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A theoretical study is reported of a one-dimensional chain of dipole-interacting molecules. It is 
shown that the anharmonicity of molecular vibrations creates soliton waves. An analytic form 
and characteristics allowing for the discrete properties of the chain are obtained for solitons of 
width representing several periods of the one-dimensional lattice. We can describe the 
dynamics of solitons at low velocities using equations which are integrable by the method of 
the inverse scattering problem. An allowance is made for the influence of acoustic vibrations of 
the lattice on the properties of solitons. In this case a soliton is accompanied by a local 
deformation of the chain and can travel at a velocity higher than the velocity of sound. This 
model is used to describe vibrational excitation of a-helical protein molecules. 

Mechanisms of energy transfer in long biological polymer 
molecules continue to attract major attention.'-6 The knowl- 
edge of the nature of these mechanisms is important, par- 
ticularly for the understanding of the processes occurring in 
DNA (Ref. 2) .  

According to the current ideas, the energy released by 
hydrolysis of adenosine triphosphate (ATP) is transported 
in a protein in the form of vibrational excitation quanta of 
C = 0 bonds (amide-1 vibration) of peptide groups. The 
dipole-dipole interaction of quanta at neighboring peptide 
groups not only ensures excitation transfer, but also results 
in a dispersion manifested by a reduction in the amplitude 
and spatial broadening of initially localized wave packets of 
vibrational excitations. Estimates show that this dispersion 
makes the energy transport by amide-1 vibrations rather in- 
effective. Davydov' suggested a mechanism by means of 
which the energy of hydrolysis of ATP can be localized and 
transferred without losses by a soliton wave. The main con- 
dition for the appearance of such a wave is the interaction 
between vibrational excitations and displacements of pep- 
tide groups as a whole (phonons). This is manifested by the 
dependence of the energy of the amide-1 vibration on the 
length of the hydrogen bridge joining neighboring peptide 
groups and makes the vibrations nonlinear. It gives rise to 
soliton waves which are the result of mutual compensation 
of the dispersion and nonlinearity.' 

Much work has been done on numerical modeling of the 
propagation of solitons in DNA (Ref. 3).  In most cases the 
numerical solutions of model dynamic equations have been 
obtained without allowance for the noise, which corre- 
sponds to the motion of solitons at absolute zero. The results 
of these investigations confirm the theoretical conclusions of 
Davydov. On the other hand, Lomdahl and Kerr4 studied 
numerically the dynamics of a chain at normal biological 
temperatures and found that thermal noise destroys Davy- 
dov solitons. These results make it necessary to seek an alter- 
native to Davydov solitons. 

Our aim will be to demonstrate another possibility of 
appearance of soliton waves in DNA. We shall show that 
amide-1 vibrations are localized to form a nonlinear soliton 
wave due to intrinsic anharmonicity. Such soliton waves are 
characterized by a high thermal stability since the energy of 
an amide-1 vibrational quantum is an order of magnitude 
higher than a thermal quantum at 300 K and the interaction 

with phonons does not play an important role in their forma- 
tion, in contrast to Davydov  soliton^.^ 

1. MODEL SYSTEM OF EQUATIONS 

We shall consider a one-dimensional chain consisting of 
molecules of identical type, each of which has an internal 
degree of freedom. The transfer of vibrational excitation 
from one molecule to another occurs as a result of the dipole- 
dipole interaction. Its potential depends linearly on the di- 
pole moment of each of the interacting molecules and it de- 
creases rapidly with distance, which will make it possible to 
use the nearest-neighbor approximation. Bearing in mind 
this point, we shall write down the Hamiltonian of an infinite 
chain of identical dipoles in the form 

Here, x ,  is the length of a dipole; m is the effective mass of 
the vibrational degree of freedom; Q is the dipole-dipole in- 
teraction constant, which is positive if the dipole moments 
are excited along the line joining them. In the case of nega- 
tive values of Q all the results given below remain valid if we 
transform the variables as follows: x, - ( - 1 ) " x, . 

We shall assume that the amplitude of the molecular 
vibrations is low and expand the molecular potential U ( x )  in 
powers of x .  The simplest potential of this type allowing for 
the finite depth of the potential well is 

The term proportional to the third power of x  describes the 
asymmetry of the potential well. It gives rise to a constant 
component of the vibrations and generation of the second 
harmonic, but it makes a small nonresonant contribution to 
the nonlinear frequency shifts (anharmonicity ) .'The role of 
anharmonicity is readily explained by assuming that a = 0 
and avoiding difficulties of purely mathematical nature. 
Then, the potential of Eq. ( 1.2) becomes symmetric and has 
one stable equilibrium position at x = 0 and two unstable 
positions at 1x1 = r,,, = (mwi/4P)''2,  corresponding to 
decay of the bound state of the molecule. 

The classical equations of motion for the Hamiltonian 
ofEqs. (1.1) and (1.2) are 
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We shall find it convenient to use dimensionless quantities. 
We can obtain the relationship with the quantum character- 
istics of the system by employing the width of a wave packet 
of a harmonic oscillator in the ground state: ro = (W 

and by assuming that x ,  =rob,, and .r = oat. 
Then, in terms of dimensionless variables, we obtain 

where 

The constant g can be estimated from real spectra of isolated 
molecules since the frequencies of quantum transitions near 
the bottom of the well are given by the expression7 

The continuum analog of Eq. ( 1.4) is what is known as 
the p4 equation 

Pulses traveling at a constant velocity (solitary waves or 
kinks) and satisfying Eq. ( 1.6) are of the form 

q(n ,  7 )  =f ( 2 / x ) l b  sech [8 (n -v t ) ]  (1.7: 

It is known that solutions of the ( 1.7) type are destroyed by 
collisions with one another and are unstable in the presence 
of small perturbations and, consequently, they are not soli- 
tons. Therefore, it is concluded in Ref. 8 that the p4equation 
has no soliton solutions. However, we shall show below that 
Eq. ( 1.6) includes a class of solutions in the form of spatially 
modulated pulses (Fig. 1 ), the envelope of which can as- 
sume a stable soliton form. 

2. EXCITONS AND SOLITONS 

In the linear case ( i fg  = 0 )  this system ( 1.4) is readily 
s01ved.~ The general solution can be represented convenient- 
ly in the form of an expansion in normal vibration modes, 
which we can call single excitons. When a single exciton is 
excited, we have 

FIG. 1. Envelope soliton in a molecular chain. 

where the frequency is described by = 1 - 29 cos k, 
and the wave number is k, = 2.ns/N, s = 0,1, ...., N - 1 as- 
sumes exactly N values. All the molecules in the chain vi- 
brate at the same amplitude. Exciton wave packets represent 
excitations which involve a finite number of molecules. Such 
excitations expand during propagation in a chain of harmon- 
ic oscillators and their amplitude decreases because of dis- 
persion the faster and narrower are these excitations. 

The situation is different in a chain of anharmonic oscil- 
lators. In an analysis of a nonlinear chain we shall use the 
fact that in the case of a weak nonlinearity and dispersion 
(gb  g 1, q <  1 )  the molecular vibrations are almost har- 
monic and we can introduce a complex vibration amplitude 
a, (7) :  

b,  ( T )  =0.5 [a,, ( T )  e-"?'+ c.c.1. (2.2) 

Substituting Eq. (2.2) into Eq. (1.4) and ignoring nonre- 
sonance terms, we obtain the following equation: 

In this section we shall be interested in fairly smooth excita- 
tions, covering several neighboring molecules, and we shall 
therefore use the continuum approximation in the form 

Here, A(n, r )  is a real function which varies slowly with the 
number n and which depends in fact on one self-similar vari- 
able { = n - no - vr. We then obtain from Eq. (2.3) 

v=qQ-I sin k ,  (2.5a) 

We can regard the quantities f and A as time and the 
coordinate of an imaginary material point with a mass 
m* = q cos k - v2. In this sense Eq. (2.5b) describes the 
path of such a point in a field of forces characterized by the 
potential 

U ( A )  = g A 4 / 4 -  (1 -2q  cos k-Q2) A 2 / 2 .  (2.6) 

The solution satisfying the condition A ( { )  -0  in the limit 
If / - cc exists only for f12 < 1 - 29 cos k, when the potential 
well described by Eq. (2.6) has two stable equilibrium posi- 
tions separated by a maximum (Fig. 2) .  Such a path (separ- 
atrix) corresponds to the energy at the maximum of the po- 
tential and is described analytically by the law 

A=Aa sech O E .  (2.7) 

FIG. 2. Potential of the type U ( A )  = a A 2  + PA4: 1 )  a > 0, f l> 0; 
2 )  a<O,B>O. 
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The relationship of the frequency fl and the reciprocal width 
8 of a soliton to its amplitude and wave number k follows 
from Eq. (2.5b): 

o2=gAo2 /2  ( q  cos k-vZ) . (2.8b) 

In the case of complex amplitudes of the vibrations of mole- 
cules, we obtain the expression 

a,, ( r )  =Ao exp [ikn+is]sech [(n-n,+u~)0],  (2.9) 

where no and S are the arbitrary initial position and phase of 
a soliton. 

We shall analyze the expressions obtained in the case of 
a discrete chain. The wave number k for this chain assumes 
the values between 0 and 2n-, whereas k and   IT - k represent 
the waves traveling in opposite directions; consequently, it is 
sufficient to consider the range O<k < IT. The reciprocal 
width 8 can have real values in the range O<k < r / 2 .  This is 
due to the fact that if n-/2 < k < IT, the linear dispersion 
D = 0.5d 2R, /dk 2 z q  cos k becomes negative and the non- 
linearity simply enhances its effect. In the remaining range 
of wave numbers the solution (2.9 ) is valid for the values of k 
which are not too close to n-/2. This last requirement is the 
condition of validity of the continuum approximation: 8 < 1. 

The frequency of Eq. (2.8a) has real values for ampli- 
tudes less than the critical one A,,, When the am- 
plitude is A ,  -A,,, , the nonresonance terms dropped from 
Eq. (2.3) become important. The existence of the boundary 
amplitude is related to the possibility of decay of the bound 
state of molecules. 

The constant quantity 

represents the total number of vibration quanta ho excited 
in a chain and it assumes values each of which is a positive 
integer. The normalization condition of Eq. (2.10) yields a 
relationship between the width and amplitude of solitons: 

For a given value of No a soliton can be described by a single 
parameter which is the wave number k. An increase in k 
reduces the soliton width but increases the amplitude and 
velocity. 

The soliton frequency is described by the approximate 
expression (valid if N d  < q cos k 4 1 ) : 

R=l-q cos k-g2N02/8q cos k. (2.12) 

The exciton and soliton spectra are plotted in Fig. 3 for 
different values of No.  For all possible numbers of the wave 
number k they are separated by an energy gap and the ap- 
pearance of solitons in the investigated chain is favored by 
energy considerations. 

We shall now consider the effects associated with a 
strong anharmonicity. If the number of excited vibrational 
quanta is large, the anharmonicity of molecular vibrations 
predominates over the dipole-dipole interaction of neighbor- 
ing molecules and is the main process controlling the dy- 
namics of vibrational excitations. At low values of the cou- 

FIG. 3. Exciton (uppermost curve) and soliton spectra corresponding to 
g = 0.005, q = 0.01, and different numbers of excited quanta No = 1, 2, 
and 3. 

pling constant q and anharmonicity g there is a range of 
amplitudes x in which the expansion of the potential ( 1.2) is 
still valid, but the continuum approximation can no longer 
be used, as the reciprocal soliton width (2.8b) becomes 
greater than unity. In this case practically the whole excita- 
tion is concentrated at one molecule and although it is com- 
parable with a soliton in respect of its stability, the mobility 
of such an excitation is low. The low mobility of a localized 
excitation is due to the anharmonicity of the vibrations. In 
view of the large difference between the amplitudes of the 
vibrations of neighbors, the nonlinear frequencies of their 
vibrations differ strongly and, consequently, the dipole-di- 
pole interaction becomes nonresonant and does not ensure 
excitation transfer. When the amplitude is even larger, the 
expansion ( 1.2) assumed for the potential is no longer valid, 
but in this case the dipole-dipole interaction becomes com- 
pletely unimportant and the vibrations of a molecule can be 
regarded as free. 

3. SOLITONS AT LOW VELOCITIES 

In the preceding section we derived the nonlinear dis- 
persion law for solitons and identified the ranges of the wave 
numbers k in which solitons can exist in a discrete chain. In 
practice, the majority of the initial perturbations are suffi- 
ciently smooth to correspond to low values of k. We shall 
analyze this case to a greater depth and compare the results 
with those obtained for thoroughly investigated systems. We 
shall show that at low values of the wave numbers and ampli- 
tudes of the molecular vibrations we can reduce Eq. ( 1.4) to 
the nonlinear Schrodinger equation. 

We shall associate real quantities b, (T) with complex 
amplitudes a, (T)  in accordance with the relationships 

imposing on a, an additional condition 

Substitution of Eq. (3.1) into Eq. ( 1.4) subject to Eq. 
(3.2) gives 

If q = g = 0, the function a, (T)  = a, (O)exp( - i ~ )  is rap- 
idly oscillating. Therefore, if q << 1 andgla, l 2  << 1, we can sep- 
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arate1° slow and fast motion, and adopt reduced equations 

?(ida,/d~-a,) +q (a,,,Sa,-,) +gla,IZa,=O. (3.4) 

At low soliton velocities corresponding to k <  1 the ampli- 
tude a, varies slowly from molecule to molecule. In this case 
we can assume that 

so that after the substitution 

a,(a) = e x p [ - i ( i - q ) ~ ]  Y (n,  T) (3.6) 

we can reduce Eq. (3.5) to the familiar nolinear Schrodinger 
equation: 

2idY/dr+qa2Y /dlz'+gl 'P Iz'P =0. (3.7) 

The soliton solution of the nonlinear Schrodinger equation is 
given by (2.9) if v = qk and 

The same expressions can be obtained from Eq. (2.8) subject 
to the above approximations. 

The relationships of Eq. (3.1 ) make it possible to deter- 
mine the initial conditions for Eq. (3.7) and to investigate 
the dynamics of vibrational excitations in a chain of mole- 
cules allowing for the anharmonicity if the condition k < 1 is 
satisfied. The nonlinear Schrodinger equation is one of the 
classical equations for soliton physics. ' l  Under given initial 
conditions its solution is found by the method of the inverse 
scattering problem. Any sufficiently strong excitation 
gradually decays into solitary waves, i.e., solitons (in partic- 
ular, one soliton may form), which then propagate without a 
change in the velocity or shape and acquire only phase shifts 
as a result of collisions. 

The nonlinear Schrodinger equation for the investigat- 
ed system describes well the vibration at the fundamental 
frequency close to 1 (in dimensionless units) when the value 
of k is small. The exact solution of Eq. ( 1.4) includes vibra- 
tions of all the frequencies which are multiples of the funda- 
mental frequency. However, the existence of overtones does 
not destroy a soliton. This is illustrated clearly by the analo- 
gy developed below with the sine-Gordon equation: 

d2u/dtZ-d2u/dx2+sin u=O, (3.9) 

which has been investigated in the theory of spin waves and 
in other field theories8 

The scaling transformation of the variables 

t=Q,t, x = ~ ~ q ' ' ~ / I l ~ ,  B=Q0 (8g) -"lzc 

reduces Eq. ( 1.6) to the equation 

which was obtained from Eq. (3.9) for low values of u. The 
properties of the solutions of Eqs. (3.9) and (3.10) are simi- 
lar in the range u 1. 

One of the exact solutions of the sine-Gordon equation 
is a "breather" or a On- pulse": 

u ( x ,  t )  =4arctg{A cos(kx-Qt+6)/4ch [0(x-x,-vt) I ) ,  

(3.11) 

which describes a bound state of kinks ( 2 ~  pulses) and has 

all the properties of a soliton. The exact dispersion relation- 
ships for a breather which follow from Eq. (3.9) are 

We can readily show that the parameters of a breather de- 
scribed by Eq. (3.12) reduce, like the solution (3.1 1 ) , to the 
corresponding parameters of anharmonic solitons and soli- 
tons obtained as a result of solution of the nonlinear Schro- 
dinger equation of Eq. (3.8) if A and k are small and scaling 
transformations are applied. The solution (3.11 ) contains 
all the overtones and is nevertheless a sign-Gordon soliton. 
A similar situation occurs also in the case of Eq. ( 1.4), be- 
cause the sine-Gordon equation tends to Eq. ( 1.4) if 
lu(x,t) I <  1. 

Therefore, the properties of a chain of anharmonic os- 
cillators can be analyzed on the basis of two mutually com- 
plementary models. The information accumulated on the 
properties of physical systems described by the non-linear 
Schrodinger and sine-Gordon equations can, subject to cer- 
tain restrictions, be used also to describe the influence of the 
anharmonicity on the propagation of vibrational excitations 
in long molecules. 

4. SOLITONS AND PHONONS 

In the above discussion the motion of molecules as a 
whole near their equilibrium positions in a chain ignored. In  
the a-helix model of a protein molecule the displacements of 
peptide groups alter the length of the hydrogen bond and this 
in turn affects the energy of the amide-1 vibration (modula- 
tion of the frequency w, ) and the energy of the dipole-dipole 
interaction (modulation of Q). In  the Davydov theory an 
allowance for these factors is of fundamental importance be- 
cause it is the dipole-dipole interaction which is responsible 
for the stability of solitons. In our case the stability is en- 
sured by the anharmonicity, but the coupling to phonons 
(although it does not play a decisive role) is responsible for a 
number of important differences which will be investigated 
below. 

If we allow for the exciton-phonon interaction and an- 
harmonicity, the Hamiltonian of a chain becomes 

where 

Here, u, is the displacement of the nth molecule, M is the 
mass ofthis molecule, x is the rigidity of the chain and f,  and 
f, are the exciton-phonon interaction constants (for a pro- 
tein the value of f, is 68 times less than for f, ). 

The Hamiltonians for the equation of motion consid- 
ered in the approximation of slow amplitudes of Eq. (3.1 ) in 
terms of dimensionless variables yield 
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Here, 

If the soliton width is sufficiently large, its characteris- 
tics can be found in the continuum approximation: 

Assuming that A(n,r)  is a real function and that each mth 
derivative is a quantity of the mth order of smallness, we 
obtain-to within the second order of magnitude-the sys- 
tem 

(4.5a) 

2 [12-I+(/ cos kS-0,5gA2+'7(x,+~, cos Ic)p/fio,] A 

4-4 (d211/dn2) cos k=0, (4.5b) 

X ~ ~ ~ / ~ ~ I I ~ - M O ) ~ ~ J ~ ~ / ( ? T ~ =  (xl+xL cos k) d2Az/3n2, ( 4 . 5 ~ )  

wherep = - dU(n,r)/dn is function representing the rela- 
tive reduction in the distance. 

Ifx2f 0, the system (4.5) does not have solutions of the 
solitary wave type 

The results of a numerical analysis3 of the system (4.3) in 
the case when g = 0 and the parameters are those of real 
proteins show that the influence of X, on the properties of 
solitons is slight. This result follows from the system (4.5) if 
the number of excited quanta is sufficiently small, so that the 
right-hand side of Eq. (4.5a) can be ignored compared with 
the left-hand side. In this case, Eq. (4.5) admits an exact 
solution of the (4.6) type if u = q sin k and 

p(E) =[(zl+y,. cos k)/x (1-s2)] A'. (4.7) 

Here, s = v/v, and us = (%/Mu; ) ' I 2  is the dimensionless 
velocity of sound. 

The amplitude A (6) satisfies the ordinary differential 
equation 

q(d'A/dE2)cos It+ [2(8-I+ q cos k)+GAZ]A=O, (4.8) 

which was investigated in Sec. 2. The previous results are 
valid also in this case when the anharmonicity g is replaced 
with a nonlinearity dependent on the soliton velocity and is 
described by 

G=g+ 4(xI+x2 cos k)z/ho,x ( I-sz) . (4.9) 

Using the parameters of the DNA molecule3 M = 114m,, 
h, =0.205 eV, ?c = 19 N/ rn ,x1  = 34X 10-l2 N, J =  7.2 
cm- and X, = 1 X 10-l2 N, we find the second term in Eq. 
(4.9) is equal to 0.0072. The anharmonicity of the CO mole- 
cules is g = 0.006, so that the two effects are of the same 
order of magnitude. 

In this case solitons appear at such velocities that the 
nonlinearity described by Eq. (4.9) remains positive. In par- 
ticular, if the exciton velocity u, = q is greater than the 
velocity of sound v,, then a soliton can travel at a supersonic 
velocity (s > 1 ) . In this case it follows from Eq. (4.7) that 
local compression changes to dilatation. 

In the case of Davydov and other types of solitons 
formed as a result of interaction of two extended vibrational 
subsystems this result is impossible. Therefore, for such sys- 
tems the soliton velocity does not exceed the smaller of the 
two velocities v, and v,, since at high velocities the interac- 
tion destroys a soliton. It follows from Eq. (4.9) and the 
results of Sec. 2 that the anharmonicity of molecular vibra- 
tions imparts to a soliton an additional stability margin in 
the case of the interaction with phonons and conserves the 
properties of this soliton when this interaction is no longer 
active. 

In the a-helix model of the DNA the velocity of sound is 
twice as high as the exciton velocity and this effect is not 
manifested, but supersonic solitons are possible in other 
quasi-one-dimensional systems. 

CONCLUSIONS 

We investigated a one-dimensional chain of anhar- 
monic oscillators. We found that soliton waves of a vibra- 
tional excitation appear in such a chain and we determined 
the parameters of these waves. We studied the relationship 
between the investigated chain system and completely inte- 
grable models based on the nonlinear Schrodinger and sine- 
Gordon equations. In our opinion this problem is interesting 
because many quasione-dimensional systems of different 
physical nature, exhibiting nonlinearity and dispersion 
within some framework, can be described by equations of the 
type (2.3 ) or (4.3). Therefore, the model of a chain of an- 
harmonic oscillators is fairly general and deserves study. 

By way of example, we investigated amide-1 vibrations 
in an a-helical protein molecule, which is a system of consid- 
erable theoretical importance. The absence of accurate data 
on the anharmonicity of these vibrations did not allow us to 
find the actual values of the parameters of soliton waves in a 
protein, but we derived formulas which can be used to do 
this. Rough estimates made in Sec. 4indicate that the anhar- 
monicity of such systems has to be allowed for together with 
the exciton-phonon interactions, and that allowance for the 
anharmonicity gives rise to new effects, such as, for example, 
supersonic propagation of soliton waves. 

Our aim was to stimulate interest of experimentalists in 
the effects of a weak anharmonicity in quasi-one-dimension- 
a1 systems. A direct experimental confirmation of the exis- 
tence of soliton waves in long linear molecules may be pro- 
vided by a study of the vibrational spectra of such systems. 
This is supported by experiments on acetanilide1* but the 
anharmonicity was not allowed for in these experiments. 

A study of the vibrational spectra may require investi- 
gation of the corresponding quantum-mechanical models. It 
should be pointed out that excitations which are called exci- 
tons in the present study describe one of the optical branches 
of phonons in real polymers. A self-consistent quantum-me- 
chanical description of the anharmonicity of molecular vi- 
b r a t i o n ~ ' ~  shows that the formation of bound states of two 
phonons (biphonons) and larger phonon complexes is possi- 
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ble and the existence of the latter has been confirmed experi- 
mentally. It is shown above that in the classical context they 
represent soliton waves. 
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