H /H,)  ' I 2 ) .  The magnitude of the Edwards-Anderson 
parameter, as obtained from Eqs. (6.22), does not depend on 
the history of the system in the order in T considered by us, 
and coincides with the resultI8 of the theory of Parisi and 
Sompolinsky. In the theory of spin glasses it is customary to 
study the quantity A = q( 1 ) - q ( O ) ,  describing the extent 
of the breaking of the replica symmetry of the theory. In the 
case of ordinary spin glasses A has a simple physical mean- 
ing-it is the difference between the susceptibility measured 
by the method of "cooling in the field" and that measured by 
the usual method. In a system of superconducting micro- 
junctions A does not have a simple physical meaning, but its 
magnitude can be obtained from the solution of Eqs. 
(6.2) :A = Sdt 'A (t,t '). In theleading order in T the quantity 
A does not depend on the manner of cooling (the shape of the 
curve ~(7') ), if this cooling is performed in a constant field, 
and coincides with the result of the theory of Ref. 18.  The 
equations (6.22) describe the slow (adiabatic) evolution of 
the system under the influence of the slow evolution of the 
external parameters. I t  is possible that the solution of Eqs. 
(6.22) becomes unstable for some value of the parameters, 
and the system rapidly (in times -t,) changes its state. The 
question of the stability of the solution of Eqs. (6.22) against 
such fast perturbations, for different histories of the system, 
requires a special analysis. 

In conclusion we note a surprising analogy between the 
link matrix JU of our system of microjunctions and the link 
matrix of the associative-memory model of H ~ p f i e l d ~ I - ~ ~ :  In 
both models, only cyclic correlators of the quantities JU (as 
in formula (2.3))  are important, and the magnitudes of 
these correlators are given by relations of the same type. 
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