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A quantum electrodynamic theory is given of parametric mixing of two modes of a radiation 
field in an atomic gaseous medium subjected to a strong monochromatic pump field. The 
problems of quantum fluctuations and spatial evolution of photon statistics are considered as 
well as nonlinear (with respect to the pump field) effects of photon correlations in parametric 
fluorescence. Full allowance is made not only for stimulated emission processes, but also for 
spontaneous processes and in particular for the emission of photon pairs. Calculations are 
made of the mode intensities in a medium, correlation functions of the field amplitudes,and 
occupation numbers of two modes with Gaussian or Poisson photon statistics at the point of 
incidence, and also in the case of spontaneous parametric fluorescence. The calculations are 
carried out for atomic media under one- and two-photon resonance conditions, allowing for 
saturation effects. 

$1. INTRODUCTION 

The phenomenon of parametric mixing of weak waves 
or parametric fluorescence in an atomic gaseous medium 
subjected to a strong optical field has been thoroughly inves- 
tigated mainly in connection with applications in frequency 
conversion. Problems of this kind are usually solved by a 
semiclassical approach based on the Maxwell-Bloch equa- 
tions which have been investigated in detail under steady- 
state conditions without expansion in terms of the mono- 
chromatic pump field and only for the simplest atomic 
systems (see, for example, Refs. 3 and 4).  In the semiclassi- 
cal approach the passage to the case of spontaneous para- 
metric fluorescence, when there are no weak fields at the 
entry to a medium, is made in a formal manner by replacing 
the energy density of the input signal with the energy density 
of zero-point oscillations of the electromagnetic field. To the 
best of our knowledge, no systematic quantum analysis of 
this effect has yet been made without applying perturbation 
theory to the pump field. 

Much less work has been done on the statistics of quan- 
tum fluctuations which originate from spontaneous noise in 
the interaction of a radiation field with atoms and are ampli- 
fied parametrically to macroscopic amplitudes. Recent 
theoretical and experimental investigations of these topics 
are attracting much attention because of photon correlation 
under the influence of a laser field5s6 and because of the wide- 
ly discussed possibilities, in principle, of suppressing quan- 
tum fluctuations in nonlinear and constructing 
macroscopic light sources characterized by sub-Poisson 
photon  statistic^'^,' ' (i.e., with less dispersion of the number 
of photons than in the Poisson case). Nevertheless, the pres- 
ent level of understanding of statistical characteristics of 
quantum fluctuations in parametric processes is not fully 
satisfactory. One of the reasons for this situation is that the 
approaches already e m p l ~ y e d ~ . ' ~ . ' ~  are based on the effective 
Hamiltonian method in nonlinear optics and do not allow 
fully for spontaneous processes, particularly for two-photon 
emission. Moreover, no allowance is made for the effects of 
the influence of the pump field. However, it is known that 
these processes have a decisive influence in the case of pho- 
ton correlation effects involving single atoms.I4-l6 

The purpose of the present investigation will be to in- 

vestigate the topics mentioned above and some other un- 
solved problems associated with parametric fluorescence 
under the influence of a monochromatic pump field. 

We shall develop a quantum electrodynamic theory of 
parametric mixing of radiation field modes in which one- 
and two-photon spontaneous processes are described in a 
natural manner and we shall allow also for the dependence 
on the intensity of the pump field (see $ 2). The specific 
results will be obtained without allowance for the contribu- 
tion of atomic collisions or Doppler broadening in two cases 
(see 3): a )  an atomic gaseous medium composed of identi- 
cal two-level atoms in the presence of a monochromatic reso- 
nance field of frequency w ( Iwba - wl <wba, where w, is 
the frequency of an atomic transition); b)  a medium consist- 
ing of multilevel atoms subjected to a monochromatic field 
in the case of a two-photon resonance between levels of the 
same parity (Iwba - 2w1<wba, see Fig. 1 and 3.2). It is 
known3r4 that in both cases a wave of arbitrary frequency w, 
incident on a medium generates a "mirror wave" of frequen- 
cy w, = 2w -w,." 

We shall obtain solutions for the steady-state case giv- 
ing the average number of photons in modes and the correla- 
tion function of the amplitudes of two parametrically cou- 
pled modes (§§  4 and 5 ) ,  as well as fourth-order moments, 
particularly of the correlation functions of the number of 
photons used to determine the statistics of paired photo- 

FIG. 1 .  Atomic energy levels ( a )  and quasienergy states of an atom (b) 
under the conditions of a two-photon resonance lo,, - 2wl <w,, be- 
tween levels a, and w, of the same parity. The two-photon transition 
(1p.) s / p b ) )  is induced by a pump field of frequency w and the wavy 
lines in the diagram b represent the frequencies of transitions between 
quasienergy states. 
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counts ( 5  6).  Next, in $5 7 and 8 we shall consider the cases 
of spatial evolution of modes with Gaussian, Poisson, or sub- 
Poisson statistics on entering the medium. 

8 2. KINETIC EQUATIONS FOR CORRELATION FUNCTIONS 

In this section we shall provide a general statistical de- 
scription of a subsystem containing two modes of a quan- 
tized radiation field in an atomic medium in the presence of a 
classical pump field. This field is assumed to be monochro- 
matic with frequency w; the states of the two modes in a 
volume u with momenta k, , frequencies mi, and polarization 
vectors eA, (k, ) = e( i )  will be denoted by the indices 1 and 2 
( i  = 1,2). In a quantum description the starting stage will be 
application of the density matrix method (see, for example, 
Refs. 5 and 19). We shall formulate this method in the qua- 
sienergy state representationz0 of a system comprising an 
atom and a monochromatic pump field. Such a modification 
of the method made it possible to allow for the effects of the 
influence of the pump field outside the perturbation theory 
framework when describing the evolution in time of the sta- 
tistical characteristics of radiation field modes. 

The moments of the radiation field (necessary for the 
description of interference experiments and measurements 
of photocount statistics), i.e., the quantum averages (M(t)  ) 
over the initial state of the complete system, of the products 

of the Heisenberg creation and annihilation operators 

ai' ( t )  ( t )  , ai ( t )  =aki Ai ( t )  , 

can be represented by the formula 

( M ( t ) )  = TrF(pF(t)Mo(t) 1. (2.2) 

Here, the operator Mo(t) is described by Eq. (2.1 ) written in 
terms of free field operators 

au,( t )  =a, exp ( - h i t ) ,  

whereas TrF is a trace of the states of the two modes in ques- 
tion. The density matrix of the radiation field modes 

p F ( t )  = Tr ' (p( t ) )  

is a sum of diagonal elements of the density operatorp ( t )  of 
the complete system over the states of the subsystem com- 
prising the atom, the monochromatic field, and the radiation 
field minus the two modes w ,,, . In this formulation we have 

where the quantity S ( t )  = S(t ,  - cc ) represents the scatter- 
ing matrix in the representation of quasienergy states2' with 
the interaction operator in the dipole approximation 

2nttoj '" 
w ( t ) = - i  c(,) (ajeje-io~t- aj+ej'ei"~') d ( t )  . (2.4) 

a 

Here, d ( t )  is the operator of the dipole moment of the atom 
in the quasienergy state representation, u is the quantization 
volume, the initial state considered in the limit t- - co is 
I$,) = 1 QO) ), and it contains the initial quasienergy 
state I@,) and the initial state I+,) of the radiation field. 

The equations forp(t)  and, consequently, forp, ( t )  fol- 
low from the equations for the scattering matrix. In the Mar- 

kov approximation, retaining only the terms of second order 
in the interaction W(t), we obtain 

27 + 2 (oio,) '"{[a,, a,p,(t) ]en ( 2 )  em( l )  A?: (mi)  
Tl u 

+[a,+, al+p, ( t )  ] eno ( 2 )  em* ( 1 )  A,','' (-0,) f H.c. ) 

This equation is symmetric under photon transposition, n 
and m are vector indices, and the coefficients are given by 

In Eq. (2.7) we introduced the notation 
gn (t )  = S +( t )dn  ( t ) S ( t )  and carried quantum averaging 
out over the state I@,,O) = I@,) lo), where 10) is the vacu- 
um state of the radiation field. We now comment on the 
method used to derive the kinetic equation (2.5). It applies 
to problems of parametric mixing of two modes of a radi- 
ation field. Therefore, the terms containing exponential 
functions oscillating after long time intervals are eliminated 
from the above equation using the relationship 
w, + w, = 2w when w, #w,#w. In problems of this kind the 
condition for the phase matching of modes results in selec- 
tion of photon pair emission processes, so that the restriction 
to second order in the interaction Win the weak-mode ap- 
proximation is quite satisfactory. 

Equations (2.6) and (2.2) allow us to derive kinetic 
equations for arbitrary moments. We shall give them for a 
medium in a volume u where the atomic density is N. We 
shall consider a one-dimensional model of the propagation 
of radiation field modes along the x axis in the constant- 
monochromatic-pump-field approximation under steady- 
state conditions. We shall ignore also the cooperative effects, 
i.e., we shall assume that the averages of Eq. (2.7) are small 
for atoms at different points in the medium. When these 
approximations are made, the transformation from a tempo- 
ral to a spatial description of the averages of the field opera- 
tors a, (x )  varying slowly along the x axis can be made in the 
usual wayI9 employing the substitution t-x/c and recon- 
structing the dependences on the momenta in the field am- 
plitudes a, -a, (x)eik'" (or more rigorously using the tech- 
nique of wave packets-see, for example, Ref. 5) .  
Consequently, the average number of photons in the modes 

and the correlation function of the field amplitudes 

are described by 
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d - n1,2 (3 )  = 2  Re a l , zn l , z  ( x )  $2 R e [ ~ ~ , ~ e - ~ ~ ~ g  (2) 1 + P l . z t  

dx  
(2.8) 

(a  comma is used to separate the equations for the two 
modes). The coefficients of these equations are 

2 x o i N  ai = - e n e ( i )  e m ( i )  (A:;* ( -mi )  -A% (mi )  1, (2.10) 
ttc 

4noiN p . = -  R e n  i e m  i  A ( i t  (2.1 1 ) ' fic 

2n N 
pi = - (0102) en ( 2 )  e m ( I )  (A~ iZ '*  ( -a l )  -A:: ( 0 1 )  ), 

lic 
(2.12) 

wherep, is obtained from Eq. (2.12) by the substitution [w ,, 
e ( 1 ) ] z [w,, e (2)  1. It should be pointed out that the imagi- 
nary parts Im a, ,  which determine the dispersion of the 
waves, are included in the momenta ki = ki + Im a i ,  and 
the momenta of a pump field in a medium k are taken out 
from the quantities A"', and A'-,'* (this will be explained 
further in the next section). Here, Ak = 2k - k, - k2 repre- 
sents the x component of the difference between the wave 
vectors in the medium. 

We shall conclude this section by using Eq. (2.2) to give 
the kinetic equations for the moments ( M ( x ) ) ,  

of the field operators ai (x)  [ai (0 )  = a i ]  varying slowly 
along the x axis: 

LJM "'" )) e i*hz .  

+P'( -) + A'( da, ( x )  da, ( x )  

The above system of equations describes the evolution of the 
moments of two modes due to their interaction with the 
atoms in the medium in the presence of a pump field and 
allowing for relaxation processes. 

9 3. CALCULATION OF THE COEFFICIENTS 

The coefficients in the system of equations (2.14) de- 
scribed by Eqs. (2.6), (2.7), and (2.10)-(2.13) are given in 
their general form for arbitrary atomic systems. In the pres- 

ent section we shall calculate these coefficients for atomic 
systems mentioned in the Introduction in those cases when 
the separation between spectral lines is much greater than 
their width. We shall carry out these calculations using the 
density matrix method applied to quasienergy states, which 
can be described as follows2': 

Writing down the operator 3 ( t )  in terms of the matrix 
element dU ( t )  of a dipole transition between quasienergy 
states 

b ( t )  =s+ ( t )  d ( t )  s ( t )  = o i j  ( t )  dij ( t )  , (3.2) 
',3 

we find that determination of the function (2.7) reduces to 
calculation of averages of the type 

This calculation can be carried out using the quantum 
theorem on regression of  fluctuation^,^, according to which 
the quantities of Eq. (3.3) satisfy in the t > t, case the same 
equations as the averages (@,, O / a ,  ( t )  I@,, 0 )  = 5, ( t ) .  

3.1. Two-level atom in a resonant field. We shall de- 
scribe this system employing the following notation: 
A = wba - w  is the detuning from resonance, 
R =  ( A ' + 4 1 ~ / ~ ) " ~  is the Rabi frequency, V=E,d / f i  is 
the matrix element of the interaction of an atom with the 
pump field, where E, is the amplitude of the field intensity 
and d  = ( p b  1ilpa ) is the matrix element of the dipole transi- 
tion; y is the spontaneous width of the atomic transition. We 
shall consider the case of a "strong field" corresponding to 
R  $ y, when the system has separate spectral lines at a reso- 
nance frequency w,  = w  + R  and at a "three-photon" fre- 
quency w, = w  - R.  

The averages of Eq. (3.3) obtained for the case 
I@,) = / @ ,  ) calculated to within terms of order y / R  are 
given in Ref. 15. Using these results and the known matrix 
elements of the transitions between quasienergy states of a 
two-level atom d, ( t )  (Ref. 23), we find that in the relaxed 
regime t) y- ' when A > 0, we obtain 

n o i N  
Re at = - ( e ( i )  d 1 ( ( ~ ~ - 0 b b )  

2hc 
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The spectral width which occurs in these expressions is 

.r=y (1+21~1~/52~) /2 ,  

whereas the difference between the steady-state values of the 
populations of quasienergy states 

considered in the y/O < 1 approximation is 

o,-obb=2QA/(A2f Q2).  (3.8) 

In the constant-pump-field approximation we have 
adopted, 

E (x) =E, exp ( ikx) , 

where is the momentum taken allowing for the phase mod- 
ulation of the field,3 we find that only the field phase changes 
in the medium. This dependence on x is separated in the 
kinetic equations [it is contained in the terms exp (iAkx) ] 
and it is therefore omitted from the coefficients p i  and A .  

The coefficients (3.4)-(3.7) depend nonlinearly on the 
pump field amplitude. In the limiting case of I V I $A, and 
a,, =abb ,  we consequently have Re ai = p i  = 0 to within 
terms of order y/O. In this range the nonzero coefficients 
(3.5 ) and (3.7) will be denoted by Pi.,at and A,,, . 

3.2. Atomic system under two-photon resonance condi- 
tions. It is assumed that the conditions are favorable for co- 
herent and not multistage two-photon excitation of a level 
w, accompanied mainly by decay via a level wc (Fig. 1 ) . The 
transition amplitude is governed by a two-photon matrix ele- 
ment 

where V2, and Vk , are matrix elements of one-photon tran- 
sitions. In the range y b  , yca , where 
O2 = ( E ~  + 41 V2 1 2 ,  ' I 2  is the two-photon Rabi frequency and 
ybc and yca are the spontaneous partial widths of the transi- 
tions Ipb ) - lpc ), and lac ) - 1 pa ), respectively, the four 
spectral lines of the system are separated on the frequency 
scale. They are governed by dipole transitions via quasien- 
ergy states and their frequencies are24 

Y , = G ~ - T ~ , - ( E ~  Qz)/2, V Z = G ~ - G , - ( E - ~ Z ) / ~ ,  
(3.10) 

where Gi are the frequencies of atomic levels with non-reso- 
nant Stark shifts and E = Zba - 2w. 

The approximation in which the spectral lines do not 
cross, Ivi - v, 1 I ybc , yca , is used in Ref. 25 to obtain equa- 
tions for the density matrix of quasienergy states Go ( t ) .  We 
shall give the final results of calculations of the coefficients 
(2.10)-(2.13) in accordance with the scheme proposed 
above and we shall do this using the equations given above as 
well as the familiar e x p r e ~ s i o n s ~ ~ . ~ ~  for dipole transitions be- 
tween quasienergy states: 

aO, sinZ O r b  
4a-caiN { ~e.(i)di/ '[  r:+ (Wi-vl)a -I- pi = --- obr cos2 era 1 ra2+ ( W , - V ~ )  fic 

In these expressions the spectral widths and the steady-state 
values of the populations of quasienergy states are given by 

Here the following notation is employed: 

= d b  d 2 = ( c p , ~ l ~ , > ,  cos 0= (I+E/!&)'~~, 

We shall also show that for this system the phase modulation 
of the pump field is due to nonresonant transitions and is 
unimportant (i.e., k = k),4,'R in contrast to the case of a two- 
level atom. 

§ 4. GROWTH OF PARAMETRIC FLUORESCENCE FROM 
SPONTANEOUS PROCESSES 

It is convenient to discuss this topic and to establish the 
correspondence with the results for single atoms, starting 
with an analysis of Eqs. (2.8) and (2.9) for short propaga- 
tion lengths. We shall consider the case when only one of the 
modes of frequency w, enters a medium. The average num- 
ber of photons in this mode is n, (0),  whereas the number of 
photons of a new mode which appears at a frequency 
2w - a , ,  is n2(x),  where nz(0)  = 0 is obtained in the lower 
orders of the expansion in the length, and these numbers are 
described by 

The correlation function of the amplitudes of the two modes 
is 

The physical meaning of these results is quite clear. The 
quantities p ,,, and A describe spontaneous processes which 
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in the vacuum case with n, (0)  = 0 give rise to weak "bare" 
fields at frequencies w ,,, . The coefficientfi with the factor c/  
Nu describes the rate of emission of photons of frequency 
w, #w by a single atom in the course of resonance fluores- 
cence in the relaxed regime. The quantity A is the amplitude 
of the process of spontaneous decay of the pump photons 
into a pair of photons of frequencies w ,  and w2 related by the 
conservation law w ,  + w2 = 2w; this amplitude is taken per 
unit length. 

We shall now consider reduced propagation equations 
for slowly varying creation and annihilation operators for 
photons in the two modes: 

(J 
-al (x) = Re a l a l  (x) fp,' exp (iAkx) a,+ (5) f fl(x) ,  
dx 

a (4.4) 
- a,+ (x) = Re a2a2+(x) +pl  exp(-iAkx)al (x) + fz+(x). 
ax 

The form of these equations differs from the semiclassical 
equations because of the contribution of the Langevin noise 
operators fl,,, where (f,,, ( x )  ) = 0. 

The coefficients Re a, andp, represent the polarizabili- 
ties of an atom experiencing an external weak field. A gener- 
alization of the Einstein formula for the diffusion coeffi- 
c i e n t ~ ~ ~  and Eqs. (2.8) and (2.9) for nonzero correlation 
functions of the Langevin operators yield 

= exp (iAkx) (A'-p2') 6 (x-x') . (4.6) 

In a phenomenological analysis (see, for example, Ref. 
8) the correlation functions Cf, f,), and Cf, f,) are usually 
assumed to be zero and (f'A ) does not allow for the fre- 
quency dependence and the effects of the intensity of the 
pump field. However, using the results of Eqs. (3.4)-(3.7) 
and (3.1 1 )-(3.14), we can readily show that the correlation 
functions of Eq. (4.6) are comparable in magnitude with 
those given by Eq. ( 4 . ~ ) . ~ '  We shall now give the formal 
solutions of the operator equations: 

a, (x) =cp, (x) a, (0) +pz' exp i - x cpo (x) a,+ (0) (:) 

The following notation is used in these solutions: 

cpo(x)=(g+-g-)-'[ exp (g+x) - exp (g-x) I ,  

and the gains are given by the expressions 

(Here and below, we use a combined notation for two quan- 
tities separated by a comma.) Averaging of the expressions 
in the system (4.7) over the initial coherence states of the 
radiation field I $=) = Izl) Iz,), and a, (0)  Iz, ) = zi lzi ) 
gives the familiar solutions3 of the semiclassical propagation 
equations. 

We shall represent the average number of photons in a 
mode as a sum of two parts,one of which is "stimulated" and 
depends on the initial state of the two modes and the other is 
"spontaneous" and is equal to zero at the entry to the medi- 
um: 

where these parts can be described by the following expres- 
sions if we use Eqs. (4.5) and (4.6) and assume that Ak = 0: 

n,,, (XI =Al exp (2 Re g+x) +B1 exp (2 Re g-x) 

-2 Re [Cl exp ( (g+'-g-) 2) I ,  
(4.10) 

n,,, (x)=Alo[exp(2 Reg+x)--11 

Re g+ [exp (2 Re g - i )  -I] +B,o ---- 
Re g- 

where the coefficients in front of the exponential functions 
are 

C,= Ig+-g-l-2{(g+*- Re a,) (g-- Re az )n l  (0) +I yzlZn, (0) 
+pz'(g+*-Re az)g*(0)+pz(g-- Re az)g(O)), 

and the quantitiesg, - are given by Eq. (4.8) in the case when 
Ak = 0. 

The component n,,, (x)  with the boundary condition 
n,,, (0)  = n, ( 0 )  depends on n ,,, (0)  and on the correlation 
function g(0) .  The component n ,,, (x) ,  independent of the 
initial state of the modes of the radiation field, describes the 
change in the average number of photons emitted in one- and 
two-photon spontaneous processes. The coefficients A,,, 
B,,, and C,, are obtained from the coefficients A ,, B,, and C, 
as a result of the following substitutions: 

where the first of these coefficients is given by 
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FIG. 2. Frequency dependence of the average number of photons at a 
distance L = 1000a,-' in a two-level medium obtained for the case when 
2 1 V I = ( A  I .  The parameter a,, = 4?rNw,, /dI2/Ficyis equal to 426 cm- ' for 
the (6s') 'So- (6s6p) 'Py transition in Ba atoms (o,, = 3.39X lOI5 
s e c ' ,  Id 1 = 7.7X 10-lXcgsesu, y = 1 . 8 8 ~  10Xsec-I) at atomicdensities 
N=10i2 cm-'. 'Ihe curve is not given in the frequency range 
lo, - w (  > R, where the phase-matching condition is not obeyed, and be- 
tween the frequencies o, = w rt: ( 5 2  - 12y), i.e., far from the resonance 
and "three-photon'' lines. 

In the range 2 Re g+x) 1 the average number of pho- 
tons in a mode rises exponentially along the propagation 
length 

We shall now give numerical results for the case of spontane- 
ous parametric fluorescence n, (0)  = n,(O) = g(0)  = 0 in a 
medium of two-level atoms. The dependence of the quantity 
n,,, (x)  = Aloexp (2Reg+x) ontheparameter (w, - w)/y 
in the region of the resonance and "three-photon" lines is 
shown in Fig. 2. The curve is asymmetric near the frequen- 
cies w ,  =w + R [n,,, (L)  corresponding to 
w, = w - R + 1.5y is ten times greater than n,,, (L)  corre- 
sponding tow, = w + R - 1.5~1.  This asymmetry is due to 
the circumstance that in the case of a two-level atom in the 
field of resonant pumping the weak field is absorbed at the 
resonant frequency w + R and is amplified at the "three- 
photon" frequency w - a. 

4 5. CORRELATION FUNCTIONS OF THE FIELD 
AMPLITUDES 

The conditions under which we may encounter the cor- 
relation function of field amplitudes, which contains addi- 
tional information on the scattering medium, are discussed 
in Ref. 27 together with the spatial and temporal properties 
of this function. In the present section we shall study the 
correlation function of the field amplitudes allowing for the 
parametric interaction between the modes in the case when 
Ak = 0, when the interaction is most effective. We shall give 
the final result written in the form of a sum of the parts which 
depend on the states of the modes on entry into the medium: 

g,, ( x )  =:Die, Re B+x+D2e2 Re #-x-Dse(8++#-*)r- D,e (8+*+#- )x  (5.2) 

This result is obtained from the solutions (4.7) and the 
averages (4.5) and (4.6). The coefficient in front of the ex- 
ponential functions in Eq. (5.2) are as follows: 

+(g+,- - Re a,)  (&,- - Re al)g(0)+pz'~l 'g ' (O)) ,  

+ (g+.- - Re a,) (L,+ - Re a l )g(o)  f p~'pl'g'(O)), 

and the coefficients Djo are deduced from Dj by the transfor- 
mations of Eq. (4.13). 

In the region of the strongest amplification, we obtain 

whereas for short lengths we find from Eqs. (5.1 )-(5.3 ) that 
the result is given by Eq. (4.3). 

In the range Akx > 1, if Ak #O, the parametric coupling 
between the modes is unimportant; it then follows from Eq. 
(2.9) that there is no spontaneous component of the correla- 
tion function. 

In the case ofa medium of two-level atoms in the satura- 
tion range where I V I ) I A 1 ,  we find that, to within terms of 
order y/R, the amplification of a mode is balanced by its 
absorption (see 3.1) and the correlation function is gov- 
erned entirely by the spontaneous process of emission of 
photons in pairs: 

5 6. SOLUTION OF EQUATIONS FOR FOURTH-ORDER 
MOMENTS 

We shall now consider statistical characteristics of 
modes described by the correlation functions of the numbers 
of photons in the form of the normal product of the operators 

The fourth-order moments which follow from Eq. (2.14) 
satisfy the following closed system of equations: 

a - Gii(x) =4  Re aiGlt  (x) +4 Re[plRi (x)e-iAAxl+4B~n~ (x), 
ax 

(6.2) 

a - G,, (x) -2 Re (a3+az) GI, (x) + pin, (3) +B2n1 (x) 
a x  

+2 Re[ (plRi(x) +pzRz(x)+hg(~) )e-'Ak"l, (6.3) 
d 

-Ri (x) = Re (3aI+a2)Ri'(x) P ~ R ( x )  e-'Ak"+2g1g(~) 
ax 

+ [ 2 p , * ~ ~ ~ ( x ) + p ~ ' G ~ ~  (x)+2h'ni(x) leiAk" . (6.4) 
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4 7. GAUSSIAN STATISTICS WITH CORRELATION 
BETWEEN MODES 

a - R ( x )  = 2 ~ 0  (ul+a2) R'(x) 
dx 

The following notation is used in this system: 

where thequantities ni ( x )  andg(x) are the solutions ofEqs. 
(2 .8)  and (2 .9 ) ,  and the equations for the moments G,, and 
R ,  are obtained from Eqs. (6 .2)  and (6 .4 )  when the indices 
are replaced. 

We shall now consider how to solve the above system of 
equations for arbitrary boundary values of the moments 
which are determined by the photon statistics in the two 
modes on entry into the medium. We shall first consider the 
problem in the semiclassical approximation ignoring spon- 
taneous processes. In this approximation we can drop the 
terms with the coefficients fii and /2 from the equations and 
this-as we can readily see-gives a homogeneous system of 
equations. The general quantum electrodynamic solution is 
a sum of linearly independent solutions of the homogeneous 
system, which we shall denote by Go, X i ,  g ,  and of a particu- 
lar solution of the complete system. Direct substitution read- 
ily shows that the particular solution may be selected in the 
following form 

- n1st (x)n2,, ( x )  - lgst ( x ) I 2 ,  

R  I ( x )  = 2 ( n i ( x ) g ( x )  - n,, (xlg, ,  ( X I )  (6 .6)  

with zero boundary solutions at x  = 0,  where the compo- 
nents nisi and g,, satisfy Eqs. (2 .8 )  and (2 .9 )  without the 
free termsfl, and A. Thus the solution of the quantum prob- 
lem is described by the following expressions: 

Gii ( x )  = Gi, ( x )  + 2 ( n f ( x )  - n;,, ( x )  1, (6 .7 )  

R i ( x )  = 2 ( n i ( x ) g ( x )  - n,,, (xlg, ,  ( X I )  + g i ( x ) ,  
(6 .9)  

R ( x )  = ii .(x) + 2 ( g 2 ( x )  - g ; , ( x ) ) ,  (6 .10)  

where the quantities n ,  ( x )  and g ( x )  for the two atomic sys- 
tems under consideration are given by Eqs. (4.9)-(4.11) 
and (5.1 )-(5.3).  We can find G and g in the semiclassical 
approximation if we take the solutions given by the system 
(4 .7)  and multiply them directly by the operator equations 
from which the Langevin terms are omitted. We then have to 
drop the spontaneous contributions [which are allowed for 
fully in the particular solution (6 .6)  1 also in the final stage 
of the calculations, writing down the averages of the prod- 
ucts of the operators ai ( 0 )  and a,+ ( 0 )  in the normal form 
without allowance for their commutators. An analysis of the 
solutions (6.7) and (6 .8 )  for different cases will be made in 
the next two sections. 

We shall consider the case of spontaneous parametric 
fluorescence as the simplest application of the results ob- 
tained above. In the case when the vacuum initial state of 
two modes is 14,) = lo ) ,  lo),, the homogeneous system of 
equations has solution zero. Consequently, Eqs. (6 .7 )  and 
(6 .8)  give the expressions 

GI, ( X I  = 2n:, ( x ) ,  (7.1) 

G12(x) = n,,, (x)n2,, ( x )  + lg,, ( x )  1 2 ,  (7 .2 )  

where the spontaneous components n,,, and g,, correspond- 
ing to Ak = 0 are given by Eqs. (4.1 1 ) and (5 .3) .  

The mean square of the fluctuations of the number of 
photons in a mode of frequency w,  is given by the following 
expression derived from Eq. (7.1 ) : 

( ( A n ,  ( x ) I 2 )  = n,,, ( X I  + n:, ( X I ,  (7 .3)  

which describes the fluctuations of a single mode of chaotic 
light.28 It follows from Eq. (7 .2)  that photons in the modes 
w ,  and 2w - w ,  are correlated by a bunching effect 
( G , ,  - n l n 2 > O ) .  

In the case of short propagation lengths the amplifica- 
tion and absorption effects are unimportant, so that the nor- 
malized correlation function g, , (x)  = G , , ( x ) /  
( n  , ( x )  n 2 ( x )  ) considered in the lowest order of the expan- 
sion in x  is given by 

g12(x)=l+(h12/Pi$2i-. . . . (7 .4 )  

We shall consider the ratio lA I2/fi,fl2, which describes the 
difference between the process of simultaneous emission of 
pairs of photons of frequencies w , and w,  = 2w - w ,  and the 
corresponding process in which the photons are emitted in- 
dependently of one another. 

Two-levelatom. Using Eqs. (3 .5 )  and (3.7) we find that 
in the region of the frequencies w , -- w + R, and w,  -- w f R, 
the above ratio is given by 

where for the values / V I % / A  / we have /A  I 2  = f11P2, and for 
I V I < / A /  we obtain IA I2 / ( f l1 f i2)  =: A4/41 V 1 4 $  1 .  Numerical 
values of the quantities lA l 2  andf11f12 are given in Fig. 3 for 
the characteristic value 2 1 V / = i A 1 .  We must bear in mind 
that ( A  I2>fi,fi2. This inequality is a manifestation of the ef- 
fect, which is nonlinear in the pump field. The quantity 12 1' 

FIG. 3. Dependences on the parameter ( w ,  - o ) / y :  1) 11 1 2 ;  2( PIP2; 
calculations made on the assumption that 21 VI = lAl in the frequency 
range w ,  so + R employing the units a: x lo-' cm-' where the param- 
eter is a, = 47rNw,, ld/2/ricy; the frequencies between 
w ,  = w + ( R  - 4 y )  are not considered. 
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near the poles is propertional to the sum of the populations 
(u,, + ubb ) 2  = 1 ,  and the productP1fi2 contains the factor 

the smallness of which is due to filling of the state I@, ), prior 
to the emission of a resonant frequency. 

System with a  two-photon resonance. In the region of the 
lines described by Eq. (3.10) we have w, z v ,  or v2 and 
w, z v, or v3, which are separated by the Rabi frequency, and 
then Eqs. (3.12) and (3.14) yield 

It follows from the above formula that the measured values 
of Eq. (7 .4)  at two frequencies yield two relations for finding 
the two partial widths of the transitions. 

The results given by Eqs. (7.1) and (7.2) represent a 
special case of the more general formulation of the problem 
when a weak field incident on a medium has Gaussian statis- 
tics, i.e., when the initial moments of higher orders can be 
expressed in terms of the second-order moments. A direct 
check shows that the system of equations (2.14) for the mo- 
ments ( a ,  + (x)ma2t(x)pa2(x)kal(x)') for m + k  = p  + 1 
is closed, finite, and has the following solution 

<a,+ ( ~ ) " ' + ~ - ~ a ~ +  ( x )  ma2 (x)'at ( x )  

=r, (n2.i--k) !m!k!L! 

f !  (k-f) ! (1-f) ! ( m - k f f )  ! 

x nl ( 2 )  i- fn2 ( 2 )  '-'g (x) 'g' (5 )  n'-h+i. (7.7) 

These expressions describe the evolution of a field with 
Gaussian statistics and a correlation between photons in two 
modes. They are valid for arbitrary boundary values n,,, ( 0 )  
and g(O),  and also in the case of spontaneous parametric 
fluorescence. 

9 8. QUANTUM FLUCTUATIONS OF TWO-MODE COHERENT 
LIGHT 

We shall now consider the contribution of spontaneous 
processes to parametric mixing of two modes which are de- 
scribed by the coherent states I $ , )  = / z , ) / z 2 ) ,  and ai 
( 0 )  lzi ) = zi jz,), on entry into the medium, i.e., we shall 
consider the case of Poisson statistics. We shall use the meth- 
od of solution of Eqs. (6.2)-(6.5) described in $ 6. We can 
easily demonstrate that the solution of the semiclassical 
problem - with the boundary conditions cii (0) = Jzi 1 4 ,  - 
G,,(O) = / z , / ~ ( z , ( ~ ,  R i  ( 0 )  = (z i  / 2 z , z 2 , A ( ~ )  = z:z: isasfol- 
lows: 

These expressions differ from the corresponding Gaussian 
case and they describe the evolution of statistical character- 
istics of two-mode coherent light due to spontaneous noise 
and parametric interaction. 

It follows from Eqs. (8.3) that bunching or antibunch- 
ing occurs between photons of different modes 
( G I ,  - n  ,n2 S O ) ,  for a special set of the phases of the probe 
fields z, = lz, Iexp(i0, ) and of the phase of the intensity of 
the pump field Eo = I Eo I exp ( ie) .  In particular, in the case of 
a resonant two-level medium when Ak = 0  and 1 V I % / A  I ,  we 
obtain 

G I 2 ( x )  - n , ( x ) n , ( x )  

= 2 R e [ e x p ( i ( B ,  + 8 2 - 2 e ) ) i l , , , ] ( z , z , x +  i ls , , /2x2,  
(8 .6)  

where A,,, is the value of the coefficient of Eqs. (3 .7)  in the 
saturation region with a specified dependence on the pump 
field phase. 

The dispersion of the number of photons in a mode 
differs from the Poisson law and is described by 

( ( A n i  1 2 )  = ni ( X I  + n,, ( X I  (n,, ( X I  + 2ni,, ( X I  1. 
(8 .7)  

The condition that the coherent component of the mode o, is 
much greater than the random component can be written in 
the form ( G I ,  ( x ) / n :  ( x )  ) - 1 < 1, and hence we obtain the 
condition n  ,,, ( x )  % n  ,,, ( x )  . Application of this condition to 
the single-mode case n ,  ( 0 )  = lz, 1 yields the condition for 
the average occupation number of a mode at the entry: 

n , ( O ) $ l , ( ~ )  = n l s P ( x ) / n , , ,  ( ~ ) l ~ , ( ~ )  = , .  (8 .8 )  

In the limit of short lengths the condition for the coherence 
of a mode is n ,  ( 0 )  %Pix, and in the amplification range we 
havex$(Reg+)- '  and 

For a resonant two-level medium (see 5 3.1) if 
) V / < J A J , ~ e o b t a i n l , ~ A ~ / 1 V 1 ~ $ 1  i f w , ~ ~ ,  a n d l , k l , i f  
w, z w , .  The reason for this asymmetry is given in § 4. In the 
saturation region where / V I $ I A  / the threshold values of the 
occupation numbers become comparable: I, , ,= , ,z l ,  1 ,,=,, 
z 41 V / 2 /A2  $ 1 .  In the case of the frequencies in the wings of 
the spectral lines described by R $ Iw , - w , ,  I $ y, we gener- 
ally have I ,  2 1.  

We shall now consider briefly the feasibility of amplifi- 
cation of single-mode light with n ,  ( 0 )  # O ,  n,(O) = 0, and 
sub-Poisson statistics, when the dispersion of the number of 
photons in the length x  

is less than in the Poisson case, i.e., when G I ,  ( x )  < n: ( x )  .4' 

We shall now turn to Eq. (6.7).  In the amplification range 
we find from the solutions (4.7 ) that 

AmZ =- [G,, (0 )  -211i2 ( 0 )  + (n ,  ( 0 )  + L t )  ' I m p  ( 4  Reg g+x) 
1: 

1152 Sov. Phys. JETP 65 (6), June 1987 S. T. Gevorkyan and G. Yu. Kryuchkov 1152 



An analysis shows that the coefficient in front of the expo- 
nential function is positive even if G I ,  (0 )  < n: (0).   his is 

- - 

due to the fact that 2 1, and it can be seen also from general 
considerations; in the amplification region the main asyrnp- 
tote of the dispersion ( 8.10) is equal to the difference (8.1 1 ). 
Hence, we can see that (8.11 ) is positive, and this is true also 
of ( ( A n ,  ) 2 ) .  Therefore, in this formulation of the problem 
the amplification of light observing sub-Poisson photon sta- 
tistics is impossible. 

Continuous noise converts a sub-Poisson mode into a 
Poisson mode even if the propagation length is only -P -'. 
It is important to note that if we ignore the two-photon spon- 
taneous contribution [A = 0 in Eq. (8.9) ] in the wings of the 
spectral lines of a two-level atom where the frequencies are 
~ $ I w ,  -~ , , I%y,weobtainI , -y/Iw,  -w,,,I41,whichis 
in conflict with the above reasoning. 

Both authors are grateful to B. V. Kryzhanovskii, Yu. 
P. Malakyan, and M. L. Ter-Mikaelyan, and one of them 
(G.Yu.K.) is also indebted to A. P. Kazantsev and V. I. 
Ritus for discussions. 

"Experimental investigations of parametric scattering for the two systems 
discussed above were reported in Refs. 17 and 18. 

"The relationship between the quantities a,, ( k )  in Ref. 21 and the density 
matrix of the complete system is given by the formula 
[+,Ju,, ( t )  = ?( (@, lp(t) I@, ) ), where the trace is summed over 
the variable rad~at~on fields. 

3'A mixed correlation function is allowed for in the problem of quantum 
fluctuations in the degenerate four-wave mixing considered in Ref. 26. 

4'The sub-Poisson photon statistics was observed experimentally in reso- 
nance fluorescence of single atoms.z9 
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