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Hopping conduction was simulated with a computer, for the first time ever, with allowance for 
electron-electron interaction. Two- and three-dimensional lattice models were studied with 
random scatter of the site energies. The density of state is obtained as a function of 
temperature and energy. It is shown that Coulomb interaction decreases sharply the absolute 
value of electric conductivity and increases its temperature dependence. The behavior of the 
conductivity and density of states agrees with the premise of a soft Coulomb gap. 

1. INTRODUCTION 

The electric conductivity of localized electrons is 
known to be effected at low temperatures by hopping, with 
the hop range increasing as the temperature is lowered (vari- 
able range hopping, VRH) Mott' has shown that for nonin- 
teracting electrons the temperature dependence of the elec- 
tric conductivity is given by 

whereg, is the density of states (DS) on the Fermi level, a is 
the localization region, d = 2 or 3 is the dimensionality of 
the space, fly = 22.2 (Ref. 2) and fl = 13.8 (Ref. 2) .  
Efros and Shkolvskii3 have shown that electron interaction 
leads to formation of a soft Coulomb gap, i.e., to a power-law 
decrease of the DS to zero when the energy tends to the 
Fermi energy. Consequently, the temperature dependence of 
the electric conductivity predicted in Ref. 3 is of the form 

where e is the electron charge, x the dielectric constant, 
p, = 2.8,4 andfl, = 6.5.5 In the main, the experimental data 
for three-dimensional ( 3 0 )  systems confirm Eq. (2)  (see 
Refs. 2 and 6).  The available experimental data on MIS 
structures in the absence of a magnetic field, however, favor 
more readily Mott's law.' Nor is the question quite clear 
from the theoretical standpoint. A Coulomb gap exists for 
one-electron excitations that transfer electrons from site 
(node) to site under the condition that the other electrons 
are frozen in positions corresponding to the ground state. 
The initial derivation of (22) corresponded to just this types 
of electron motion. We shall call this hereafter the one-elec- 
tron-transport approximation. It does not take into account 
the possible correlations of the displacements of the various 
electrons. These correlations can be of two types.8 First are 
simultaneous, in the quantum-mechanical sense, hops of 
several interacting electrons. Second are individual electron 
hops that take place consecutively in time in such a way that 
some electrons prepare the path for the others by lowering 
with their potential the appropriate barriers. One might 
think that such a motion is capable of lifting the restrictions 
imposed by the Coulomb gap. 

There is at present no theory of multielectron transport, 
since the interaction in a system of localized electrons is by 
no means weak. We have therefore decided to simulate elec- 
tron-field-induced electron motion using a computer and the 

Monte Carlo method. The simulation does not take multi- 
electron hops into account, i.e., it duplicates only the second 
type of correlation, which we believed to be the most impor- 
tant during the planning of this study. Our main result is that 
when account is taken of all the successive hops the tempera- 
ture dependence of the hopping electric conductivity for 2 0  
and 3 0  systems is of the form (2),  and that the coefficients 
p, do not differ greatly from those obtained above. 

Another result of the present study is the temperature- 
dependent density g(&)  of the density of one-electron states. 
In the 3 0  case, ours is the first study of the DS at finite 
temperatures. At energies&) Tbut small compared with the 
width of the Coulomb gap, our results are well described by 
the earlier known relations2 

E' if d=3, 

( e l  if d=2,  

where d is the dimensionality of the space and the energy E is 
measured from the Fermi level. At nonzero temperatures, 
the DS on the level is not zero. The reason is that the argu- 
ments leading to Eq. (3)  are incorrect in an energy band of 
order Tin the vicinity of the Fermi level. We can therefore 
estimateg(0) by replacing E in (3)  by T. Then 

where G, and G, are numerical coefficients. The simulation 
yielded the relation (4)  with G, =: 1 1 and G, =: 2. It is impor- 
tant to note that we have not observed in the DS any polaron 
effects2 which should be manifested by an exponential de- 
crease ofg(0)  with temperature at d = 3. 

2. DESCRIPTION OF MODEL 

We used for the simulation the so-called lattice model.2 
In this model the electrons can occupy the sites of a simple 
cubic (or quadratic) lattice, the number of sites being double 
of the electrons, but not more than one electron can be on 
each site. Neutrality is achieved by appropriating a charge e/ 
2 to each empty site and a charge - e/2 to an occupied one. 
All the charges interact in accordance with Coulomb's law. 
Each site is assigned a random energy pi of non-Coulomb 
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nature, uniformly distributed in the interval [ - A J ] .  The 
energies pi corresponding to neighboring sites are not corre- 
lated. The total system energy can be represented in the form 

where i and j number the lattice sites, ni = 1 if the site is 
occupied and n, = 0 if it is empty. The single-particle ener- 
gies pi are given by 

The Fermi energy EF is zero in this model at all temperature. 
The DS g ( ~ )  of the lattice model was investigated many 
times for T = 0 (Refs. 9 and lo),  and also for T # 0 in the 2 0  
case. The thermodynamic properties of this and close mod- 
els were also investigated by the Monte Carlo meth~d. '~."  
Hopping conduction, however, was heretofore investigated 
by the Monte Carlo method only in systems without Cou- 
lomb interaction.12 In the present paper we simulate, for the 
first time ever, the electric conductivity of a system, with 
allowance for Coulomb interaction, by direct calculation of 
charge carried in an external electric field. To simulate elec- 
tric conduction, the lattice model must be supplemented by 
an expression for the frequency of the transitions between 
two arbitrary sites i and j. In the theory of hopping conduc- 
tion it is customarily assumed that if an electron is located on 
site i, while site j is empty, the probability of the electron 
transition takes the form 

y i j = y ~ ~  { er~(-Aij/T) if Ai j  > 0, 
1 if Aij<O, 

where hi, is the work needed to transport the electron 
between sites i and j, 

and rV is the distance between the sites. 
Strictly speaking, if the electron transitions were ac- 

companied by phonon absorption and emission, Eq. (7)  
would have to contain a more complicated equation contain- 
ing Planck functions. Equation (7)  is obtained from this 
complicated expression at A,. ) T, which holds as a rule un- 
der hopping conduction conditions. Expression (8)  de- 
scribes the overlap of the wave functions of sites i and j, the 
assumption that yo does not depend on rU and AV, is model- 
dependent, and does not influence the result, since we are 
interested mainly in experimental relations. 

We have unfortunately arrived at the conclusion that 
the use of the probability density (8)  for the simulation calls 
for more computer time than available to us. We therefore 
propose and investigate a model that is simpler in this re- 
spect, which we call the R-model. In this model hops are 
possible only over distance not exceeding R: 

The form of the function y?' (rU ) does not affect in any way 
the equilibrium properties of the system, but influence 
strongly the electric conductivity. Indeed, in the R model the 
characteristic length of the hop cannot increase monotoni- 
cally as the temperature is lowered, as is the case in real 

system, but remains equal to R. Accordingly, the activation 
energy should not change with temperature, i.e., the tem- 
perature dependence of the electric conductivity at low tem- 
peratures should be of the form 

which differs substantially from ( 1 ) and (2) .  We shall show 
presently, however, that the character of the R-dependence 
of the activation energy E, (R ), obtained within the frame- 
work of the R model, explains the role of the Coulomb gap in 
the hopping conduction. To this end we derive Eq. ( 10) and 
an expression for E, ( R )  within the framework of the one- 
electron theory of hopping conduction. It is assumed in this 
theory that all the lattice sites are interconnected by electric 
impedances Zq of the form2 

where (...) means averaging over time at fixed occupation of 
the sites. At low temperatures,' 

8 -  1 - i if EiEj<O, 
eij = r n a x ( l ~ ~ l , I & ~ ( )  if eie,>O. 

(Recall that the Fermi energy is zero.) The activation ener- 
gy is determined by solving the percolation-theory problem 
with the connectivity conditions E~ <E, (R ). Neglecting the 
Coulomb interaction, E, (R ) can be estimated from the con- 
dition that 

go&, (R) Rd- I .  (12) 

Hereg, = ( 2 A )  - 'I - is the density of states, determined by 
the energy spread pi, and I is the lattice constant. Conse- 
quently 

where a: are numerical coefficients that depend on d. The 
estimate (13) is made in accordance with Mott's ideas, as 
emphasized by the superscript M of a?. In the presence of a 
Coulomb gap, E, must be estimated by using the density of 
states (3 ) averaged over the E, energy band. We then obtain 
in place of ( 12), in order of magnitude 

This yields 

E.., (R) =adCe2/xR, (15) 

where a: are numerical coefficients. Thus, the E, (R )  de- 
pendence with allowance for the Coulomb gap differs greatly 
from the dependence given by Eq. ( 13) for the case of a 
density of states that is constant near the Fermi level. 

The numerical coefficients a? and a: must be deter- 
mined by solving the corresponding percolation-theory 
problems. We have estimated them by the method of invar- 
iants, proposed in Ref. 14. Such an estimate yields for the 3 0  
model 

and for the 2 0  model 
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We continue the investigation of u ( R )  which we need 
for subsequent comparison with the calculation. Within the 
context of the one-electron approximation we can obtain 
also for the pre-exponential factor in ( 10) an expression val- 
i d a t c A ( R ) ) T ( R e f . 2 ) . A t d = 3 w e h a v e  

oo ( R )  =C2yoe21T. ( 1 9 )  

Here C2 and C, are unknown numerical coefficients, and Y is 
the exponent of the percolation-theory correlation radius. 

If T & E ~  ( R ) ,  the electric field in the system can be re- 
garded as uniform and the effective electric conductivity is 
determined by a simple equation obtained from the expres- 
sion for the energy dissipated per unit energy. It takes the 
form 

'0'' 
0, ( R )  = 4dTld F(r i j )  ri?, 

I 

where 

The summation in ( 2 0 )  is over all the lattice sites surround- 
ing the site i. The result is independent of i, since g...) 
means averaging over the time and over all the sites i. At 
T)A we obtain the simple expression 

Equation ( 2 2 )  is in fact not based on the one-electron ap- 
proximation and can be used to check on the simulation pro- 
gram. 

The electric conductivity u ( R  ) has as a function of tem- 
perature a maximum at Tof the order ofA. At EA ( R  ) 4 TgA 
the conductivity falls off with temperature by a power law. It 
is easy to verify that in the absence of Coulomb interaction 

At A,e2/xl with width A of the Coulomb gap is much 
smaller than A, and there exists a temperature interval 
A ) T) A in which Eq. ( 2 3 )  is valid also with allowance for 
the Coulomb interaction. We confine ourselves henceforth 
to the case when A is of the order of e2/x1. In this case Eq. 
( 2 3 )  cannot be used and F(rU ) must be calculated by using 
with allowance for the Couloamb gap. As a result we find for 
A ) T) e2/xR 

where D, are numerical coefficients. At T of the order of e2/ 
xR the electric field can no longer be regarded as uniform, 
and at even lower temperatures we get the exponential rela- 
tion ( 1 0 ) .  

It is not a simple matter to check on the above relations 
by simulation, since the temperature interval corresponding 
to ( 2 4 )  is narrow, and it was impossible to use in our com- 

puter a temperature low enough to discern an exponential 
decrease of the conductivity by several orders of magnitude. 
The checking was facilitated by the following deduction of 
the one-electron theory. At T<A we have 

where \Vd is a certain dimensionless function that decreases 
exponentially at low values of the arguments. The scaling 
relation (25) expresses the very essence of the one-electron 
notions concerning hopping transport in the region of the 
Coulomb gap. It can be written from dimensionality consi- 
deration if it is recognized that the density of state is univer- 
sal and does not depend ong,. Its premise is that there is only 
one significant length R ,  large enough to make e2/?cR < A. 

A similar scaling relation can be written also for a sys- 
tem without a Coulomb interaction: 

where pd is a dimensional function. This relation is valid at 
T<A. Whereas the verification of ( 2 6 )  is more readily a 
check on the method, varification of ( 2 5 )  for a system with 
Coulomb interaction answers the question whether one- 
electron concepts can be used to calculate the electric con- 
ductivity. 

The low-temperature expression ( 10)  and Eqs. ( 13) 
and ( 1 5 )  obtained within the framework of the R  model 
yield the temperature dependence of variable-range-hop- 
ping conductivity, when the transition probability is of the 
form ( 8 ) .  To this end it must be recognized that the main 
contribution of the R-model conductivity is made by lengths 
of order R  and the VRH conductivity a ( T )  must be repre- 
sented in the form 

m 

CT ( T )  = o ( R )  exp (-2Ria) d In R. ( 2 7 )  
I 

Evaluating the integral in ( 17) by the saddle-point method 
and using ( 13 ) and ( 1 5 ) ,  we obtain respectively Eqs. ( 1 ) 
and ( 2 ) .  For the coefficient fld in ( 2  ) we obtain in this man- 
ner the expression fld = 8a2 ,  which yields, after substitu- 
tion of the values of a: from ( 16) and ( 1 7 ) ,  values offld that 
are approximately 1.5 times larger than those that follow 
from Eq. ( 2 ) .  This should be regarded as satsifactory in view 
of the fact that Eq. ( 2 7 )  is not exact. In particular, calcula- 
tion of the pre-exponential factor with its aid would be an 
exaggeration of the accuracy. 

3. DESCRIPTION OF THE SIMULATION PROGRAM 

The object of the simulation is a square of cube with side 
L. The maximum value ofL was 18 at d = 3  and 100 at d = 2  
(in this section we set the lattice constant 1, the electron 
charge e, and the dielectric constant K equal to unity). Just 
as in Refs. 10 and 12, we used periodic boundary conditions, 
viz., the initial cube (square) is periodically continued along 
each coordinate axis, so that translation of any site by a 
length L leads to a site having the same values of ci and ni as 
the initial site. 

The values of pi were specified for each site, in an inter- 
val [ - A,A ], using a random-number generator. The initial 
occupation numbers n, were assumed to be zero for sites 
with even coordinate along the x axis, and to unity for the 
remaining sites. The initial placement of the electrons corre- 
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sponded to alternation of empty and occupied planes or lines 
(the chosen number L was always even). The site energies 
were next calculated from Eq. (6), in which the summation 
was carried out only over the sites of the initial cube. In 
accordance with the assumed periodic conditions, the dis- 
tance r4 = Iri - rj I between sites i andj  of the intial cube we 
used the distances 

where 

xi andxj are the projections of the radius vectors ri and rj on 
thex axis. Similar equations hold for Y4 and Z4 . To permute 
the electrons, the system recorded all site pairs ( i j )  for 
which the distance r; did not exceed R. On going from one 
site to another, the electron could cross the boundary of the 
initial cube (square) and land in its periodic continuation. 
The values of r; and also the component xu of the electron 
displacement along the direction of the electric field E (thex 
axis) were recorded in the memory for each pair. The value 
of x, was xj - xi if the displaced electron did not cross the 
initial-cube faces perpendicular to the x axis. If these faces 
were crossed, then 

After completing the initial placement and recording of 
the pairs, the program proceeded to simulated electron tran- 
sitions between sites. One step of the program consisted of 
the following. 

Random and equiprobable choice of one of the regis- 
tered pairs ( i  j ) .  If ni = nj , the step is regarded as completed 
and the next one should be taken. 

In the opposite case, one calculates the transition ener- 
gy 

and the probability of a transition in the given step 

The transition is carried out with probability pu . 
If the transition was effected, the interchange ni s n j  is 

made all values of E~ are recalculated, and unity is added to 
the counter of the i-j transitions. 

Every 1000 steps, the sites were ranked by energy and 
the density of s t a t e sg (~ )  corresponding to the given instant 
of time was calculated. Altogether, M = 10'-3.10' steps 
were taken, depending on the temperature and on the size of 
the system. 

After the end of the simulation, the following quantities 
were calculated: 

a )  The system conductivity v (R) ,  defined as the ratio 
of the total specific dipole moment of the system to the prod- 
uct ME. 

b) The number of transitions in pairs of length ro = r, 
referred to the number of calls by the program to these pairs. 
This ratio is the function F ( r )  defined by Eq. (21 ). 

C )  The conductivity o, ( R )  of the system, obtained by 
substituting in (20) the obtained function F ( r ) .  

d )  The density of states g ( ~ )  averaged over time. Two 
variants of averaging were used. In the first the energy was 
reckoned from zero, and in the second from its mean value at 
the given instant of time. Following Ref. 10, we have de- 
creased in the second version the influence of the Fermi-level 
fluctuations on the density of states. No noticeable differ- 
ence, however was observed between the densities of state 
calculated by the two methods. 

The simulation algorithm chosen by us is simple to im- 
plement and effective enough at not too low temperatures. 
When the temperature is lowered the mean value of the 
probabilityp, decreases exponentially and most steps do not 
lead to electron transitions. Our algorithm is therefore in- 
capable of handling very low temperatures. 

In another method p r ~ ~ o s e d ' ~ . ' ~  for simulation of hop- 
ping conduction, the operating speed is practically indepen- 
dent of the temperature of the simulated system. Applica- 
tion of this method to systems with Coulomb interaction, 
however, leads to an algorithm in which, although account- 
ing for the electron transition in each step, requires (LR)d 
arithmetic operations per step, and extensive use of the com- 
puter memory. The power of our computer1' was at least an 
order of magnitude too low for low-temperature calcula- 
tions by this method, this procedure can in principle effected 
by modern supercomputers. 

4. DISCUSSION OF SIMULATION RESULTS 

The results of simulation at A = 1 are shown in Figs. 1- 
8. We discuss first the results for the density of states. They 
were obtained for different values of R, and there was no 
systematic dependence of the density of states on R. Figures 
1 and 2 show the densities of states vs energy at different 
temperatures for d = 3 and d = 2, respectively. The energy 
and temperature are in units of e2/xl and the density of states 
in units of (e2P' - ' / x )  -'. It can be seen that in the region of 
the Coulomb gap ( e  < 0.6) the data for the lowest tempera- 
tures are close to the theoretical plots of (3).  With increase 

FIG. 1. Density of states in units of (e21 2 / x )  - ' vs the energy measured in 
units of e 2 / x l  for an 1 8 x  1 8 x  18 3 0  system at the following reciprocal 
temperature (in units of Ix /e2) :  0-5, E-10, 0-15, e-20, A-30, 
A 4 0 .  Solid curve-Eq. ( 3 a ) .  The inset shows the density of states at 
T - '  = 10 in a wider energy range. The dashed lines bound the region 
shown in the main figure. 
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FIG. 2. Density of states in units of (e21/x) - '  vs the energy measured in 
uits of e2 /x l  for a 1 0 0 ~  100 2 0  system at the following values of the 
reciprocal temperature (in units of Ix/eZ): 0-5,O-10, H-15, A-20, 
0-30, A 4 0 .  The straight line is a plot of Eq. 3b. 

of temperatures, the Coulomb gap is gradually "washed 
away." To verify relation (4), Figs. 3 and 4 show the quanti- 
ty 

The value ofg(0) was calculated by averaging the density of 
states in an energy interval equal to 0. le2/xl and with center 
at the minimum of the density of states. In the large 
1 0 0 ~  100 and 18 X 18 x 18 systems we studied as a rule one 
realization of the random set {pi 1. In the small 12 x 12 and 
8 X 8 x 8 systems the averaging was over approximately five 
realizations. In the two-dimensional case (Fig. 3) at 
L = 100 the value of G(T) does not depend on temperature 
at all the investigated temperatures lower than 0.2, as is 
splendidly confirmed by Eq. (4b). The ensuing constant is 
G z 2 .  For L = 20, it can be seen that G(T) decreases with 
temperature at lower temperatures. This is a size that mani- 
fests itself when Tis of the orde of L - '. In the 3 0  case (Fig. 
4) the values of L are relatively small, and there is therefore 

FIG. 3. Check of the theoretical relation (4b). Dimensionless density of 
states G(T), defined by Eq. (30), vs temperature for a 2 0  system. The 
values of L are 20 (0) and 100 (0). The vertical stroke shows a typical 
error. Attention is called to the break in the abscissa axis. 

FIG. 4. Determination of the constant G, in Eq. (4a).  The nondimen- 
sional density of states vs temperature for a 3 0  system is represented by 
the points and the dashed curves drawn through them. The values ofL are 
8 ( 0 )  and 18 ( 0 ) .  The solid and dash-dot straight lines are extrapolations 
in accordance with Eqs. (31) and (32), respectively. 

no such distinct plateau as in the 2 0  case. The smooth de- 
crease of G(T) towards higher temperatures is due to the 
fact that Eq. (4)  for the density of states should be valid only 
for T< A, where A is the width of the Coulomb gap. As T 
approaches A, the rate of growth ofg(0)  slows down, since 
g(0)  cannot become substantially larger than 0.5 (see the 
inset of Fig. 1 ). Accordingly G(T) decreases with rise of 
temperature. We propose that at L = co and T/A < 1 the 
decrease follows the law 

where q is a numerical factor. The extrapolation shown by 
the solid line in Fig. 4 yields G , z  11.5. Approximately the 
same value is obtained if the aggregate of data on L is ex- 
trapolated. The formula used for this purpose is 

where T,,, is the temperature at which G(T) reaches its 
maximum. This temperature decreases with L. Equation 
(32) is obtained from (31 ) if it is recognized that the low- 
temperature decrease is abrupt. The extrapolation in accor- 
dance with (32) is shown by the dash-dot curve of Fig. 4. 
Close values of G, are obtained also when the data for A = 2, 
which are not presented here, are reduced in accordance 
with (32). 

We proceed now to describe the electric conductivity 
u (R) .  As already mentioned, it is determined by dividing 
the current density by the external electric field. We are in- 
terested in ohmic electric conductivity, the determination of 
which would call for extrapolation of a ( R  ) to zero field. We 
chose instead the electric field as given by the condition 
eER = T. All the data given here from a ( R  ) pertain precise- 
ly to such a field. At T>20-'e2/xI the ohmic character was 
checked by decreasing the electric field by one-half. No 
changes of the electric conductivity were oberved at the cal- 
culated accuracy 10-15% in this temperature region. We 
supposed that even at the lowest of the temperatures investi- 
gated here the error due to the non-ohmic behavior did not 
exceed noticeably the error in the calculation of the electric 
conductivity, which reached 30% here. 

The program described above calculates the electric 
conductivity in units of xy,l 3 - d .  It is also plotted in the 
figures in these units. Figure 5 shows the electric conductiv- 
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FIG. 5. Electric conductivity u ( R )  of a 3 0  system in units of xy ,  vs the 
reciprocal temperature in units of xl/e2.  The points O,O,A,D are for an 
18X 1 8 ~  18 system with Coulomb interaction, the points for an 
8 X 8 X 8  system without Coulomb interaction. The dashed curves are 
drawn arbitrarily through the points. The values ofR in units of 1 are: 0- 
3; 0,O-6; A-3, .--4. 

ity a ( R )  of a 3 0  system vs the reciprocal temperature at 
different values of R. It can be seen that at low temperatures 
the temperature dependence is of form ( l o ) ,  and the activa- 
tion energy decreases with increase of R.  The same figure 
shows the electric conductivity for a system without Cou- 
lomb interaction for one of the values ofR. It can be seen that 
the Coulomb interaction alters substantially the character of 
the temperature dependence and decreases the absolute val- 
ue of the electric conductivity by approximately five orders 
at the lowest temperature. 

To verify the scaling relation (25) for a system with 
Coulomb interaction, the logarithm of u ( R )  was plotted in 
Fig. 6 as a function of ( R  T )  - '. To eliminate the nonmono- 
tonicities due to the discrete character of the lattice, the sym- 
bol R  in this figure, as well as in Figs. 7 and 8, stands not for 

FIG. 6. Dependenceoflnuon (RT)- '  foran 18X 18X 18 3Dsystem. The 
electric conductivity is units of xy,, Rt  is in units of e2/x.  The values of R 
in units of I are: 0-1.84, 0-2.67, A-3.08, A-3.94. Dark points- 
values of In at various R and T. The dash-dot curves are drawn arbitrarily 
through the corresponding points. The straight linedetermines the activa- 
tion energy. 

FIG. 7. Dependence of In(uT) on (R T )  - ' for a lOOX 100 2 0  system. The 
values of uTare in units of y,,e2, and of RTin  units of e2/x.  The values ofR 
in units of 1 are: 0-1.94, 0-2.98, A 4 . 6 5 ,  A-6.86. Dark points- 
values of In(o, T) at different R and T. The dashed curves are drawn 
arbitrarily through the corresponding points. The straight line determines 
the activation energy. 

the maximum length of the transition, but for some other 
close quantity obtained from the equation N = n-Rd (4/ 
3 l d P 2 ,  where N is the number of neighbors, for which 
y(rV ) # O ,  of an arbitrary site i. These are the values of R  
indicated in the captions of these figures. It can be seen that 
the points fit a universal curve, thus verifying relation (25). 
Figure 6 shows also the electric conductivity u,  calculated 
from Eq. (20) .  This equation was derived under the assump- 
tion that the electric field is uniform, and therefore described 
the electric conductivity u ( R )  at T 2  ( R ) .  At low tem- 
peratures, the inequality a,  $ - a ( R )  should hold in the re- 
gion of the activation conductivity ( 10). As seen from Fig. 6, 
in the investigated temperature interval the ratio a,  / a ( R )  
reaches six. This means that at the very lowest temperatures 

FIG. 8. Verification of the scaling relation for a system without Coulomb 
interaction. The left and lower scales pertain to a 2 0  system (points 
O,A,A) ,  the right-hand and upper one to a 3 0  one (points D,O,O). The 
solid curve are drawn arbitrarily through the points, and the straight lines 
determine the activation energies. Points O,A,D,O correspond to A = 1, 
points A , 0  to A = 2. The values of R in units of 1 are 0-2.76, A ,  A- 
4.65, M-1.84, 0 ,  0-2.67. 
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the simulation results should be described by Eq. ( 1 0 ) .  The 
straight line shown in Fig. 6  determines the activation ener- 
gy. It is described by Eq. ( 1 5 )  with a: = 0.42. This value 
agrees well with the theoretical estimate ( 1 5 ) .  A check on 
relation ( 2 5 )  for a 2 0  system is shown in Fig. 7 .  It can be 
seen that the points fit well a universal curve. The activation 
energy determined from the slope of the straight line is de- 
scribed by Eq. ( 15) with a: = 0.7, which differs substantial- 
ly from the a: = 1.2 obtained from the theoretical estimate. 
By "turning off' in the program the Coulomb interaction, 
we have also verified the scaling relation at d = 3  and d = 2. 
The results are shown in Fig. 8, from which it is seen that the 
relation is well satisfied. The activation energies are de- 
scribed by Eq. ( 1 3 ) ,  with = 0.8 while a,M = 0.5 in 
good agreement with the theoretical estimates ( 1 6 )  and 
( 1 7 ) .  We note that the points in Fig. 8  include not only 
A = 1 but also A = 2, i.e., the scaling includes three param- 
eters, namely R ,  T ,  and A .  

5. CONCLUSION 

In sum, we list the main deductions of the present pa- 
per. 

1. At low temperatures, the Coulomb interaction low- 
ers greatly the hopping electric conductivity and strengthens 
its temperature dependence. 

2.  The electric conductivity of two-dimensional and 
three-dimensional systems with Coulomb interactions, cal- 
culated in the framework of the R  model, satisfies the scaling 
relation ( 2 5 )  that follows from the premises of the Coulomb 
gap and the one-electron theory of hopping transport. Note 
that these premises lead to relation ( 2 5 )  at all values of the 
scatter of the non-Coulomb part of the energy A,  if the tem- 
perature is low enough, so that the essential states are inside 
the Coulomb gap. The width of the Coulomb gap decreases 
with increase of A,  so that it is imore difficult to meet this 
condition. Figures 6  and 7  show data for A = 1 ,  We carried 
out, however, calculations also for A = 2. It was found that 
In u ( R  is smaller at A = 2  than at A = 1 by approximately 1 
at d = 3  and by 0.7 at d = 2.  In addition, we have carried out 
calculations in the classical-impurity-band model,2 in which 
the donors and acceptors are located not at the lattice sites 
but randomly. The degree of compensation was assumed to 
be 0.5. The characteristic energy scatter in this model is ap- 
proximately the same as in the lattice model at A = 2. Our 
values o f u ( R  ) are in this came aprpoximately the same as in 
the lattice model for A = 2. 

We believe that both violations of scaling are due to the 
fact that the temperatures realized in the simulations were 
not low enough. The scaling relation ( 2 5 )  obtained for the 
electric conductivity of the R  model is easily generalized to 
the usual model of hopping electric conductivity with a tran- 
sition probability of the type ( 8 ) .  For this model we have 

at T g A .  At d = 3  the relation ( 3 3 )  is met in experiment 
(sees Ref. 6 ) .  If it is assumed, however, that hopping con- 
duction is effected by phonons, it is easy to verify with the aid 
of the equations of Ref. 2  that yo is, generally speaking, not a 
constant and depends not only on the product Ta?t/e2. This 
leads to a contradiction between the contemporary theory, 
based on hops with emission and absorption of phonons, and 

the experimental data. It is possible that this colitradiction 
will be resolved by development of a zero-phonon theory in 
the spirit of Ref. 15. 
' 

3. The temperature dependence of the electric conduc- 
tivity of the R  model at the very lowest temperature is des- 
cirbed by the Arrhenius law, with the dependence of the 
activation energy on R  described by Eq. ( 15 ) .  It follows 
from this behavior of u ( R )  in the R  model that in the usual 
hopping-transport model, which uses the tunnel exponential 
function ( 8  ) , the temperature dependence of the electric 
conductivity should be of the form ( 2 ) .  Note, however, that 
it is seen from Fig. 6  that the linear dependence-of In u ( R  ) on 
( R T ) - '  sets in only at ( R T ) - ' ~ 8 ,  when ( E , / T )  ~ 3 .  A 
similar situation obtains also in the 2 0  case. It seems there- 
fore that in the usual hopping-transport model the approach 
to the relation ( 2 )  with decreasing temperature may be de- 
layed. Analysis of the experimental data with the aid of the 
relation u-exp[ - T, /T)"  ] at values of To/T that are not 
large enough [ ( T o / T )  (61  can therefore lead to values of s 
smaller than 1/2 .  

The energy and temperature dependences of the one- 
electron density of states agree with the notions of a soft 
Coulomb gap, which were advanced in Refs. 2  and 3. We 
observed no trace of a polaron effect in either the density of 
states or in the electric conductivity. 

It seems to us that computer research into the R  model, 
using a large enough computer, can proceed along the fol- 
lowing directions. First, it is necessary to lower the tempera- 
ture for a more accurate determination of ( R  ) .  Second, 
the R  model can be generalized to take into account simulta- 
neous hops of several electrons. To this end it is necessary to 
admit of simultaneous hops the sum of whose hops does not 
exceed R .  

The authors thank A. A. Fursenko for organizational 
help which permitted so large a volume of computer calcula- 
tions. 

"We used a Roberton EC-1055M computer, whose large working mem- 
ory and reliability compensate to a considerable degree its slow speed 
(about 0.5 MFLOPS). 
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