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The probability of pairwise electron-electron scattering is calculated for hot electrons in a 
degenerate two-dimensional gas with electron temperature T, .  The rate of energy loss Q to 
optical phonons is determined by using the kinetic equation. It is shown that the energy loss 
rate increases when degeneracy is taken into account. 

1. INTRODUCTION 

The relaxation of highly-excited (hot) electrons with 
some temperature T, is associated with the emission of opti- 
cal phonons (0-scattering). Under typical experimental 
conditions1-4 the free electron density n is so high that in the 
passive region E <fino (fino is the optical phonon energy) 
electron-electron (ee) scattering dominates, which gives rise 
to an equilibrium electron distribution with electron tem- 
perature T, .  This will happen if the energy relaxation time 
for ee-scattering turns out to be shorter than other energy 
relaxation times (e.g., for acoustic phonons or impurities). 
As the density n is further increased, degeneracy ensues; 
electron-electron scattering tends to bring about an equilib- 
rium distribution and emission of optical phonons above the 
threshold E = fin,. In the active region E > fifl,, the electron 
distribution function is depleted because of 0-scattering. 
The magnitude of this depletion is related directly to the rate 
of energy loss Q to optical phonons, since Q is the integral of 
the distribution function in the active region. 

The problem of calculating Q was solved in Ref. 5 for a 
nondegenerate gas situated in the lowest subband of a quan- 
tum well for T, <fin,. A critical concentration N,+ was 
found above which electron scattering dominates; in the ac- 
tive region the distribution function above the threshold is 
Maxwellian, and the rate of energy loss equal. 

NhQ, 
Qo=- 

AQ, 
' to  ..P(-_). 

We will refer to this as the "maximal" rate of energy loss. 
The meaning of Eq. ( 1 )  is simple: the electron gas has a 
density N, a fraction exp( - fiCl,/T, ) of these electrons are 
found above threshold, and will emit phonons of energy fin, 
in a time 7,. The deficit of electrons due to 0-scattering is 
effectively "filled in" thanks to ee-scattering, so that the 
"bottleneck" is essentially phonon emission. Formula ( 1 ) 
was obtained by S t r a t t ~ n . ~  

If the electron density is subcritical, the loss power de- 
creases. The density N,+ equals 

here E~ = me4/2fi2 is the Bohr energy, and m and e are the 
effective mass and charge of an electron (taking into account 
the dielectric pe rmi t t i~ i ty ) .~  

We note at this point that the Fermi energy equals 

so that the gas is already degenerate at N = N ,f 5 ( x -  1'; 
this also requires that fin, b T, ). Therefore, the maximal 
rate of energy loss cannot be achieved for a nondegenerate 
gas. 

Equation ( 1 ) is usually used in experimental papers; in 
these papers, instead of a 7, given by 

1 1 1  1 
-=- +-;Y-- - 2aQo - 1 

0.1 lpsec 
(Ga As) 

' to  %DO TPO  PO 

measurements yield quantity larger than 0.1 1 psec by 5 to 60 
times.'-" Here DO and PO refer to the deformation and pie- 
zoelectric interactions; the latter dominates in the GaAs 
samples used experimentally, a denotes the Frohlich cou- 
pling constant. The authors of Refs. 1-4 suggested that de- 
generacy of the gas was one possible cause of the decrease in 
the relaxation rate, since after phonon emission an electron 
should drop below the Fermi "line". 

The goal of the present paper is to calculate the rate of 
energy loss Q to optical phonons in a degenerate electron gas 
located in the lowest level of a quantum well. It is shown that 
including dengeneracy increases the rate of energy loss. 

2. ELECTRON-ELECTRON SCATTERING PROBABILITY 

Let us assume that we can describe most of the electrons 
by a Fermi distribution fTc, (E)  and that these electrons are 
located below threshold, so the fin,$ max(p, T, ) wherep is 
the chemical potential of the gas. In the case of strong degen- 
eracy, we havep = E ~ .  We will investigate the scattering of a 
probe electron E +E', where E, E' $ max (p ,  T, ) for the bulk of 
the electrons. Our calculation of the probability of ee-scat- 
tering in no way differs from the same calculations for a 
nondegenerate gas5; however, in averaging over the equilib- 
rium electrons it is necessary to insert a factor ( 1 - fTa ). As 
a result, we obtain for the probability of ee-scattering from 
an energy E to an energy E' 

[ ( ((0 - tI2 + q)-; x erp p-~2-- )  4t , 
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We denote by w = (E' - E)/T, the dimensionless energy 
transfer. Let us analyze the case ly - y'l gy, y', in which the 
upper and lower limits in t can be set to zero and co, and 
expand the square root, assuming that a characteristic value 
of y is such that w2/ygtgy. Introducing the variable 
f = t - I ,  we have for the scattering kernel ( 3  ), depending 
only on y and o = y' - y: 

It is easy to show that the kernel (4) satisfies the principle of 
detailed balance, i.e., replacing w by - w and at the same 
time multiplying by e, leaves the integral unchanged. 

The kernel (4) can be further simplified if we assume 
that w @&y, y', although formally the function to be inte- 
grated depends only on y' - y. The function under the inte- 
gral sign is not small near the extremum +(f,,&) = 0. As- 
suming that the integral is concentrated far from the points 
f,,,, where f,,, are toots of the equation $(O,f) = 0 (this 
follows from 0% max ( 1, w )), let us expand in the neighbor- 
hood of this extremum: 

Then we can take the integral over f '  for fixed 6. We obtain 

and we require only the asymptotic form of the remaining 
elliptic integral for P% 1. Calculating it, we can verify that 
the integral is concentrated around &-G2; hence the as- 
sumption (,& 1 was correct. We can also see that w2/ 
ygg2 - ' gy  holds; therefore the transition ( 3 )  + (4) is also 
correct. Finally we obtain 

The kernel (7) has a singularity JwJ-' as w-0, as in the 
nondegenerate case. This is a general property of ee-scatter- 
ing in a 2 0  gas. For large transfers Iw 1 & 1 the kernel falls off 
exponentially for w > 0 and is proportional to Iwi - I  for 
o < 0. However, for 1 0 1  2 p  Eq. (7)  becomes inapplicable, 
and the character of the power-law decrease changes since 
the degeneracy of the gas no longer enters in. In the nonde- 
generate gas ~ ( o )  - lw 1 -312, w < 0, I W  I > All of this be- 
havior of K(w) is implied by formula (4) .  

The quadratic singularity in W(E, E') implies that the 
diffusion approximation is untenable, and so in order to in- 
clude ee-scattering we must solve a kinetic integral equa- 
t i ~ n . ~  In the corresponding collision integral the kernel is 
integrated over all possible energy transfers, for example 

Therefore it is possible to use the simple formula ( 7 )  if In 
p& 1; the answer so obtained is logarithmically accurate. In 
the opposite case it is necessary to use the kernel (4).  

3. KINETIC EQUATION AND RATE OF ENERGY LOSS 

The equation for the distribution function f(s) in the 
vicinity of threshold has the form 

m 

J a i r  g [w(ef .  c)f(el)- W(e, e f ) f (&)  1 
0 

- f (F) [I-fTe(e-fiQo) ] /TO(&)= O, ( 8 )  

where g is the density of states. The integral describes ee- 
scattering, while for y' zyzfiR,/T, the probability W is 
correctly given by expressions (3) ,  (4) .  The term r O ( c )  de- 
scribes optical phonon emission, and the factor ( 1 - fTc ) is 
introduced to take degeneracy into account. We define a new 
function q, and a new argument t according to the equations 

Then Eq. (8 )  can be written in the following fashion: 

XKrql=0  (t) (e-l-cp) ( e e - t + . l ) - ~ ,  (9)  

where a second parameter of the problem (besides p) is 

h 

0 is the Heaviside function, while the integral operator K is 
by definition 

OD 

K [ T I =  j dtl[K(t'-t) (t) - K (t-tf) q( t f)  I .  

The parameter 2 is convenient to use in the case of strong 
degeneracy. In the opposite case, whenp (T, , we can return 
to the parameter R = N /N ,i .' The relation between these 
two parameters is 

In order to investigate Eq. (9),  we can use the Wiener- 
Hopf rne th~d.~"  If we introduce the functions 

and perform the Fourier transforms 

Eq. (9)  takes the form 

-j,K(k) [ q + ( k ) + ~ - ( k )  ]=F(k-i)-E[q+, k1, 
w 

dt e - 'k '  1 
~ ( k ) =  j x , ~ l y ,  kl =-J dkfq+(k)F(k-k'), (12) 

0 2n c 

- m 

To calculate the rate of energy loss we must evaluate the 
integral 

m 
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FIG. 1. Regions of values o f p  and X corresponding to the various energy 
loss regions: I-nondegenerate gas,' 11-weak ee-scattering, IIITstrong 
degeneracy. The dashed line illustrates the dependence of /1 ( N )  , /1 ( N )  on 
f l ( N ) ;  the direction of increasing density N is shown by the arrow. 

Analysis of Eqs. ( 18), ( 19) show that the conditions for 
applicability of Eq. ( 17) take the form 

Strong degeneracy (In P 9  1) 

In this case, the integral ( 13) can be evaluated with 
logarithmic accuracy for I k I - 1, K = In 8. Equation (9 )  is 
reduced to an algebraic equation, from which we obtain the 
distribution function 

A calculation of the rate of energy loss then yields 

Expression ( 15 ) can also be cast in the form 

Equation ( 12) cannot be solved analytically in the gen- 
eral case. Therefore we will investigate a number of limiting 
cases which, however, exhaust the problem. An additional 
complication arises because the integral ( 13) for the "trans- 
form" of the kernel also cannot be calculated analytically 
from the function (4) .  

Let us investigate the regionil2, > 0, illustrated in Fig. 
1. The subregion labelled with the number I corresponds to a 
nondegenerate gas and has been studied in Ref. 5. The solu- 
tion to Eq. (12) will be carried out in the limits 
A < 1, /i@ ln 8< 1 -i.e, the case of weak ee-scattering 
( 11)-and in the case of strong degeneracy In P )  1 (111). 

Weak ee-scattering 

Let us investigate the situation when /i is sufficiently 
small. Then it is convenient to express the function in ques- 
tion as follows: 

and to rewrite the equation in the following way: 

where the function Z is analytic in the half-plane Im k < 1, 
while function - is analytic in the half-plane Im k > 0; the 
function K ( k )  and the whole of Eq. ( 17) are analytic in the 
strip 0 < Im k < I .  The distribution function can be found 
from (17) in the form of a quadrature7; here we present 
directly the expression for the rate of energy loss ( 16): 

where K -  and K ;' are respectively analytic for Im k > 0 
and Im k < 1. The quantity a can be expressed in the form of 
a definite integral: 

4. DISCUSSION 

Let us discuss the characteristic scale of variation of the 
distribution function and rate of energy loss. The probability 
Wee, over and above its dependence on degeneracy, has the 
quadratic singularity characteristic of the 2 0  gas. This im- 
plies that small energy transfers iw 1 < T, do not dominate, 
and that in our estimates we need only include the transfers 

1 0 1  2 Te 
Among the energy transfers Iw 1 2 Te we can distinguish 

two groups, separated by the condition / w  / EE,. The large 
transfers 1 0 1  $-E, are determined by the probability for the 
nondegenerate case, which has a power-law dependence 
I w I - ~ ~ ~ .  This asymptotic form also was a characteristic of 
the electron-electron scattering kernel given in Ref. 5, where 
it was explained that all the scales of variation for the distri- 
bution function, including the depth of depletion into the 
passive region, coincided with Te.  This implied that out of 
all the energy transfers, only the tranfer Iw 1 - T, was effec- 
tive. In summation, for small transfers lw 1 < Te the collision 
integral We, co lol-2 is concentrated at the upper limit 
I W  I - Te while for large transfers iwl )E,, We, co lw 1 -'I2 is 
concentrated at the lower limit Iw 1 - E ~ .  But, what happens 
for the intermediate transfers T, < / w  I < E,? Let us calculate 
the corresponding time using the probability (3) ,  (7) ;  

1 X do X - = j dE/ gwe. (&, e') = - j- = -In p. 
Tp e - c F  'Go ,< 0 'Go 

It is clear that the entire region T, < Iw 1 <cF gives a logarith- 
mically uniform contribution to T,. If 1noB 1, the situation 
is greatly simplified; namely, the large transfers operate in 
the vicinity of E, over an interval of order E,, while the small 
ones act in the vicinity of T, over an interval of order T, , and 
no logarithm is included. Therefore the intermediate trans- 
fers dominate. Consequently, electrons in the active region 
(i.e., above threshold) which leave the passive region origi- 
nate within a depth T, < Iw 1 <E,. 

Over this depth, the distribution function f (c )  is neces- 
sarily close to the equilibrium function f,, . The incoming 
term from ee-scattering is determined by the known function 
f,, ( E )  and also gives rise to an equilibrium function in the 
active region. Such a function will also arise as long as the 
efflux from the active region is determined by ee-scattering 
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FIG. 2. Ratio of the loss power Q to the maximum Q, ( 1 ) as a function of 
/3 = N / N , + :  a )  @(A)-result of Ref. 5, b) dependence of @, on /E ac- 
cording jo Eqs. (IS),  (19), (22) using the relation between the param- 
etersp, /1 a n d l  through the density N. In the calculation it was assumed 
that fiR,/T, = 10, x = fi/s,~,, = .88 (GaAs). 

and not by phonon emission. A competition between these 
two terms of efflux arises at a depth S which can be found 
from the relation 

while in the phonon emission time we also take into account 
the Pauli principle. It is found that if this equation can be 
satisfied, i.e., if O<S<p ,  we obtain the expression 
S = In (Xe" In 8) for S. 

In fact, in the case of weak ee-scattering the distribution 
is depleted in the vicinity of threshold compared to f,, ( E ) .  

The characteristic scale of variation of the distribution coin- 
cides with T,. Electrons which are ejected into the active 
region by ee-scattering immediately emit optical phonons. 
In the case of strong degeneracy the characteristic energy 
transfers for ee-scattering occupy the band Te 9 lwl g ~ , .  
The depletion of the distribution is small at threshold; it 
startsatadepthS =p -  ln [(A lnp)- '  - 11 ifX l n p g l o r  
p-SifX lnp-1, orS-i12ifX lnp>l .sThescaleover  
which the depletion occurs equals T,. 

The solution for the distribution function in the case of 
the strong degeneracy (21) contains a discontinuity for 
E = fifl,. 1fAeB In ,8> 1, this discontinuity is small in ampli- 
tude; it arises because of removal in the kernel of energy 
transfers Iw 1 9 T, . Therefore the discontinuity is actually 

washed out over the scale I E  - fifl,/ 9 T,. This has no effect 
on calculation of the rate of energy loss. 

Let us now clarify the dependence of the rate of energy 
loss on the density of the gas. Degeneracy is approached 
when p- 1; therefore, i l 2  9 1. The parametric dependence 
of A (N) ,  (N) on p ( N )  is illustrated schematically by the 
dotted line in Fig. 1, which passes through the regions under 
investigation. Therefore Eqs. ( 18), ( 19), and (22), which 
have a region of overlap, describe the rate of energy loss for 
any N, so long as T,, E, 9fiflo. In Fig. 2 we show the results 
of a numerical calculation of @(A), @(A). It is clear that 
degeneracy enhances the rate of energy loss. It is easy to 
prove that this is a consequence of the condition 8/ 
il -x(fiflo/Te ) ' I 2 )  1. The enhancement of the relaxation 
for /I < 1 can be explained qualitatively as follows: for emis- 
sion of an average electron to pass along the energy axis from 
E~ to fin, + sT,, i.e., a smaller distance than for the nonde- 
generate case. 

The quantities @ - I ,  @; ' characterize the increase in 
the effective time for optical phonon emission for the experi- 
mental situation described by Eq. ( 1 ) . However, numerical- 
ly @-', @;' are not large. The fact is that relaxation by 
optical phonons plays a dominant role in the balance equa- 
tion for Te > 30 K (GaAs). Therefore fifl,/T, < 14 and all 
the values of Te, E ~ ,  fifl, are numerically quite close. 

In Ref. 2 measurements were carried out for 
N = 3.9X 10'' cm-,, E, = 165 K and T, = 65-165 K. Us- 
ing the formulas of the present paper and Ref. 5, we obtain a 
slowing down which does not exceed 2. In Ref. 3, the mea- 
surements were carried out for N, = 1 . 3 ~  loi3 ~ m - ~ ,  
N2 = 1 . 5 ~  10" cm-2 and N, = 2.3 X lo9 cm-*. We investi- 
gate the cases with N,, , since for the case N, we have 
E~ > +iflo. In the case N2 we have E~ - T, - 70 K and a slow- 
ing down @p ' ~ 2 .  In the case of N, the slowing down is 
large, @- ' -- 70. The authors of Ref. 3 found a slowing down 
equal to 60 for the cases N ,,, , while in the case of N, they 
were unable to measure any slowing down at all. 

Thus, degeneracy apparently must be excluded from 
the possible reasons for slowing down of the energy relaxa- 
tion for optical phonons.'4 
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