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It is shown that when the orbital angular momentum vectors of the Cooper pairs possess 
texture, the quasiparticle spectrum in 3He-A exhibits an anomaly which is analogous to the 
chiral anomaly in (2  + 1)-dimensional quantum electrodynamics in the presence of an 
external field. The role of the latter for 3He-A is played by the texture. Both in quantum 
electrodynamics and in 'He-A this anomaly is a consequence of the Attyah-Singer index 
theorem for an operator; in the case of 3He-A this is the Bogolyubov operator for the 
quasiparticles of the texture. The superfluid current at T = 0 is composed of condensate 
currerit pv, (p is the fluid density, v, is the superfluid velocity) and the current of the fermions 
occupying the anomalous branch of the spectrum. In an arbitrary texture the intersection of 
the anomalous branch with the Fermi surface gives rise to a finite density of states and a 
nonvanishing density p, of the normal component. 

INTRODUCTION 

Superfluid 3He-A has a series of properties which distin- 
guish this fluid, as a matter of principle, from other super- 
fluid and superconducting systems, properties which are re- 
lated to the order parameter of the A-phase: the pairing in 
3He-A occurs in the state with L = 1, L ,  = 1, S = 1, S ,  = 0, 
where 1 and d are the quantization axes for the orbital and 
spin angular momenta. The expression for the order param- 
eter has the form 

where u, are the Pauli matrices; A, is the width of the gap, e l ,  
e,, 1 = e l  Xe, are the unit vectors of the orbital coordinate 
system and k,  is the Fermi momentum.' 

A consequence of the vanishing of the order parameter 
for kill is the disappearance of the gap from the spectrum of 
Bogolyubov excitations, which is essential for the distinctive 
properties of 3He-A for T< T, . Thus there arises the problem 
of finding the quasiparticle spectrum for low temperatures. 
In addition to the quasiclassical description of the quasipar- 
ticles proposed by Volovik and Mineev2 a series of papers has 
recently appeared which consider the quantum problem of 
determining the quasiparticle spectrum in the presence of a 
texture of the vector l.3-6 In all these papers it was noted that 
the quasiparticle spectrum in a sufficiently general texture 
has an asymmetric branch which violates the symmetry with 
respect to a change of sign of the quasiparticle energies. In 
Refs. 4-6 it was shown that in the case of a texture with curl 
l((1 the Bogolyubov equations are, in a certain sense, analo- 
gous to the Dirac equation in (2  + 1)  dimensions for an 
electron in an external magnetic field, the role of which is 
played by B = curl 1. As is well known, in this case the spec- 
trum of the electrons or quasiparticles becomes anoma- 
lous , '~~ i.e., there appears a branch in the spectrum which 
violates the symmetry with respect to the substitution 
B w  - B; this leads to the appearance of a vacuum current 
directed along the magnetic field, i.e., a chiral anomaly. 

In the presence of a texture of the vector 1 in 3He-A at 
T = 0 there appears a superfluid current which until now 
used to be derived by means of a gradient expansion' 

where v, is the superfluid velocity, p = k i/3.rr2 is the fluid 
density, C,zp in the weak coupling approximation. In the 
sequel we use units with m = fi  = 1. 

In this paper we shall prove that the spectrum of the 
Bogolyubov equation for the quasiparticles has an anoma- 
lous branch for arbitrary textures of the vector 1, even when 
there is no analogy with the Dirac equation. The vacuum 
current formed by the uncompensated ground-state fermion 
momenta will be transported at T = 0 by the fermions which 
occupy the anomalous branch of the spectrum ( v ,  infra), 
and has the expression 

j,, = 4 curl pl/2 -'/,C,l (Iscurl 1). ( 3  

The total momentum of the fermions which occupy the 
anomalous branch of the spectrum is completely compensat- 
ed and does not contribute to the vacuum current (3 ) .  In 
addition, the anomalous branch of the quasiparticle spec- 
trum has no gap, so that the density of the normal compo- 
nent at T = 0 is nonvanishing. We show that the existence of 
an anomalous branch of the spectrum follows from the 
Atiyah-Singer index theorem for an elliptic operator9-in 
this case the Bogolyubov operator in the texture ofthe vector 
1. For this purpose we make use of the Atiyah-Patodi-Singer 
index 

which is a topological characteristic of the spectrum (see 
Appendix A) .  Thus, the general phenomenon of spectral 
asymmetry for the quasiparticle spectrum pointed out in 
Refs. 3-6, is a consequence of the topology of the order pa- 
rameter ( l ) ,  since the Bogolyubov equation is constructed 
in terms of the order parameter. 

The plan of the paper is the following. In the first sec-, 
tion we consider the equation for quasiparticles in the case of 
the texture curl 1111. We show that although there is no com- 
plete analogy with ( 2  + 1 )=dimensional quantum electrody- 
namics, there exists an anomalous level which leads to an 
uncompensated vacuum current ( 3 ) . In Section 2 an exact 
solution is found for the problem of determining the spec- 
trum in the case of a texture with curl 111. The third section 
discusses the case when the texture of the vector 1 is absent, 
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and there exists only a gradient of the chemical potential. 
However, in this case too there exists an anomalous level 
leading to an uncompensated vacuum current. The fourth 
section considers the case of arbitrary textures, and the 
anomalous level is determined approximately. 

Everywhere below it is assumed that T = 0 and the spin 
part of the order parameter is assumed constant: d, = S,d. 

1. THE CASE OF A TEXTURE WITH CURL 1111 

In this case we write the Bogolyubov equation (for de- 
tails see Refs. 4-6) in the form 

where x=(,") is the Bogolyubov spinor, 
.!? = - (d  f + k :)/2 is the energy operator, and Ai is the 
orbital part of the order parameter ( 1 ) : 

Ai=A0[eii (r) +ieZi (r)] lk,. (1.2) 

In the case under consideration we choose el  and e, in the 
form 

el=?, e2=!j-&Hz, curl 1 =II?+0(r2), (1.3) 

Since the size of the wave function is considerably smaller 
than the size of the texture, we restrict our expansion to the 
linear term. The operator ( 1.1 ) can be rewritten in the form 

where 7, are the Pauli matrices, a = A,/k,, and 
.?= (p; +p1)/2-p. 

Substituting 

into ( 1.1 ) and transforming to the momentum representa- 
tion jx  HP, x ~ i d  /dp, we obtain (cf. also Ref. 6) 

Removing the p, -dependence in Eq. ( 1.6) by means of the 
transformation 

we obtain the one-dimensional equation 

We consider the potential 

which in the case H = 0 determines the eigenvalues of Eq. 
(1.7): E ( H  = 0) = + U. We assume that for the low-lying 
levels E the quantum eigenvalue problem ( 1.7) yields values 
close to the minima of the potential U, since small H corre- 
spond to a large value of the mass of the particle which 
moves in the potential U 2  (see also Section 3). 

We determine the minima of the potential U 

We note that the minimum ( 1.9a) corresponds to the case 
considered in Ref. 6 and leads to the term with C, in the 
expression for the vacuum current. However, in reality, as 
can be seen from Eq. ( 1.9b), for B < 0 the actual minimum is 
attained for the values p , ~  ( - 2.?)11*. Expanding the 
quantities in ( 1.7) aroundp, to first order, and carrying out 
the rotation 

x-fx exp (ir2a12), #= exp (-ir2u/2)g exp (it2u/2), ( 1.10a) 

cos ~ = a ( a ~ + p , ~ ) - ' ~ ,  sin u=pO(a2+po2)-'", ( 1. lob) 

we obtain 

where m = p - p,. In Eq. ( 1.1 1 ) we have neglected quanti- 
ties of order a'. As shall be shown below, it suffices for us to 
know the ground state of the Hamiltonian ( 1.1 1 ) : 

where f, is the normalized hasmonic oscillator eigenfunction 
with frequncy IB I in the ground state (see Ref. 6).  

Thus, even in the case when the equation ( 1.7) differs 
from the Dirac equation, the spectrum of the operator has an 
asymmetric branch, either for E < 0, B < 0, for for E > 0, 
B > 0. We show that such a spectral asymmetry is a conse- 
quence of the topology of the spectrum of the original opera- 
tor ( 1.7). For this purpose we make use of the Atiyah-Pa- 
todi-Singer 7-invariant for the original Hamiltonian [see 
Appendix A; the computation of the index 7 (H) is given in 
Appendix B] : 

+-= 
2 

q [ H ( i ) ] =  / dy Tr[Herp(-g2H')]=20(-e)sgnB, 
-" 

0 

from which it follows that the number of levels with E > 0 of 
the Bogolyubov Hamiltonian differs from that with E < 0. If 
at the same time t > 0, then the spectrum of the operator 
( 1.7) is symmztrical. If one considers the spectral flow of the 
Hamiltonian H a s  a function of t-t, - cc <E < + GO, then, 
as can be seen from Appendix A, the number of levels inter- 
secting the value E = 0 at some point .? = E* is equal to 

Making use of results from Appendix A one can show that 
dy/d.? = 0. 

Equation (1.5) confirms the results of Ref. 6, where it 
was shown, starting from different considerations, that the 
spectrum of the operator ( 1.7) has one branch which crosses 
the level E = 0 at the point .? = E* (Fig. 1 ). 

Thus, in going from .? < 0 to t > 0 the spectrum of the 
Bogolyubov operator gets restructured. The direction of the 
intersection (the change of the sign ofE from minus to plus) 
depends on the sign ofB. This implies that the asymmetry of 
the spectrum ( 1.12) of the linearized operator which we 
have obtained is a consequence of the topology of the spec- 
trum of the original Hamiltonian ( 1.7). The coefficient 2 in 
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Substituting ( 1.20b) into ( 1.20a) we have 

FIG. 1 .  The spectrum of the operator (1.7)  as a function of S for B <O. 
One of the branches of the spectrum intersects the axis E = 0 for S = E*.  

Eq. (1.14) is a consequence of the twofold degeneracy 
p e  - po of the spectrum ( 1.12). In addition, it was shown 
in Ref. 6 that if one neglects a7, p in the Hamiltonian ( 1.6), 
the spectrum is symmetric under EH - E, and if one takes 
into account this term one is led to the result that one branch 
of the spectrum intersects the axis E = 0, and for sufficiently 
large values o f t  - + cc the spectrum is deformed slightly, 
but exhibits no asymmetry in the number of levels, therefore 
I ~ ( H )  = 0 for t > 0. On the other hand, for E* < E < 0 there is 
no intersection, and an asymmetry arises only for E -  - m , 
a fact which is reflected in the value of 7 (H) in Eq. ( 1.14). 

After these remarks we calculate the current. We intro- 
duce the standard expansion 

where s is a complete set of quantum numbers; a, and a: are 
the annihilation and creation operators for quasiparticles in 
the state s; u s ,  v, are the components of the Bogolyubov 
spinor [Eq. ( 1.1 1 ) 1. Then the current operator can be writ- 
ten in the form 

In Eq. ( 1.17) we have taken into account the two possible 
values of the spin projection. 

In the case under consideration the current flows along 
the z axis: 

j 2 =  x k Z l u s l 2 -  z k z l v a ~ 2 ,  (1.18) 
8,ES<O 8,E8>0 

and for the level with n = 0 we obtain 

d k ,  d k ,  
j Z = J  kzO(-Eo) 1 uO(x=O) 1 '  

( 2 n )  

Substituting 

and taking into account that cos u zO, 1 sin u 1 -- 1 forp,%a, 
we obtain from ( 1.10) 

For H > 0, substituting ( 1 . 2 0 ~ )  into Eq. ( 1.19), we obtain, 
after the substitution k, = r cos 8, k, = r sin 8, 2E = r2 
- k < 0, the following expression for the current 

It can be seen from here that the momentum carried by the 
fermions which occupy the anomalous branch of the spec- 
trum is exactly equal to the anomalous current ( 3 )  in the 
texture under consideration. 

We show that the remaining levels do not contribute to 
the total current ( 1.2 1 ) , i.e., complete compensation of the 
currents of the non-anomalous levels occurs. For this pur- 
pose we consider the expressions of j, for the two possible 
signs of H and the two values of the momentum k, from 
which the current operator ( 1.18) is formed 

j  ( I ,  - = ( k )  1 L 1 - (-k~)  1 us* 1 '. 

The currents ( 1.22a) and ( 1.22b) are equal, since the Bogo- 
lyubov operator (1.7) is invariant under the simultaneous 
substitution Hk, = B-+ ( - H) ( - k, ) = B .  

On the other hand, since the current is odd under coor- 
dinate inversion, j, ( - H) = - j, (H) ,  it follows that 

In obtaining this formula we have taken account of 

X exp ( - ipup /B)  . (1.20b) Now, on account of the condition Epz = E - ,z for n # 0 
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and Epx = - 

terms with n 
that Iu,,I2 = 

for n = O  [see Eq. (1.12)], only the 
= 0 survive in the sum ( 1.23a), whence, noting 

j ~ , 1 ~ ,  we obtain the formula we are after: 

Let us consider the density of states for E = 0. As can be 
seen from Eqs. ( 1.1 ) and ( 1.12), E = 0 corresponds to the 
valuep, = 0, i.e., to the case when a minimum of the first 
type ( 1.9a) is realized. But this case had been considered in 
Refs. 4 and 6, and is equivalent to the limit in which the 
Bogolyubov equation coincides with the Dirac equation in 
2 + 1 dimensions, in an external magnetic field B = curl 1. 
Therefore the density of states coincides with that for a Lan- 
dau level and equals 

N ( o ) = ~  I+(z=O) I26(E)= 1-curl l l /(2ii) '  (1.24) 

However, for 1 ~ 1  >a2,  when the approximation ( 1.9b) 
of expanding around the minimum is valid, the density of 
states increases substantially and equals 

2. THE CASE OF A TEXTURE WITH curl I l l  

In this case the Bogolyubov equations ( 1.1) can be 
solved exactly. We choose the basis e , ,  e, in the form 

ei=2, e , = ~ + i T , z ,  curl lI ,=,  = T , t ,  curl 111. (2.1) 

Then, separating the dependence on the conserved quantum 
numbers p, and py : 

X=X exp (ip,x+ i p , ~ ) ,  (2.2) 

and changing to the momentum representation inp, : - id / 
dz) +p,, z-id /dp,, we can rewrite the Bogolyubov equa- 
tions ( l .  l ) in the form 

In Eq. (2.3) we effect the following change of variables: 

X = P ' ,  1 ( / k F  = pz=ekFef=elp,l, (2.4) 

where e = f 1, depending on the sign ofp, . Then the Bogo- 
lyubov operator in Eq. (2.3) can be rewritten in the form 

H B  =tn[ p (eZ1-1) + E ~ ] + U T ~ P ~ - ~ T ~  (pI-TLp:), (2.5) 

where E~ = (p: + p: )/2, pc = id /a{. Separating thep, -de- 
pendence 

q=cp ~ X P  (~P,EIT.L) 9 (2.6) 

and carrying out the rotation: 
h 

q+cp exp(iuz2/2), B-exp (-ifztZ/2) H ,  e x p ( i u r , / 2 ) ,  

u=n/2, (2.7) 

we obtain the Hamiltonian which we are going to investi- 
gate: 

Note that no approximations have been made in the deriva- 
tion of Eq. (2.8). 

We determine the ground state of the Hamiltonian 
(2.8), state which is already anomalous. To this end we con- 
sider the equation 

Its solution is 

In order to satisfy the normalizability condition for p, for 
<+ + co , it is necessary to require that E~ - p < 0; in addi- 
tion, a normalizable solution of Eq. (2.9) depends on the 
sign of aT, . Thus, from Eqs. (2.8)-(2.10) we obtain the 
spectrum represented in Fig. 2: 

Before calculating the vacuum current we show how 
the existence of the anomalous branch of the spectrum 
(2.11 ) follows from the Atiyah-Singer index theorem. We 
consider the spectral flow of the Hamiltonian (2.8) as a 
function of the parameter p,, with - co <p, < + co (the 
fact that the limits are infinite is not essential in our case, the 
only important thing is that p, changes sign as it changes 
adiabatically). We show that the number of eigenvalues of 
the Hamiltonian (2.8) which for some valuep, =p,* inter- 
sect the axis E = 0 is equal to one, and therefore is the anom- 
alous level (2.1 1 ) which we have found. It follows immedi- 
ately from this, as can be seen from (2.1 l a ) ,  thatp: = 0. For 
this we consider the index of the operator H(p, ) (the index 
is calculated in Appendex B) : 

Then the number of levels crossing the value E = 0 as p, 
varies is given by the equation 

Remembering that the index 77 is by definition the difference 
between the number of levels with positive and negative en- 
ergy, we obtain 

FIG. 2. The spectrum of the operator (2.8) as a function of ap,  for T, > O 
( a )  and T, < O  ( b ) .  The level with n = O is anomalous. 
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as follows also from the exact solution (2.1 1 ) . From the 
calculation of the index it also follows that the anomalous 
level (2.1 1 ) which we have obtained is the only one for the 
given operator (2.8). 

Let us find the current transported by the fermions on 
the anomalous level. Since the anomalous level violates the 
symmetry underp, H -p, , an uncompensated current will 
flow parallel to the external field, curl 1/12. It follows from 
Eq. ( 1.7) that 

where, taking account of Eqs. (2.4), (2.6), (2.7) (we have 
assumed that T, > 0; the case T, < 0 is similar): 

The normalization factor N - ' is 

[the integral in (2.16) was computed by means of the sad- 
dle-point method, since aT, < /&, - p / holds for practicaly 
all values ofp, , p, 1. A similar calculation of the integral in 
(2.15) yields 

wherelO=1n(l - - ~ , / p ) ' / ~  
Substituting (2.17) into (2.14) and introducing the co- 

ordinates~, = r sin 8, p, = r cos 0, r < k,, we obtain 
k. n 

where we have taken account of Vp = 0 (the case Vp#O is 
considered in the following section). 

We show that the total current is carried by the fer- 
mions of the anomalous level. For this we consider, e.g., 
j, ( T ,  ). The equations (2.8) have the symmetry p+r,p, 
p, - - p, , T, + - T, , E-  E, and in addition, the Hamilto- 
nian (2.8) has the formal symmetry p, - - p, , T, + T, , 
E-  E, p-p, since the solution (2.8) is also a solution of the 
equation H *p = E 2p. However, this symmetry is broken by 
the level with n = 0, i.e., the anomalous level, for which it is 
necessary that E-  - E, whence by analogy with Eq. 
( 1.23a) it follows that 

In the derivation of Eq. (2.19) we have taken into account 
the fact that Epx = E  - p x  for n $0 and Epx = - E  - p x  for 
n = 0. In addition, the sum in (2.10) with n # 0 cancels by 
virtue of / u O ( ~ , ) I ~ = I u o ( - p , ) 1 ~ ,  luo(px)j2 
= )v,( -p, ) i 2  and an even function is integrated over an 

odd interval. 
We now consider the density of states with E  = 0. We 

arrive at the result derived by a different method in Refs. 2 
and 4: 

where NO = k,/.rr2 is the density of states at the Fermi level 
in an ideal gas. We note that the existence of an anomalous 
level follows from the Atiyah-Singer index theorem for the 
Bogolyubov operator, a theorem which makes essential use 
(see Appendix A)  of the fact that when one of the param- 
eters of the Hamiltonian changes adiabatically, the anoma- 
lous level changes the sign of the energy, and thus the level 
crosses the axis E = 0. Consequently, the existence of a finite 
density of states for T = 0 follows directly from the index 
theorem, on account of ( 1.24) and (2.20). 

3. THE CASE Vp#O 

In this section we consider the case when the vector 1 is 
parallel to 2 and is spatially homogeneous, but Vp #O. This 
case can be solved exactly, and as in the preceding case, the 
Bogolyubov equations admit an anomalous solution which 
leads to the appearance of an uncompensated current in the 
vacuum of such a "texture." 

We consider the case when p = p (x) .  Let e, = 2, 
e, = j ,1  = 2. Rewriting the Bogolyubov equations in the mo- 
mentum representationp, +p, x -id /dp and separating the 
dependence onp, , p, , as we did in Eq. (2.2), we obtain 

where we have set E = (pi + p:)/2 - p (x  = 0) and re- 
tained only the terms linear in Vp in the Hamiltonian. In- 
deed, as in Ref. 6, the characteristic scale of the wave func- 
tion is much smaller than the characteristic scale of the 
texture, and therefore the approximation of constant electric 
field is valid, analogous to the approximation of constant 
magnetic field, used in Sec. 1.2. 

The unitary transformation 
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leads to 

where we have introduced the notation Vp = E. The anoma- 
lous solution of Eq. (3.3) can be obtained exactly: 

The choice of sign in Eq. (3.4) is dictated by normalization 
requirements and depends on the sign of E: 

~ = R ( E )  ( ) +R(-E) ( :J ) , ~ . r p = ~ r p ,  (3.5a) 
' p a  

E,=ap,B (E) -ap,B (-E). (3.5b) 

We show that the anomalous level that we have found is 
unique. For this we apply the index theorem to the operator 
(3.3). We consider the spectral flow of the operator (3.3) as 
a function o f t  r p y  , - cc <py < + co . A calculation of the 
7-invariant of the operator (3.3) is given in Appendix B (in 
our case E = E, ): 

~ [ R ( P , )  I=sgn(E,~,), (3.6) 

from which we obtain the number of levels which change 
sign under an adiabatic change ofp, : 

'Iz{r[R(p,=+m) I-r[R(p,=--m) I )  =sgn(E,p,), 

dil/dp,=O. (3.7) 

On the other hand, it can be seen that the solution (3.5) 
satisfies the condition (3.7), and consequently the anoma- 
lous solution that we have found is the unique anomalous 
solution for the Hamiltonian (3.3). 

Let us compute the current transported by the fermions 
of the anomalous level. We assume that E > 0; the case E < 0 
is treated similarly. Since the solution (3.5) violates the 
symmetryp, -+ - p, , the current flows along the directionj: 

where, taking account of Eqs. (3.2) and (3.4), 

Introducing the new coordinates r sin 6' = p, , r cos 6' = p, , 
E = r2/2 - p ,  we have 

Then 

rP dr 1. - j- j d e  sine a (p'+qg) N'p(o) I' j d p d q e r p [ -  2E 
0 4nP 0 457 - m  

Here we have taken into account the fact that p = k $/37.r2. 

Thus for Vp # 0 an uncompensated momentum appears in 
the ground state, momentum which is carried by the fer- 
mions occupying the anomalous level. For this level the exis- 
tence of this momentum is a consequence of the violation of 
the symmetry E-+ - E, or, what is the same,p, - -py . 

Let us prove that it is exactly the anomalous level that 
carries the uncompensated vacuum momentum. For this we 
note that j, ( E )  = - j, ( - E). Since the current is odd un- 
der coordinate inversionsp, -+ -py , it follows similarly to 
(2.19) that the only level that contributes to j, (E, p,) 
- jy (E, - p, ) = 2jy (E, p, ) is the level for which 

E,(p, ) = - E,( -p, ), i.e., the anomalous level (3.5). 
We note that Eq. (3.3) can be solved by a method analo- 

gous to the one discussed in Sec. 1, i.e., to make use of an 
expansion around the minimum of the potential 
U = [ ( E  + + (ap)'] 'I2, which also leads to the re- 
sult (3.1 1 ) for the current. 

We now show that the contribution to the current for 
Vp # O  comes just from Vpll. To this end we consider the 
general case: 

where E, = V, p ,  E ,, = V,p. We carry out in Eq. (3.12) the 
change of variables 

Elx+Ellz=m, B,,,,=E,,lllE, 

-Ellx+B,z=n, E=(El12+E,2)"'. (3.13) 

Then Eq. (3.12) can be rewritten in the form 

from which, by analogy with Eq. (3.2), we obtain the Hamil- 
tonian 

where E = (p: + p t  + p5, )/2. After the obvious substitu- 
tions 

we find the Hamiltonian 

The index for this Hamiltonian is computed in Appendix B 
and equals v ( H )  = sgn(Elpy ) .  Thus, the Hamiltonian 
(3.12) has an anomalous level only for El #O, and on ac- 
count of the arguments above, it is the one responsible for the 
vacuum current j, , i.e., jy depends only on El = (Vp x l), . 

Since it follows from the Atiyah-Singer index theorem 
that the anomalous level (3.5) does not have a gap, the den- 
sity of states for E, = 0 will be different from zero: 

4. THE CASE OF AN ARBITRARY TEXTURE 

In this section we consider the current carried by the 
quasiparticles of the anomalous level in an arbitrary texture, 
and show that it coincides with the current (2 ) .  We set 

e,=?-az(g cos cp+2 sincp), (4. l a )  
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e,=g sin cp-t cos cp ,  (4. lb)  

1=g cos cp+t sin cp+ a z l ,  

curl 1 = a j .  

(4. l c )  

(4.ld) 

In this case curl 1 is direction along t h e j  axis and at the point 
z = 0 the vector forms an angle q, with curl 1. We separate, as 

before, the dependence on the "good" quantum numbers 
PXYPY: 

In the Bogolyubov equation ( 1.1 ) we transform to the mo- 
mentum representation in the variable p, : j, -p,, z+id / 
dp, , and make the substitution 

after which we define, similarly to (2.4), 

X=cpki'" exp (-E/2-ipXEla s in  c p )  . 
- 

(4.4b) 

This yields the one dimensional Bogolyubov equation: 

where 

E ( E )  =~,2/2+'/~(p,,/sin rp)2+'12k,z(e2k tg2 9 - 1 )  -ekFpueE, 

IY ( E )  =ap,/sin cp-eak,eg sin y ,  Z=a sin y .  (4.6) 

The spectrum of the Hamiltonian cannot be determined 
exactly; however, one can make use of the method explained 
in Sec. 1 and solve an approximate problem. For this purpose 
we consider, as in Sec. 1, the minima of the potential 

We assume that for a sufficiently weak texture a -0 the low- 
lying states of the Hamiltonian (4.5) are well localized near 
the minimum of the potential (4.7) in which the particle 
with mass - l/a is moving. In this case we expand E and W 
near the minimum point 6 = go: 

After this approximation the spectrum determination 
problem can be solved exactly. We determine the ground 
state of (4.5) for the values of e and W from Eq. (4.8). For 
this we carry out a unitary transformation 

We set 

W(E0)  
tgp=-- , sin p = 

w ( t o )  
E ( g o )  [ e Y E o )  +W2(Eo) I"' ' 

cos p = 
E ( E o )  

[E' ( to )  + W Z  ( to )  I"' ' 

Then Eq. (4.5) can be written in the form 

where 

This immediately leads to a solution for (4.1 1 ) with n = 0: 

where f, is the normalized harmonic oscillator wave func- 
tion (it is easy to see that then q, and x will also be normal- 
ized ). 

We calculate the current carried by the fermions on the 
level with n = 0. From Eq. ( 1.18) we have: 

where E, = 2. sgn(MiS) for n = 0 and s denotes a complete 
set of quantum numbers. Consequently, taking into account 
Eq. (4.12), we obtain 

from which it follows that 

We note that, as can be seen easily tan 0) 1, hence sin2(P / 
2) = 1/2 for practically all values ofpx ,py . Then the expres- 
sion for the current becomes, after integration with respect 
to Px 9 

1 
j = - --- j dk,k, s g n ( M i )  I k,tg ryaL~a sin c p / .  (4.18) 

8n2 

We introduce the momenta k ,, and k,  (see Fig. 3) : 

kii=p, sill cp+p, cos y=k, cos (cp-o), (4.19a) 
kFeEn tg  cp=e (p,+p, ctg c p )  , (4.19b) 
sgn  (Ma") =-sgn (akll k ~ p z ) ,  (4 .19~)  

p,=k, cos a). . (4.19d) 

In the derivation of (4.19b) we have taken account of 
Eq. (4.3), and in the derivation of Eq. ( 4 .19~)  we have con- 
sidered Eqs. (4.6) and (4.1 1 ). Then the expression for the 
current can be finally written making use of the fact that all 
the momenta are close to the Fermi momentum: 

FIG. 3. A section of the Fermi sphere for k, = 0. The vector k, is on a 
circumference of radius k,; o is the angle defining the direction of the 
vector k, along this circle. 
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-o) sgn (k,k,) do 
n 

a 
= - - K,' J dok. (-sin o) cos (p-o) sgn(v--o) 

fin2 

I *  
=- /&pay cos 2pa-'/,poz^sin 2rp='/'p rot 1-'/,pl(l rot 1). 

Thus, we have obtained the result that the current 
transported by the anomalous level (4.12) is indeed the total 
current flowing in the texture under consideration. We note 
that in the derivation of (4.20) we have integrated with re- 
spect to w from 0 to a, since this corresponds to one value of 
the charge e; if one takes into account two possible values of e 
one must double the magnitude of the current, but then one 
must take into account the possible values of e also in the 
normalization of the wave function (4.13), which leads to 
the previous result (4.20) [see also Eqs. (2.14)-(2.16) 1. 

We now appIy the index theorem to elucidate the ques- 
tion of whether there exist anomalous levels for the original 
Hamiltonian (4.5). For this we consider the index of the 
operator Has  a function ofp, (the computation of the index 
can be found in Appendix B) : 

We note that q ( H )  is odd under the transformation a -+ - a, 
p--p + a, which means the substitution 1- - 1, as well as 
under a - - a, which means curl 1 + - curl 1. The current is 
also odd under these operations. The number of energy lev- 
els of the Hamiltonian which change sign asp, varies from 0 
to W ,  or, in other words, as&( W = 0)  varies from - ,u to cc, 
(one may assume k, = 0)  is 

1 ~ 2 [ t ~ ( ~ r r  + w ) - q ( r r t - - , , ) ~  
=-sgn ( ( 1  sin (F cos (E). 

Thus, in the case under consideration, there exists a 
gap-free anomalous level, and its approximate value has 
been found to be (4.12). Similar to the preceding, assuming 
E, ( a )  =En ( - a )  for n+O, and E,(a) = - E,( - a )  for 
n = 0 (in case one uses the symmetries of the approximate 
Hamiltonian these assertions are exact) one can show that 
the main contribution to the current comes from the anoma- 
lous level (4.12). 

CONCLUSION 

In this paper we have considered the Bogolyubov equa- 
tions for quasiparticles in the 3He-A in the presence of a 
texture and have shown that the spectrum of the Bogolyubov 
equation has an anomalous branch, i.e., a branch which vio- 
lates the symmetry under spatial inversion and carries an 
uncompensated quasiparticle momentum in the vacuum, 
(3) .  The momentum carried by the femions in other 
branches of the spectrum is compensated, totally or approxi- 
mately, up to terms of higher order in the gradients. In those 
cases when the non-anomalous levels could, in principle, 
lead to an uncompensated current, this current has a nonto- 
pological nature, in distinction from the anomalous current 
(3 ) .  

In a certain case, e.g., when the momenta are close to 
the Fermi momentum, the Bogolyubov operator is analo- 

gous to the Dirac operator in the presence of an external 
field, the role of which is played by the texture of the vector 1 
(Ref. 6).  In this case the spectrum of the Bogolyubov opera- 
tor reproduces the chiral anaomaly of quantum electrodyyn- 
amics (in 2 + 1 dimensions). At the same time, if one deter- 
mines the total vacuum current, to which portions of the 
anomalous level which are remote from the Fermi surface 
contributed, this analogy no longer exits. Nevertheless, in 
solving the problem of determination of the spectrum, exact- 
ly or approximately, we find that the spectrum exhibits, as 
before, an anomalous branch, leading to a current flowing in 
the vacuum state of 3He-A, current which equals the mo- 
mentum of the fermions which are in the anomalous level. 

The reason for the existence of an anomaly in the quasi- 
particle spectrum follows from the topology of the spectrum 
of the Bogolyubov operator and is related to the Atiyah- 
Singer index theorem (cf. Appendix A),  in the same manner 
as in quantum electrodynamics. We note that the existence 
of an anomalous branch was proved rigorously for the origi- 
nal Bogolyubov operator. Since, in addition, the gapless Fer- 
mi fluid which occupies the anomalous branch has a finite 
density of states N(E  = 0),  this implies a finite density of the 
normal component p, ( T = 0)  = N(0) k $ in any texture in 
3He-A, including the case when the texture 1 is absent, but 
there is only a gradient of the chemical potential in the fluid. 

It is our pleasure to thank G. E. Volovik for constant 
interest in this work, as well as V. P. Mineev and A. P. Belov 
for numerous discussions. 

APPENDIX A 

In this Appendix we consider the Atiyah-Singer index 
theorem. As follows from the discussion of the Bogolyubov 
operator for the case of different textures, when we are solv- 
ing the problem of determining the quasiparticle spectrum 
we always deal (either right away, or after an appropriate 
change of variables) with a one-dimensional quantum-me- 
chanics problem for the determination of the eigenvalues of 
some operator. For this case use is made of a version of the 
Atiyah-Singer index theorem applied to Hamiltonians de- 
fined over space of odd dimension d = 2n + 1. In our case 
d = 1. The good quantum numbers, i.e., the eigenvalues of 
operators which commute with the Hamiltonian, may be 
regarded as parameters. 

After these remarks we reproduce a formulation of the 
theorem following Ref. 9. We consider a one-dimensional 
manifold R and on it a family of Hamiltonians H,, depend- 
ing on a parameter t ,  - w < t < + CO. Assume that for 
t = + co the operator H, has no zero modes. We analyze the 
change of the spectrum of H, as t varies adiabatically from 
- cc to + co . Assume that some eigenvalues of the Hamil- 

tonian 

change sign as t varies, and consequently, for certain values 
ti, i = 1, . . . , N they intersect the line R = 0. The Atiyah- 
Singer index theorem asserts that to the number of eigenval- 
ues of the Hamiltonian H, which change sign as t varies, or 
in other words, to the spectral flow of H, , one can associate 
the index of some Dirac operator D in a space of dimension 
d = 2n + 2 = 2, and this association is bijective. Consider 
the operator D on 8 x R: 

481 Sov. Phys. JETP 65 (3), March 1987 A. 0. Balatskiand V. A. Konyshev 481 



where ui are the Pauli matrices and e denotes the direct 
product. 

Indeed, assume that some eigenvalue A 7 changes sign 
at t = ti; then one can construct in the adiabatic approxima- 
tion the zero mode of the operator D: 

where 
t 

where v is a constant spinor; in order that CA4) should be 
normalizable one must require v to be an eigenvector of the 
matrix ci with eigenvalue f 1, depending on the direction 
of the sign change of Am ( t ) .  Since a 8 1 anticommutes with 
D, and on account of what was said before, one can classify 
the zero modes of (A3) according to their chirality, and 
consequently one can define the index of the operator D as 
the difference between the numbers of zero modes of D hav- 
ing different chiralities (Ref. 10): 

We introduce the Atiyah-Patodi-Singer index for the Hamil- 
tonian: 

q ( H )  = lim 
Li J d y y T r [ A e x p ( - y 2 H 2 ) l .  (A6) ,-, r [ ( s + i ) / a i  , 

Here Tr is the total trace, to be understood as 

where a, is a complete set of functions and tr is the trace 
over spinor indice. The index 7 (H)  is a topological invariant 
which measures the spectal asymmetry of H, . Indeed, from 
(A1 ) it follows that 

Consider the variation of q(H,  ) in the vicinity oft, . It 
can be seen from Eq. (A7) that q(H,  ) changes discontinu- 
ously with a jump of + 2, depending on the direction of the 
sign change ofil 7 .  On account of Eqs. (A3)-(A5) the index 
of the operator D is proportional to the number of jumps of 
g ( H ) :  

On the other hand, the number of discrete jumps of q ( H )  
corresponding to a passage of R, through zero can be deter- 
mined as the difference between the total variation of q (H, ) 
for adiabatic variation oft and the continuous variation of q, 
If q ( H )  varies continuously there exists a formulaP 

from which 

1 1 d  rl 
i n d D  = - [q(fI t=+m)-r)(Ht=-.)  1 --r, j - d t .  

3 2 i t ,  d t  

In fact we shall calculate the quantity in the right-hand side 
of Eq. ( AlO), which equals the number of levels of the oper- 
ator H which intersect the axis il = 0. In our case H is the 
Bogolyubov operator and t is one of its quantum numbers. 
The levels which contribute to (A10) will be designated as 
anomalous. In the computation we shall follow the Fu- 
jikawa" method. 

APPENDIX B 
' This Appendix contains the calculation of the index q 
for actual Hamiltonians in specific textures. 

I .  The texture with curl 1111. In this case it follows from 
Eq. ( A l )  that 

In the calculation of the last integral we have taken into 
account (cf. Ref. 9)  the fact that Z. may take on both positive 
and negative values. It is not hard to see that the continuous 
variation of q is 

2. The texture with curl 111. The computation of the in- 
dex is analogous to (B l ) ,  so we omit some intermediate 
steps: 
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X exp 1 -y' (E'+ ' i -  (aTlpt) ' j  ] } 
3- - 

- - 4 p  (-ap,) aT, j dyy Tr {ex pxp[-,y'(;'+ ') I )  
laT11 0 

In the derivation of (B2) we have assumed that 
E~ - p sap , ,  e.g., for sufficiently small Ip, I ,  although, as 
can be seen from the exact solution (2.11 ) Eq. (B2) is valid 
in the general case too. One can show analogus to the deriva- 
tion of (Bla) that the continuous part of the variation of 77 
vanishes: 

As can be seen from the exact solution (2.11 ), the topologi- 
cal structure of the spectrum does not change under varia- 
tions Sp, for arbitrary p, # 0. 

3. The case V p  # 0. We calculate the index of the opera- 
tor (3.16). Proceeding as in the derivation of (B1 ) and 
(B2), we have 

2 
q = - J dy . Tr {-ar3p, exp[-y' (aZp,'Ca'k'B,' 

+rn2(E,,2+E,2) t a E , ~ , )  1) 
+ m  

One can show that d ~ / d t  = 0. 
4. The case of an arbitrary texture. We calculate the 

index of the operator (4.5) : 
Lcx 

'1 = \ dyTr [H erp (- y2H2)] 
n'i? , 

0 

We rewrite the integrand in the form 

W=a (p, sin cp-p, cos cp), 

where z = W+ i~ = (z(eiX. Now (B4) will take the form 

FIG. 4.  The trajectory of the point z = z ( p ,  ) = W ( p ,  ) + i ~ ( p ,  ) in the 
complex plane of the variable z  = W  + i ~ .  

where A (arg z)  is the increment of the argument of z asp, 
varies from - oo to + co. In the complex plane this incre- 
ment is given by the variation of the argument of a point as it 
moves along a parabola implicitly refined by [ ~ ( p ,  ), 

W(p, 1, Fig. 4. 
It is clear from the figure that A(arg z )  # O  only when 

the poarabola circumscribes the coordinate origin, i.e., when 
the point E (  W= 0 )  of the parabola is situated below the 
point E = 0, i.e., E (  W = 0)  < 0. Making use of the equations 
of Sec. 4 it is easy to see that 
E(W=O) = p ~ / 2 - p ~ / 2 c o s 2 4 ) - - p .  NOW it is obvious 
that A(argz) changes sign depending on the direction of 
motion along the parabola. The direction of motion is given 
by sgn ( 8 W /dp, ) , hence 

A (arg z )  =2n0 [ - E  (W=0) 1 sgn (dWlap,). 

We finally obtain for 7 (H) 

(H) =20[-E(W=O) ] sgn (a sin cp cos c p ) .  (B6) 

Thus, it is particularly transparent from the calculation 
above that 7(H) is a topological characteristic of the spec- 
trum. Indeed, for any deformation of the path shown in Fig. 
4 which does not cross the point E = 0, W = 0, the result for 
the index q ( H )  remains unchanged. Moreover, in the deri- 
vation of (B6) it was clear that in order that an anomalous 
level should exist it is necessary that some energy formed out 
of good quantum numbers should become negative (see 
Sec. 1 ) .  
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