
Magnetic-resonance line shape in magnetically diluted solids with spatial 
correlation and inhomogeneous broadening 

F. S. Dzheparov, A. A. Lundin, and T. N. Khazanovich 

Institute of Theoretical and Experimental Physics and Institute of Chemical Physics, 
USSR Academy of Sciences 
(Submitted 14 March 1986; resubmitted 1 August 1986) 
Zh. Eksp. Teor. Fiz. 92, 554-568 (February 1987) 

A theory of the paramagnetic-resonance line shape in solids with disordered spatially 
correlated distribution of the spins in the presence of inhomogeneous broadening is developed. 
The theory is based on the concentration expansion of the memory function (irreducible 
operator). In the approximation linear in the concentration, the problem is reduced to 
relatively simple quadratures, which make possible a numerical synthesis of the EPR spectra 
and their comparison with the experimental spectra. The accuracy of the linear approximation 
is estimated and the asymptotic form of the decrease of the free induction is found. A 
phenomenological expression for the memory function is proposed for the case of arbitrary 
concentration. The general theory is illustrated by several specific examples which show that 
spatial correlation influences strongly the line shape, and that the influence of the 
inhomogeneous broadening cannot be represented in the form of a convolution. 

1. INTRODUCTION 

The problem of the paramagnetic-resonance line shape 
in a solid with disordered spin arrangement is one of the 
classical problems of the statistical physics of spin systems. 
Notwithstanding the appreciable efforts made to solve this 
problem since the discovery of magnetic resonance'-6 (see 
also Refs. 7 and 8),  there is still no experimentally confirmed 
theory of the absorption line shape in a magnetically dilute 
system. The obstacles to a successful solution of the problem 
is its multiparticle character in the absence of a small param- 
eter in the Hamiltonian. An added difficulty, typical of dis- 
ordered systems, is the need for configuration averaging 
(i.e., averaging over all the spatial positions of the particles). 

Yet the problem is of significant general-physics inter- 
est both for applications and because of the profound analo- 
gies with many other branches of physics. Examples are the 
problem of optical spectra of mixed  crystal^,^" neutron scat- 
tering by a dilute ~ a r a m a g n e t , ~ ~  and practically all the other 
problems in which it is necessary to calculate the temporal 
correlation functions (TCF) of a disordered system. At the 
same time, the spectra of a disordered system can be used, for 
example, to determine the local concentration of particles in 
polymer coils, since they carry information on the structure 
of the impurity paramagnetic centers, on their electronic 
structure, and others. 

The first attempt to describe the spectrum of a disor- 
dered system was Anderson's classical theory,' in which he 
postulated a model Hamiltonian that differed substantially 
from the real one, and assumed the medium to be absolutely 
disordered and homogeneous. Other studies were based ei- 
ther on a comparison of the second and fourth  moment^,^ or 
on unverifiable  approximation^.^.^ In Ref. 6, the authors 
confined themselves to a qualitative discussion of exchange 
narrowing. The most consistent is Ref. 4, but it is based es- 
sentially on the assumption that there are no correlations in 
the spin positions. Such correlations, however, are frequent- 
ly observed in experiment; for example, they appear in ion 
clusters in crystals, in tracks of charged particles, in frozen 

solutions of spin-tagged macromolecules, etc. In addition, 
EPR spectra are almost always subject to inhomogeneous 
broadening due to the spread of the fields. 

We develop here a systematic theory of paramagnetic 
resonance spectra in magnetically dilute systems, with 
allowance for the correlations in the spatial distribution of 
the spins and for the inhomogeneous broadening of the ini- 
tial spectrum. The theory is a substantial elaboration of the 
approach indicated in Ref. 10. It is based on a concentration 
(cluster) expansion of the memory function which is an irre- 
ducible operator for the TCF. In an approximation linear in 
the concentration, the problem is reduced to quadratures. 
The accuracy of this approximation is estimated. For the 
cases of arbitrary concentration, a phenomenological 
expression is proposed for the memory function. The general 
theory is illustrated by a number of specific examples. 

2. CLUSTER EXPANSION OF THE MEMORY FUNCTION 

It is well known that the line-shape function in magnet- 
ic resonance is the Fourier transform of the real part of the 
time correlation function 

where S, = S, + is,, are the transverse components of the 
total-spin operator; 

S - ( t )  =exp ( iH , t )S -  exp ( - iH . t ) ,  

and H, is the secular part of the spin Hamiltonian in fre- 
quency units."' 

With allowance for the spread of the static local fields, 
the Hamiltonian takes the form 

N N N 

where N is the number of spins in the system, S,B is the a- 
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component of the operator of the jth spin, and Hjk is the 
Hamiltonian of the interaction of the spins j and k. 

In the thermodynamic limit, T( t )  is self-averaging, i.e., 

where (...), denotes averaging over the ensemble of the spa- 
tial distributions of the spins, and (...), is averaging over the 
ensemble of the static local fields. 

To formulate the cluster expansion it is convenient to 
assume that the possible values of the coordinates form a 
regular lattice. We introduce the occupation number of the 
sites x of this lattice 

N 

HereS(x) is the Kronecker delta, and x, is the coordinate of 
the impurity. Obviously, nx is equal to zero or unity, de- 
pending on whether the site x is empty or occupied. In the 
occupation-number representation, Eq. (2)  takes the form 

The summation here and below was carried out over the 
spatial variables and over all the sites of the regular lattice. 
Any bounded function of the occupation numbers can be 
expanded in the series 

F({n,)) = F(O) + n,(F(') (q) - F(o') 

( O )  + ix' n,,nq,nq. (F'" ((q, qn 4 3 )  - F"' (q,) - F'" (q2) + F ) 
3! 

1 ,4243  

+ F"' (q,) - F'O') + . . . , (6)  

Here P'P'(qi,...,qp ) is F({n,}) in the case when the 
numbers nqi,nq, ,..., n, are equal to unity and all the other n, 
are zero. The prime on the summation sign in (6)  means 
exclusion of all coincidences of the coordinates, while the 
double prime in (7)  emphasizes the fact that, in addition, all 
the summations are restricted to a common volume. Equa- 
tion (6)  follows from (7)  upon symmetrization with respect 
to qi. Note that Eq. (7)  is more compact, but (6)  is more 
useful for actual calculations. 

Equations (6)  and (7)  can be obtained, for example, by 
induction, recognizing that for any bounded function 

Another derivation is indicated in Ref. 10. 
To apply these relations to our problem, we recognize 

that after averaging the system is translationally invariant, 
and therefore 

II II 

= (no Sp {S+So- (t) ) )I ( f  Sp SO+So-). (8)  

We have introduced here the dimensionless density f = (n, ) 
and took it into account that the numerator and denomina- 
tor in (8)  are self-averaged. It is convenient to separate the 
common expression with frequency o,, i.e., transform from 
the Hamiltonian (5)  to 

Using now the obvious relation n,,p(n,) = n@( 1 ), we get 

r ( t ) = < r o  (t)exp(-hot) ),,, ro ( t )  =<To (t) )", (10) 
r,(t) =Sp {S+ exp (iHft)S0- exp (-iHft))/Sp (SofS0-). 

The symbol (... ),,, denotes here averaging over the inhomo- 
geneous broadening of the spin at the site "0," while (...)' 
denotes averaging over all the variables under the condition 
that the site "0" is definitely occupied, and that value of w, is 
fixed. 

Under typical experimental conditions, the Larmor 
precession frequency o, in an external magnetic field is 
much larger than the spread of the local-field frequencies 
and the characteristic frequency of the spin interaction, i.e., 

The known expression for the normalized line-shape func- 
tion7.8.1 I can now be rewritten in the form 

where w = a,, - w, and w,, is the frequency of the trans- 
verse RF field. It is implied in ( 1 1 ) that the frequency w, is 
also reckoned from the Larmor frequency w,. Using now 
Eq. (7) ,  we get 

OD 

It must be assumed here that no= 1 and in the sum over 
q, ...q, no argument can be equal to another or to zero. Thus, 
T$')(ql, ...,qp, t)  is equal to T,(t) for a solitary cluster of 
p + 1 spins located at the sites O,ql,q ,,..., q,, i.e., r?' is equal - 
to To in the case when the numbers no,nq ,,..., n, are equal to 
unity and the remaining n, = 0. 

In a system of finite volume, the series ( 13) terminates 
at m = No - 1, where No is the total number of sites in the 
lattice, and can be averaged term by term. In this case 
(n,, ... n,, )O denotes averaging with Wo(ql ,..., q, ), the con- 
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ditional probability of observing spins at the sites q,, ...,qm , if 
the site "0" is definitely occupied. The averaging over the 
frequency, on the other hand, is over each T$" term by term. 
Ultimately 

where (...): denotes averaging over all frequencies w, ex- 
cept w,. If the spin arrangement is uncorrelated (uniform) 
we have 

Thus, the cluster arrangement ( 13 ) yields after averaging 
the concentration expansion of ( 14) for T ( t )  . 

Equations (14) are accurate in the case when impurity 
spins in a crystal matrix are considered. To use them for 
glass or viscous solutions it suffices to go to the limit as the 
unit cell volume a -0 .  In this case 

where c,(q,, ...,qm ) is the density of the conditional prob- 
ability of observing points near the points q,, ...,qm , if a spin 
is definitely located at the point "0". The same replacement 
of the sums by integrals is expedient also in the limit of low 
concentrations, i.e., when the change of T ( t )  with time is 
finite, but f-0. 

The convergence of the series (14) has not yet been 
investigated. We note, however, that in the related problem 
of averaging the kinetic equation for random walks in a dis- 
ordered lattice it has been proved that similar concentration 
expansions determine entire concentration functions.I2 We 
shall show that all B, < a. This is the case if the function 
under the 2" sign in (13) decreases rapidly enough after 
symmetrization with respect to q,, ...,q, when all the parti- 
cles move away from one another. If, however, the q ,,..., q, 
move apart enough, then I'F' ( t )  is adequately represented 
by the first terms of its Taylor expansion in t, i.e., by its 
moments. In the upshot, the convergence properties of B, 
are similar to the convergence properties of the m-particle 
contribution to the moment of order 2m, and since the mo- 
ments are finite B,  is also finite. 

It is natural to expect the series (14) to determine at 
least an asymptotic concentration expansion. Note that the 
real parameter of this expansion is proportional toft in the 
limit of small concentrations. This can be easily verified for 
dipole-dipole interaction of the spins in the absence of inho- 
mogeneous broadening, by going to the limit of a continuous 
medium and making the substitution qi -q i t  ' I 3 .  Since the 
dipole interaction is proportional to r - 3 ,  this substitution 

eliminates the time from Ta',  but leads to I d ' g .  - + t  I d 3qi 

and it turns out that B, - Cft)" . 
Consequently, no finite segment of the series (14) satis- 

fies the mandatory condition that the correlation functions 
attenuate as t+ a. This fact has an analog in the "volume 
divergence" of the direct cluster expansion of ~e partition 
function of a rarefied gas. To obtain a correct virial expan- 
sion, various rearrangements of the direct expansions are 
used, particularly the cumulant expansion. We shall use 
here, in accord with the general ideas of the many-body the- 
ory,13-l6 the cluster expansion of the memory function 
G,(t) , defined by the relation 

The advantage of this approach is that it guarantees a non- 
negative form function in the principal approximation. Note 
that the requirement g(w) >O is not trivial. For example, we 
do not know how to satisfy it when spatial correlations are 
introduced in a theory such that of Grant and Standberg.3 In 
addition, there are known constructions (e.g., in the Lowe- 
Norberg theory7) in which this property does not hold. 

The Fourier transform G,(z) of the memory function is 
determined by the relation 

The gist of the approach proposed is a restructuring of 
the concentration expansion of r,(t) into a concentration 
expansion of the memory function on the basis of Eqs. ( 14), 
( 12), and ( 17), and retaining its first terms, after which the 
form function g ( w )  is determined from ( 16), ( 12), and 
(11). 

In calculations of the line shape it is useful to separate 
the real and imaginary parts of G,(w - i ~ )  and introduce 

lim Go ( a - i e )  = R ( o )  -F iI (o )  , 
s-0 

(18) 

which leads, in view of ( 16) and ( 1 1 ) to 

wherep (w ) is the distribution function of the local fields the 
line shape in an extremely diluted system and 

1 
g o ( o ) = -  

R ( o )  
n [ o + I  ( a )  1' f R Z ( w )  

Although the integral in the right-hand side of ( 19) is in the 
form of a convolution, the subscript 0 indicates that the func- 
tion (20) can, generally speaking, depend also on the fre- 
quency w, (see below). 

In the approximation linear in the concentration we 
have 

On going to a continuous spin distribution 
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B, ( I )=  j d 3 q J  d o ,  co(% oo, wq) [r~1(~'(4,%--007 t ) -  I]. (24) 

where co(q,wo,wq ) is the density of the number of spins near 
the point (q,,wq ) under the condition that the parameters 
q,, = 0 and w, of the "0" spin are fixed. 

Extensive use is made in the analysis of EPR spectra of 
an assumption which simplifies greatly the calculation, viz., 
that the distributions of the local fields and the spatial distri- 
bution are independent. Then 

where c(q)  is a binary function of the spatial distribution of 
the spins. 

Thus, in the approximation linear in the concentration, 
the calculation of the line shape reduces to solution of a two- 
spin problem, calculation of TA1' ( t )  on the basis ofthis solu- 
tion, and calculation of the integrals (24), (22), and ( 19). 
Examples will be given below. 

3. LINE SHAPE IN A SPIN-: SYSTEM WITH DIPOLE 
INTERACTION AND CORRELATED ARRANGEMENT OF THE 
SPINS 

We shall study, in an approximation linear in the con- 
centration, the influence of spin clustering using as an exam- 
ple the spin-t system, which is most important for applica- 
tions, with an interaction Hamiltonian 

Hjk=bjk [SjzSkz-I/& (Sj+Sk-+Sj-Sk+) ] =bfk(3/2SjzSkz-'/2SjSk) 7 

Here I?,, is the angle between the vector rjk and the station- 
ary magnetic field. For simplicity we disregard in this sec- 
tion the inhomogeneous broadening. Obviously, [SjSk , 
S j+ + S ,+ ] = 0 Recognizing this, we have 

From this and from (21)-(23) it follows that 

With this expression as an example, we see the cause of 
the real part of the expansion ( 18). In the limit as E-0, the 
integral in the right-hand side of (28) diverges. This means 
that the limit as E +  + 0 should be taken after the integra- 
tion. (Introduction of a continuous distribution function is 
equivalent to taking the thermodynamic limit.) Analysis of 
the integrand in (28) shows that 

It can be verified that relations (29) are valid in all orders of 
the concentration expansion. 

For a qualitative assessment of the influence of the cor- 
relation in the spin arrangement, we consider a distribution 
in the form of a spherical layer: 

I 0, q<ri 
c (q) = c (q) = c, ri<q<re. 

0, q>r, 

It follows then from (28) that at w > 0 

2n2 R(") = - oC{FI (Re yli) - Fi (Re yle) + Fi (min(1, Y;)) 
3 

Here 

~ , = ~ / ~ c y ~ f i ,  FI  (x) =x-x3, 

It follows from relations (3  1 ) that the line is cut off at 
the frequency 

As ri +O and re + a,, i.e., for an uncorrelated uniform distri- 
bution, we have 

R (o)  =RA= (2n2/3T'3 y 2 ~ ~ ,  I ( a )  =0, (32) 

which leads, when substituted in (19), to Anderson's re- 
sult.' 

Figure 1 shows the line-shape functions calculated for 
layers of various sizes. Analysis shows that the line shapes at 
r,/l, > 2 and r,/l, < 0.2, where I, = c-'I2, hardly differs 
from Lorentzian. 

A situation is possible in which the line shape does not 
differ noticeably in appearance from Lorentzian (e.g., at ri 
g I, and re ) 1, ), but an estimate, by Anderson's formula, of 
the local concentration in a bounded cluster, may be too 
high. This is demonstrated in Fig. 2a, which shows by how 
much c is increased if the line half-width (distance from the 
center to the inflection point, with the central region disre- 
garded) is equated to R ,  /fi. 

As a second example of spatial-inhomogeneity that can 
likewise yield analytic expressions, we consider a spin- 
tagged polymer molecule in an amorphous matrix of un- 
tagged macromolecules or in a frozen s o l ~ t i o n . ' ~ ~ ' ~  

The paired distribution function of the links in a poly- 

FIG. 1. Absorption spectra for spatial correlations of the type of Eq. ( 3 0 ) :  
1 - r i = O ,  r , = m ;  2 - r i / l = 0 . 1 , r / l c = 2 ;  3 - r i / l , = 0 . 5 ,  
r e / [ <  = 1 . 1 .  
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I 1.5 2 2 3 
G /l< 

FIG. 2. Relative concentration errors (%)  due to: a )  neglecting spatial 
correlations rather than including them in the form (30) with r , / I ,  = 0.01 
2nd with variable r,; b )  assuming that the form of the dipole-broadened 
Gaussian line is determined not by Eq. (38) but by convolutionof a homo- 
geneous line with an inhomogeneous one. The solid line corresponds to 
concentration determined from the width at half maximum, dashed- 
from the distance to the inflection point close to the center, dash-dot- 
from the distance to the remote inflection point. 

mer coil of infinitely large molecular weight is known to 
within a numerical factor.I9 Assuming for simplicity that the 
tags on the chain are arranged regularly and are separated by 
n monomers, we can write 

where ;l is a numerical factor of order unity ( A  = 2 / ~  for a 
Gaussian chain19), I is the rms length of the monomer unit, 
cr = 1/3v, and v is the critical exponent of the coil dimen- 
sions (.$(v< 1) .  

Of course, Eq. (33) is valid only at distances larger than 
the radius of the excluded volume. At sufficiently large n, 
however, the contribution of distances of the order of this 
radius will influence only the unobservable line wings. For 
the same reason, at large n the region where c(q) is not small 
is inessential. Considering this we can assume, after substi- 
tuting (33) in (28), that (33) is valid for all q. 

As a result we have 

Go ( o )  = liln Go (2) = oCa I o 1 '-" exp['/, in (I-a) sign (a) 1, 
e-0 

(34) 

where w, = xy2fi/12,x is a numerical factor, and I ,  = n"1 is 
the rms distance between neighboring tags (as n + oc, ). Sub- 
stituting (34) in (20) we obtain a rather unique line shape: 

The divergence as w -0 is due to the assumed infinitely large 
molecular weight and uniqueness of the tagged macromole- 
cule in the system. It follows from (35) that the characteris- 
tic scale of the interaction in spin-tagged macromolecules is 
the rms distance between neighboring tags, and it precisely 
on this scale that information can be obtained on the struc- 
ture of macromolecules can be obtained from observations 
of the dipole broadening in the corresponding EPR spectra. 

Note that by combining the equations obtained for R 
and I in the present section one can obtain form functions 
g(w) for distributions c(q) that are linear combinations of 
Eqs. (30) and (33) with different parameters. 

4. SHAPE OF INHOMOGENEOUSLY BROADENED LINE IN A 
I-SPIN SYSTEM WITH DIPOLE INTERACTION 

In the presence of magnetic disorder (i.e., at A, = w ,  
- w,#O) and with the interaction Hamiltonian (26) the 

solution of the two-spin problem becomes 

(1) A  t boat Dqt r0 ( q ,  A ,  t )  = e x 4  - i  +-) { cos (T) [ cos (T) 

where D, = (A: + b $/4)'12. If /A,  1 ) lb,, 1 then TAU 
ceases to depend on A, and takes the very simple form 

This equation differs from the opposite limiting case A, 
4 b,, only by a numerical factor [cf. (27) 1. 

Substitution of (36) in ( 19)-(23) yields for a homo- 
geneous spatial distribution c(q) = const a line shape in the 
form 

where R, is defined in (32) and 

(f  stands for an integral in the sense of principal value). 
It can be verified that if the local fields have a symmetric 

distribution (p (w) = p ( - w 1)  the form function (38) is 
also symmetric. If thep(w) distribution has a finite second 
moment M,, the form function has at w2 %M2 a Lorentzian 
asymptote that is independent of the inhomogeneous broad- 
ening. 

In studies of the dipole broadening in EPR spectra, the 
line shape was usually regarded as a convolution of an initial 
inhomogeneous line and a Lorentz line (see, e.g., Ref. 20). 
The relation (38), however, differs noticeably from such a 
convolution. It turned out, in particular, that for a Gaussian 
functionp ( w )  and at R, / M  i'' > 2 the derivative of the form 
function, calculated from (38 and (391, has at w > 0 two 
peaks rather than the one in the case of convolution. Figure 
2b shows the local-concentration error produced if the line 
shape is calculated as a convolution. 

We consider also a situation in which the local fields are 
generated by hyperfine interaction of the electron spin with a 
nucleus having a spin J. We confine ourselves to the case 
when the dipole broadening RA [see (32) 1 is much smaller 
than the hyperfine splitting A,  but much larger than the in- 
homogeneous broadening of another origin. In this case the 
distribution of the local fields can be written in the form 

Substituting (40) in (38) and (39) we get 
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Thus, each line in the spectrum will have a Lorentz shape 
with a half-width that differs from the Anderson value 
R, /o by a factor (45 + 3)/(6J  + 3). This result can be 
obtained directly by using (32) and the fact that at w, = w, 
we should use in (24) the function Ti" in the form (27) Eq. 
in all the remaining cases in the form (37). 

5. ESTIMATE OF THE ACCURACY OF THE APPROXIMATION 
LINEAR IN THE CONCENTRATION, AND COMPARISON 
WITH THE ANDERSON MODEL 

A regular method of improving the approximation lin- 
ear in the concentration and of estimating its reliability can 
be based on an analysis of the next term, quadratic in the 
concentration, of the memory function: 

It includes the function TA2' (q,,q2,z), which must be calcu- 
lated by using the solution of the three-spin problem.2' This 
procedure, however, is extremely cumbersome. We confine 
ourselves therefore to another approach and compare the 
results of the approximation linear in f < 1 with the exact one 
for a number of limiting case. We shall show below the fol- 
lowing: 1 ) Our theory produces the results of the exact solu- 
tion of the model with the Anderson Hamiltonian (and is by 
the same token accurate in the limit of large inhomogeneous 
broadening). 2)  The theory is exact at w k R, , where R, is 
of the order of the linewidth and is defined in (32). 3) The 
theory is valid, at least qualitatively, for g(w) at w 5 R, , as 
will be shown by a direct estimate of the asymptote 
T ( t - +  03 ) . In addition, we propose in the present section, for 
the calculation of the form function at arbitrary concentra- 
tion, a phenomenological expression for the memory func- 
tions of real functions. 

The initial Anderson model1*' employed a spatially ho- 
mogeneous distribution of the spins, with a pair-interaction 
Hamiltonian chosen in the form 

For two spins, this Hamiltonian has the same eigenvalues as 
the exact Hamiltonian (26). In the representation of the oc- 
cupation numbers on the lattice, 

Recognizing that 

S ,  ( t )  = S ,  exp ( -Y, i z nxbxqSXzt)  , 

we get 

T ( 1 )  = ( ~ p  erp ( - 3 / 2  i ~ ' n , b X q ~ , ' t ) /  Sp 1) 
x 

= exp x l n [ i + f  (cos(b, . t ) -  1) 1. (44) 

The final formula (44) was obtained earlier in Ref. 22. Our 
derivation was borrowed from Ref. 23. 

Expansion of the logarithms in (44) in powers off 
yields a cumulant expansion of T( t ) .  If f<  1 and 
max(b,,t) % 1, the summation over the lattice sites can be 
replaced by integration. Each term of the cumulant expan- 
sion is then proportional to the time: 

Thus, f is in our case a real small parameter of a cumulant 
expansion. In the limit of small concentrations, whenft is 
finite and f -0, Eq. (45 ) coincides with Anderson's result.' 

Equation (45) confirms the conclusion of Sec. 2 that 
the expansion of the correlation function T ( t )  in powers of 
the concentration is in fact an expansion in powers of ft. We 
can now elaborate and state that, apart from a numerical 
factor, the expansion coefficients in ( 14) are B,  - (R, t )  ". 

Note that the Anderson model describes accurately the 
case of strong inhomogeneous broadening in a real spin sys- 
tem, for in this case 

Now 

We have retained here only the leading terms inf. 
Our method of concentration expansion of the memory 

function duplicates correctly Eq. (45) in the model problem 
and Eq. (47) in a real system with strong inhomogeneous 
broadening at smallf. Equation (45) follows directly from 
the fact that in this case rhl) is determined by relation (27), 
just as for a real interaction, while (47) is obtained from 
(38) in the limit of large inhomogeneous broadening. We 
have done this phenomenologically, based on the known 
s u c ~ e s s ' ~  achieved by the method of empirical memory func- 
tions in the description of the line shape in nondiluted sys- 
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FIG. 3. Correlation function T( f )  calculated from Eq. (16) with the in- 
terpolation kernel (48) (solid lines) and from the exact equation (44) 
(dashed lines); 1 - f = 1; 2 - 0.5; 3 - 0.2; o, = M,,"~, whereM,,is the 
second moment at f = 1.  

tems. We propose the following memory function, which is 
suitable at all concentrations: 

Go (t) = j (3/. b 3  ' cos bod) e-'IAZi: 

The parameter A is chosen here so as to ensure a correct 
fourth moment ofg(w) at f = 1. Note that the correctness of 
the second moment is ensured by (48) automatically. The 
memory function (48) goes over into (28) both as A -0 and 
as f - 0. Figure 3 shows the functions l? ( t )  calculated with 
the aid of (48) for a primitive cubic lattice in the orientation 
[ 11 11 at M4, = 3M2,; it corresponds with good accuracy to 
the Hamiltonian (43). Here M,, and M4, are the second and 
fourth moments at f = 1. It can be seen that the approximate 
calculation agrees fairly well with the exact one from Eq. 
(44). One can therefore expect the memory function (48) to 
be suitable for the description of the line shape in real sys- 
tems at arbitrary concentrations. 

Calculations using (44) show also that even at f = 0.1 
the exact correlation function is practically equal to the 
function calculated with the Anderson formula T ( t )  
= exp( - R,t), except, of course, in the initial section, for 
which the continuous-medium approximation is certainly 
not valid. 

It follows from the foregoing analysis that the proposed 
theory agrees with the result of the exact solution of the 
Anderson model at smallf, and if the memory function is 
phenomenologically corrected it is valid also for allf. The 
distinguishing feature of the Anderson model is that f is for it 
a truly small parameter, i.e., the corrections to the leading 
approximation of the memory function are proportional tof. 
The situation in real systems is much more complicated. We 
confine ourselves hereafter to a spatially uniform spin distri- 
bution. In this case one should expect the expansion param- 
eter of the memory function, as well as of the function T( t )  
itself, to be not f but R, t-fr. Consequently, the theory is 
quantitatively correct at w 2 RA . To determine, on the other 
hand, the accuracy of the leading approximation in the re- 
gion w 5 R, we shall estimate the asymptote of T ( t )  for 
large t. 

For long times, the variation of r ( t )  in a disordered 
system is determined by the damping of the transverse polar- 
ization of those spins whose nearest neighbors are located at 
distances much larger than the average, which is the lattice 
period multiplied by f - ' I 3 .  This is the situation in the Ander- 
son model. Clearly, the same holds true also for a real sys- 
tem. In a real system, however, the dipole fields fluctuate 
with time. The aforementioned nearest neighbors have in 
turn, with high probability, other neighbors at the average 
distances, so that they are little influenced by the considered 
"solitary" spins. It can consequently be assumed that the 
solitary spins are in a random local field that fluctuates at a 
frequency - R, . For times t % RA - ', therfore, 

where x -  1. For a spatially homogeneous system this yields 

( t )  - x 1 [ 1 ( e { - b ! ~ -  I (50) 

and at small f 

r (t) -exp (- (xoRnt) ' 1 2 ) ,  (51) 

where xo is a new numerical constant. Note that a similar 
result, but under conditions of exchange narrowing, was ob- 
tained also in Ref. 6. 

Generally speaking, other mechanisms, likewise of col- 
lective character, are possible and can lead to a slower 
asymptote of ( t )  than exp( - R, t ) .  An experimental verifi- 
cation of (5 1) would therefore yield information on the type 
of collective motions that play an important role in the for- 
mation of the long-wave asymptote of T ( t ) .  

Thus, the principal approximation for the memory 
function leads mainly to a decreasing function I' ( t)  , yields 
the quantitative value of r ( t )  if r ( t )  2 I/e, and, as already 
noted, ensures satisfaction of the nontrivial condition 
g ( 0 )  >O. 

An estimate of the asymptote (51) shows that T ( t )  
with large t decreases rapidly enough to cause 

to be determined mainly by the behavior of T( t )  at RA t 5 1 
and in the region w 5 R, . This means that the form function 
is correctly determined, at least qualitatively, by the leading 
term of the memory-function expansion in the region 
o < R, . Comparison with the known experimental data on 
homogeneously broadened linesz0 shows that the theory is 
apparently exact also quantitatively not only at o 2 R, but 
also at w < R, . 

6. CONCLUSION 

We have developed, on the basis of a cluster expansion 
of the memory function, a systematic theory for the para- 
magnetic-resonance line shape in magnetically diluted solids 
with correlated spin positions and in the presence of inhomo- 
geneous broadening. Our analysis shows that in the lowest 
order in concentration the theory provides a quantitative 
description of the line shape at least at w 2 w, ,  where w, is 
the characteristic frequency of the interaction (of the order 
of the line width, see Secs. 3 and 4). The description of the 
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line shape in the region w g w ,  may turn out to be correct 
only qualitatively. 

A method of phenomenological interpolation of the 
memory function was proposed to describe the absorption 
line shape at arbitrary concentrations. 

It follows from the examples in Secs. 3 and 4 that the 
spatial correlations and the inhomogeneous broadening in- 
fluence strongly the line shape. From Fig. 2, in particular, it 
follows that the error in the determination of the local con- 
centration can reach 50% if these factors are not taken into 
account. 

Relations (19)-(24) permit a quantitative analysis of 
the experimental data. In particular, it becomes possible to 
compare with experiment the theoretical EPR spectra calcu- 
lated using model-based paired distribution functions. 

We note in conclusion that the method developed for 
determining the memory function may be useful also for the 
calculation of other correlation functions in disordered sys- 
tems. 

The authors are indebted to V. A. Atsarkin, A. M. Vas- 
serman, V. E. Zobov, A. I. Kokorin, M. I. Rodak, V. P. 
Sakun, K. M. Salikhov, and E. K. Khenner for a discussion 
of the work and to A. V. Makarenko for help with the com- 
puter calculations. 
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