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We solve the problem of resonance scattering of the wavepacket of an atom by a standing light 
wave. We show that in the general case, as the result of the scattering, the initial wavepacket of 
the atom is split into a sum of packets due to the recoil effect. We find that in a strong field the 
number of packets which are formed after the scattering of a wavepacket which has a size 
significantly exceeding the wavelength of the light wave is determined by the product of the 
Rabi frequency and the scattering time. We establish that a wavepacket with a size smaller 
than the wavelength of the light wave can be split in a strong field into two packets with a 
difference in momenta proportional to the field gradient of the standing wave. We show that, if 
the time for the interaction between the atom and the field exceeds the time for the 
spontaneous relaxation of the upper level, the dynamics of the atom in the field of the standing 
wave is determined by the action on the atom by force dependent on the coordinate and on the 
velocity of the atom, and by the diffusion of the atomic momentum. 

1. INTRODUCTION 

We consider in the present paper the problem of reso- 
nance scattering of atoms by a monochromatic standing 
light wave. We assume that an atomic wavepacket of size Az, 
which may be either smaller or larger than the wavelength 
/Z = 2a/k of the light wave, is incident on a standing light of 
transverse dimension I.  We give the average momentum of 
the incident packet the magnitude p,. The mismatch 
between the frequency w of the wave and the frequency w,, 
of the atomic transition is R = w - w,, . The magnitude of 
the dipole interaction between the atom and the field of the 
wave is characterized by the parameterg = d,, E / f i  where E 
is the amplitude of the field of the standing wave and d,, the 
dipole moment matrix element of the atom. The interaction 
with the field of the standing wave results in a transforma- 
tion of the initial atomic wavepacket. The aim of the present 
paper is to find the form of the wavepacket after the interac- 
tion between the atom and the wave. 

Thescattering ofatoms by a resonant standing wave has 
been studied before in Refs. 1 to 8. The strong-field case was 
considered in Refs. 1 to 4. The concept of a classical potential 
and a classical force oscillating at the wavelength of the light 
field were introduced to describe the scattering of the atoms. 
In Refs. 5 to 8 an analysis was given of scattering in the case 
of exact resonance between the light wave and the atomic 
transition ( R  = 0 ) .  The form of the momentum distribution 
caused by the scattering of the atom was found in Ref. 5. In 
Ref. 6 the scattering features arising under oblique incidence 
of the atoms on the light wave was considered and the scat- 
tering were studied taking into account the effect of the re- 
coil on the change in the kinetic energy of the atom. It was 
shown in Ref. 7 that the scattering of atoms in their ground 

atomic probability density by the periodic light wave. In the 
case Az <A the incident wavepacket is split into two packets 
similar to the Stern-Gerlach effect. 

The experimental observation of the diffraction picture 
of the scattering was made in Ref. 9. 

We find in the present paper the solution of the scatter- 
ing problem in a general form. In the weak-field case we 
write down the wavefunction of the scattered wavepacket in 
second order of perturbation theory in the parameter g. The 
solution given here is valid for any mismatch and angle of 
incidence of the atom on the wave. We obtain the solution of 
the scattering problem, neglecting the kinetic energy of the 
atom, but for arbitrary mismatch and strength of the light 
wave. We consider the scattering of a wavepacket of an atom 
of size either larger or smaller than the wavelength of the 
light field. When Azgil we find the magnitude of the split- 
ting of the wavepacket and the probability for finding the 
atom in each of the two trajectories for arbitrary mis- 
matches. We show that in the general case of arbitrary mis- 
match the problem of the motion of an atom in the field of a 
standing wave cannot be reduced to the classical-mechanics 
problem of the motion of a particle under the action of a 
force. The problem of the scattering of an atom is studied in 
sections 2 to 7 neglecting the radiative relaxation of the up- 
per level. We show that at yt% 1 the regime of coherent dy- 
namics of the atomic wavepacket existing when y t g  l 
changes into the regime of stochastic motion of the atom. In 
the latter case the atom is described by a Fokker-Planck 
equation including a force and a momentum diffusion tensor 
which depend on the coordinate and the velocity of the atom 
which were earlier given in Refs. 10 and 11 for arbitrary 
values of the parameter g. 

state has a deep analogy with the Stern-Gerlach effect. The 
devendence of the scattering scenario on the size of the wave- 2. SOLUTION OF THE SCHROEDINGER EQUATION - 
packet of the atom was considered. It was shown that, de- We consider the interaction of an atom with the electro- 
pending on the ratio of the packet width Az and the wave- magnetic field of a standing wave: 
length /Z of the light field, there are two qualitatively E (z, t )  =4E cos ot c o s ( k z + q ) ,  
different scattering scenarios. When a broad packet (&%A) 
is scattered, Bragg maxima appear in the momentum distri- where E, w, k, and p are the amplitude, frequency, wavevec- 
bution of the atom and are caused by the diffraction of the tor, and phase of the wave. We assume the wave to be linearly 
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polarized such that E(z,t) is the component of the electric 
field along they axis. We assume the frequency w of the field 
to be close to the frequency wab of the atomic transition 
between the upper ( a )  and the lower (b )  levels. We can 
assume the atom in that case to be a two-level system with a 
wavefunction 

The Schroedinger equation for the dipole interaction of the 
atom with the field ( 1 ) is 

where 

V ( r ,  t)=-2V(t)cos(kz+ rp), 

Here S1= w -ma,  is the mismatch of the wave frequency 
relative to the frequency ofthe atomic transition, g = dab E / 
f i  and dab is the matrix element of the atomic dipole operator 
which we assume to be a real quantity. In what follows we 
shall put f i  = 1. Changing to the momentum representation 

and after that to the interaction representation 

Y (p,  t )  =e-'"(P)'@ ( P ,  t ) ,  

we have instead of ( 2 )  

where 

@ ( p ,  t )=@(p,  t ) ,  p=pz, v=*l, 

Q(p, p-vk, t )  =iV( t )  exp(ivcp) exp { io (p ,  p-vk) t ) ,  

p2 (p-vk)' vkp kZ 
61 (p ,  p-vk) = - - = - _ .  

2M 2M M 2M 
(4) 

We shall assume that the field is switched on at time t = 0 
and it is switched off at t = T, i.e., E = 0 for t < 0 and t > T, 
E = const for 0 < t < r. Integrating the equation obtained 
f r o m t = O t o t < r w e h a v e  

t 

t ) = m ( ~ ~  O ) +  1 dt, Q(p ,  p-vk, t i )  @ (p-vh, t i ) .  
v 0 

Successively substituting the expression for the func- 
tion @(p,t) into the right-hand side of this equation we get 
the solution in the form of a series 

where 

Changing the order of summation we can write the solution 
at time t = 7 in the form 

m (p ,  = Dm(p) @ (p-mk. 01, 

where 
m 

is the unit matrix. 
Let at the time when the field is switched on ( t  = 0 )  the 

wavefunction of the atom be 

Then, at time T, 

Y (r ,  7 )  = dp exp {ipr-iE ( p )  T )  B (p ,  T) . 
After switching the field off, when t > T ,  the atoms are 

free and their motion is described by the wavefunction 

Y (r ,  t )  = I dp exp {ipr-iE (p) t )  @ (p ,  r) 
+ m 

= dp Dm ( p )  exp (ipr-iE ( p )  t )  @ (p-mk, 0 ) .  ( 7  )' 

3. PERTURBATION THEORY 

The scattering problem is thus reduced according to 
(5 )  to finding the matrices Dm (p) which in the general case 
are given by Eq. (6) .  It is clear from (3) to (6 )  that the 
matrices Dm (p)  have the form 

where the quantities Am are nonvanishing for m = 0, +_ 2, ..., 
and theBm form = f 1, + 3, ... . 

Such a structure of the matrices Dm corresponds to the 
fact that a change in the momentum of the atom by an 
amount fik always occurs as the result of the internal transi- 
tion of the atom. Let, for instance, at t = 0 the atom be in the 
lower level b: 

In that case the probability amplitudes with even indices 
correspond to an even number of transitions of the atom as a 
result of which the atom turns out to be again in the lower 
level after scattering turns out. The probability amplitudes 
with odd indices correspond to an odd number of transitions 
after which the atom turns out to be in the upper level. 

We consider the weak-field case when we can use the 
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fact that g is small. We shall assume that the recoil energy 
R = k 2/2M is much smaller than the reciprocal of the time 
of interaction between the atom and the field l / r ,  i.e., 
k u r g  1, where u = k /M is the atom recoil velocity corre- 
sponding to the photon momentum. In that case 

0 exp {-i (Q-vkv)  t )  
=ig exp ( i v q )  

( e s p  { i  (Q+vkv)  t }  0 

where u = p/M. Up to order g2 we have from ( 5 ) and (6 )  

1, 

XJ dt, r r p [ i ( r 2 k u - ~ ) f , ] }  
0 

Hence 

exp {i ( Q r t k v )  a )  
B,1 ( Q )  =g exp  (+.iO) (Q*kl;) 1 

2iQt + 1 - exp { i  (Q+ku) a )  
(Q)  ='-I2 [ Q2- ( k u )  2 ! Q i - k ~ ) ~  

(8  

g2 exp ( k i k v ~ )  
At2(Q) = [ (COS PT - cos k v a )  

Q2- ( k v )  

4. CASE OF SMALL KINETIC ENERGY 

We consider the case when the kinetic energy of the 
atom ( - fi2A/2M) can be dropped in (2) .  According to (4)  
and ( 5  ) the conditions for this approximation are p u r g  1, 
kvr < 1, ~ U T <  1. In that case 

This equation is considered in Ref. 12 (problem for $40). Its 
solution for the time T is 

where 

)L,,2=-'/2[Qt (Q2*4t-i2)'"], y=2g cos (kz+q) .  

Changing in ( 10) to the momentum representation 

and using the fact that in the approximation considered 
@(p,r) = Y (p,r), we can find Dm (p)  in (5 )  and hence A ,  
and B, . 

Expression ( 10) is valid for any field. One can show 
that for a weak field (gr( 1) the coefficients A , ,  B,  ob- 
tained using ( 10) are the same as (8)  and (9)  if we put in (8)  
and (9 )  k u r g  1. 

One can simplify Eq. ( 10) in two important cases: when 
R = 0 and 1 R1 ) 2,u. We write down the solutions for those 
cases. 

1 ) R = 0. In that case 

y, ( 2 ,  T )  =COS p a y ,  ( 2 ,  0 )  +i sin y a y b  ( 2 .  01, 
y b ( z ,  a )  = i  sin ytYr.(z, 0 )  +cos p . t yb(z ,  0 ) .  

Using the formula 

we can rewrite these expressions in the form 

After changing to the momentum representation it follows 
from this that 

2) 1 R1) 2,u. We can in this case expand ( 10) in a series 
in the parameter,u/IR I .  Up to order,u2/R2 we get instead of 
(10) 

where 

hl=-Q-p2/Q, h2=p2/Q. 

In the case considered for even m (m = 0, + 2, ... ) 
A,(Q) = {'12ximi2 e x p { i ( i + x ) Q a )  [2Jmj2+i(Jmj2+l-J , ,~- , )  ] 

+ (-i) " j 2  e xp  ( - i x Q ~ )  

X [ ( I - x )  JmI2+i - 2 (Jmj2+l -Jm,2- l ) ] }  exp ( i m p ) .  

For odd m (m = f 1, f 3, ...) 
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B,(Q) = { ( g / Q )  [iim+')" exp {i(l+x)SZz) (J(m+l, , ,- iJim-l) ,z)  
- ( - i )  (m+')'2 exp (-ixQz) (J~m+i , , ,+ iJ ( , - l ,~ , )  1) exp (imcp), 

where 

5. SCATTERING OF A WAVEPACKET 

We now consider the scattering of a wavepacket by the 
field of the standing wave ( 1 ) which is bounded on thex axis 
such that E = 0  for x < 0 ,  x > I ;  E = const for O<x<l.  

Let the center of the atomic packet at  t = 0  be at  the 
point r = 0  and have an average momentum p,; the form of 
the packet for the upper and lower level are assumed to be 
the same. In that case the function @(p,O) has the form 

where f ( p  - p,) is a scalar function that has a steep maxi- 
mum near p ,  and specifies the pulsed form of the packet, and 
c, and c, are the amplitudes for the probability to find the 
atom in the upper and the lower level, respectively 
( /c, 1' + /c, I *  = 1 ). In coordinate space 

Y ( r ,  0) =eiporcf ( r ) ,  

where the function 

i(r) = J dq eiqrf (0) 

specifies the spatial form of the packet, W ( r )  = Lf( r )  I is the 
probability density for finding the atom at the point r, 
Jdr W ( r )  = 1 .  

We shall assume that the size of the wavepacket along 
the x axis is small compared to the size 1 of the field. This 
allows us to assume that the field acts on the atom during a 
time r = 1 /u,, , where vo, = p, /M.  

When t ) r  the wavefunction of the scattered atom is 
described by (7 ) .  Substituting ( 12) into ( 7 )  we have 

'1' (r,  t )  = esp (ipmr) J dq erp  {iqr-iE (pm+q) t }  

where p ,  = pi, + mk, k  = ke, . 
If the function D, ( p ,  + q )  changes weakly with 

changing q  in the region Ap = l /Az ,  where Az is the charac- 
teristic size of the wavepacket along the z axis, we can re- 
move it from under the integral sign. Then 

where Dm = D, (p,, + m k ) ,  

The function 

f' (r-v.t) = dq e i p  {iq(r-u.t) - i ~  ( q )  t ) f  (q) ( 15) 

describes a wavepacket moving with a velocity 

v ,  = v,  + mue, ( v ,  = p,/M, u = k  / M )  and spreading with 
increasing time. The characteristic time after which the 
width of the packet is increased by an amount of the order of 
the initial width Az by free spreading is r, = (Aq)*M. 

We consider two qualitatively different regimes for the 
evolution of the wavepacket when it passes through the 
standing wave, corresponding to two different ratios of the 
wavelength A of the light and the size Az of the wavepacket. 

6. WAVEPACKET MUCH LARGER THAN THE WAVELENGTH 
OF THE FIELD (A~+-k=A/2rr) 

According to ( 14) the interaction of the atom with the 
field of the standing wave leads to a splitting of the initial 
packet into a sum of packets with z-components of the veloc- 
ity equal to urn = u,, + mu. After a time 7, the centers of 
two neighboring packets separate by a distance 

This means that neighboring packets do not intersect and, 
hence, do not interfere with one another. In that case the 
probability to find the atom in the point r  equals 

where 

is the probability density of the packet moving with velocity 
U r n ,  

Thus, when a $it the initial wavepacket is split into a 
sum of packets, each of which moves along its own trajectory 
(see figure, case a ) .  The probability for finding the atom on 
the trajectory corresponding to the momentum pm is p,,, . 
Clearly Zmpm = 1 .  

FIG. 1. a )  Scattering of a packet of size a>% by a standing light wave of 
size 1 along the x axis. The packets m = 0, + 2, ... correspond to atoms 
which after scattering are in the ground state; m = f 1, + 3, ... to atoms 
which after scattering are in the upper state. The scattering pattern is 
independent of the coordinate of the point of flight of the atom in the field. 
I: Region where the packets interfere, 11: region of free flight. b )  Scatter- 
ing of a packet of size a<+. The difference of the momenta of the two 
packets is proportional to the gradient of the field of the wave along the z 
axis. The packet is not split in the antinodes of the wave and the maximum 
splitting takes place in the nodes of the standing wave. 
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As should be the case, the quantitiesp, turn out to be 
independent of the phase of the field in which the center of 
the packet moves, as Az%72. 

According to ( 14) the scattering angle of the mth pack- 
et is 

These angles have the meaning of Bragg angles characteriz- 
ing the scattering by a periodic structure such as the stand- 
ing wave. The condition a%* means that to the diffraction 
pattern of the scattering many periods of the periodic struc- 
ture contribute. 

We write downp, for a weak field. The probability for 
the atom which at t = 0 is in the lower state ( b )  after scatter- 
ing to travel along a trajectory corresponding to a momen- 
t u m p  =p, + mk with m = f 1, + 2, is, according to (8 )  
and (9)  

Q 
- (s in R t  - --sin k v o i  

k v ,  

where v,  = p,/M. 
The probabilitiesp + , corresponds to atoms which after 

scattering are in the upper level. I t  is interesting to note that 
these probabilities are different. The reason is that the first 
order of perturbation theory describes an independent inter- 
action of the atom with each of the two counter-moving 
waves which make up the standing wave. The efficiency of 
the interaction of the atom with each of the counter-moving 
waves depends on the value of the Doppler shift + ku,. As 
the Doppler shifts are different, the probabilities p , , also 
differ. 

The probabilitiesp ,, correspond to atoms which after 
scattering are in the ground state. They correspond to scat- 
tering processes in which the atoms makes a transition into 
the upper level due to the interaction with one of the counter- 
moving waves and returns next to the lower level due to the 
interaction with the other wave. As a result of these pro- 
cesses the atom acquires a momentum + 2k. We note that 
the quantitiesp , , are even functions of the velocity u,. One 
can also show in the general case that p, = p -, for 
m = + 2, f 4 ,..., i.e., atoms which end up in the ground 
state after scattering are scattered symmetrically with re- 
spect to the initial momentump,. 

In the case of a small kinetic energy of the atom (section 
4)  the probability that an atom which is in the lower level at  
t = 0 moves after scattering along a trajectory correspond- 
ing to a Bragg maximum m = 0, + 1, f 2, ... is 
p, = J (2gr).  The number of trajectories appearing after 
the scattering of the atom is of the order of magnitude 
m-2gr, w h e n g r s  1. 

7. WAVEPACKET MUCH SMALLER THAN THE 
WAVELENGTH OF THE FIELD(Az4A) 

In this case after a time rp the centers of two neighbor- 
ing packets in ( 14) diverge by a distancez = Az(Az/72) < Az 
which is much smaller than the width of the initial packet. 

This means that the free spreading of the whole packet is 
appreciably faster than the separation of neighboring pack- 
ets. The wavepackets in ( 14), although they move with dif- 
ferent velocities, will thus always intersect and strongly in- 
terfere. 

To  find the evolution of a narrow wavepacket in the 
field ( 1 ) we consider the case of small kinetic energy of the 
atom (section 4) .  As in ( l o ) ,  the function \V (z,O) is nonvan- 
ishing in a region Az 972 in the expressions for /i ,,, and ,u we 
may assume that kz< 1. In the pre-exponential factor we put 
kz = 0 and we expand the argument of the exponential up to 
terms linear in kz. After that changing to the momentum 
representation we find from ( 10) 

r; XOb (p+6p, 0) - - exp 
A i ) @ b  (P-6~.  01, 

A+Q A+Q + - exp( i r )  @b(p-tip. 0) .  
2A 2 

where 
4 g 2 i  sin 2 q  

A =  (Q2f 4E2)'", E=2g cos cp, 6p=k 
A 

. (17) 

The expansion procedure used to get ( 16) is valid when 
the terms quadratic in kz which were dropped in the expo- 
nents are small. This condition restricts the magnitude ofg: 

8 g Z t  cos 2~ 
A 

According to (7 ) ,  ( 12), ( 15) and ( 16) the wavefunction of 
the scattered wavepacket ( t  > T)  is 

Y (r, t) = Y +  exp {ip+r-iE (p+)t)fl(r-v+t) 
+Y- exp {ip-r-iE (p-) t )  f' (r-v-t) , (19) 

I t  follows from ( 16) to ( 19) that in the scattering the 
initial velocity distribution splits into two parts which have 
average velocities v+ and v-  which depend on the phase of 
the wave in which the atomic packet moves. 

After a time r, the two parts of the wavepacket which 
have z-components of velocity u+ = u, + Su and u -  = u, 

241 Sov. Phys. JETP 65 (2), February 1987 E. V. Baklanov and V. G. Minogin 241 



- Sv(Sv = Sp/M) diverge by a distance 

z=26u'CP=ut, (8gZt sin 29) /A.  

In order that the two parts of the wavepacket not overlap, 
(i.e., move each along its own trajectory, the condition 
z $ Az must be satisfied: 

~ l i l z <  (8g2t sin 2cp)/A. (20) 

This condition can be satisfied together with condition ( 18) 
when tan 2p$Az/it. In that case packets with velocities 
v+,v- do not interfere and the probability density for find- 
ing the atom at the point r is equal to 

W(r, t )  =p+W' (r-v+t) +p-W' (r-v-t), (21 

where 

We note that as A,-0 (kz-0) the light wave field ( 1 )  
does not change the momentum of the atom. In order to 
achieve the transition Az-0 in Eqs. ( 16) to (21) we must 
take into account that in that case Ap- co where Ap is the 
momentum width of the wavepacket. In other words, the 
transition to an infinitely narrow wavepacket must be per- 
formed putting Sp/Ap-+O. If we consider an infinitely nar- 
row packet at a node of the field ( 1 ) (p = 77/2), we get in 
( 16), as one should expect, 

and in (21) we get w(r,t) = wf( r  - vt) i.e., the state of the 
atom does not change in a node of the field. 

From the equations given here is follows thus that un- 
der the conditions ( 18) and (20) a narrow wavepacket splits 
during scattering into two packets, analogously to the Stern- 
Gerlach effect for a spin-! particle (see Fig. 1, case b ) .  The 
probability that the atom after the scattering has a velocity 
u +  = u, + Su i sp+  and the probability that it has a velocity 
u- = u, - 6u isp- ,  wherep- +p+  = 1. The values of the 
probabilitiesp,, p- depend on the initial state of the atom. 

The simplest cases to analyze are those of small and 
large mismatches. 

In the first case when R = 0, we haves 

(I+-s) , Su=2ugt sin cp. 

Whens = 1 whenp, = 1,p- = 0, after scattering the wave- 
packet moves along the trajectory corresponding to the ve- 
locity 0,. When s = - 1, when p +  = 0, p- = 1 after scat- 
tering the packet has the velocity u - .  When - 1 < s  < 1 the 
initial packet splits into two packets. If we use the analogy 
with the Stern-Gerlach effect the valuess = + 1 correspond 
to pure states of the spin particle with spin components f 4. 
The values - 1 < s < 1 correspond to a mixed state as far as 
the spin component is concerned for which there occurs a 
splitting in the trajectory of the spin particle. 

In the second case when In 1 9 g  we have 

p + = pb , p - = pa . Correspondingly, the atom moves along 
one trajectory whenp, = 0 or 1. When an atom is scattered 
which is in the ground state (p,, = 1 ) depending on the sign 
of the mismatch it can travel along the trajectory corre- 
sponding to u +  or u-. 

We emphasize that just as the doubling of the trajector- 
ies of a spin particle in the Stern-Gerlach effect cannot be 
described in the framework of classical physics, neither can 
the description of the doubling of the trajectories of an atom 
when it is scattered by a standing wave be based upon the 
force concept. The idea of a force may be used only in the 
particular cases of negligibly small or infinitely large mis- 
matches and only for pure states when the atom moves along 
a single trajectory. In the general case of the splitting of the 
wavepacket into two parts the introduction of two forces to 
describe the motion of parts of the packet along two trajec- 
tories is possible only as in auxiliary concept. These two 
forces do not have the meaning of classical forces as in classi- 
cal mechanics the force acting on a particle can depend only 
on the coordinate and the velocity of the particle. 

We give numerical estimates for the atom-optical anal- 
ogy of the Stern-Gerlach effect (see Fig. 1, case b).  We shall 
assume that before the scattering the atom is in the ground 
state b and we shall put the mismatch fl equal to zero. 

Let A = 1 pm,  the size of the light wave 1 = 100,um, the 
velocity u,, = 5 x lo4 cm/s. Under those conditions the time 
of passing through the wave r = 1 /u, = 2 X lo-' s. Let 
Az = 0.2h = 3.2 x cm, M = 20 amu. Then u = fik / 
M = 2 cm/s, u = fi/MAz = u (it/&) = 10 cm/s and the ba- 
sic conditions are, indeed, satisfied: Mu2r/2fi = 0.2< 1, 
k u ~ = 0 . 1 < 1 ,  k u r = 2 . 5 x 1 0 p 2 < 1 .  We put p=n-/4,  
g r  = 20. Conditions ( 18), (20) then turn out to be satisfied. 
At time T the velocities of the two packets will differ by an 
amount 2Sv = 4ugr sin p = 1.7 x lo2 cm/s which is appre- 
ciably larger then the velocity v = 10 cm/s with which the 
packets spread. The time t after which the two particles fly 
apart at a distance Az is t = Az/26v = 2 X lo-' s. The time 
of broadening of the packets to dimensions of the order of the 
initial width of the packet is 7, = 3.4X 10-' s. Hence it fol- 
lows that for the chosen parameters the initial packet splits 
up into two packets already in the region of the light wave. 
We assume that the distance to the registration region 
L = 100 cm. After the time it takes the atom to fly this dis- 
tance T =  L /uo, = 2X lop3  s the two packets are separat- 
ed by a distance 26uT = 0.3 cm and they are broadened only 
by an amount vT = 2 x  10V2 cm. 

The estimates given here show thus that the atom-opti- 
cal analogy with the Stern-Gerlach effect can be observed 
under conditions which are typical for experiments on the 
scattering of atomic beams by a light field. 

8. ALLOWANCE FOR RADIATIVE RELAXATION 

In the preceding sections we studied the scattering of 
atoms for interaction times which were small compared to 
the time of spontaneous relaxation of the levels a, b. We now 
consider what will be the consequences of taking into ac- 
count the radiative relaxation. We shall assume that the low- 
er level is the ground state and that the upper level decays 
into the ground state with a spontaneous relaxation rate 2y. 

To take the relaxation into account we introduce in the 
usual way the density matrix in the coordinate representa- 
tion 
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Y (r, t )  Y * (r', t )  -+p (r, r', t )  . 

The analysis of the dynamics of the atom in the field of a 
resonant light wave is carried out using the denisty matrix in 
the Wigner representation 

p (r, p, t )  = (2n)  -'j as p (r+s/2, r-s/& t)  e-Ips. 

The equations for the density matrix of an atom in the field of 
the standing wave ( 1 ) have in the Wigner representation the 
form (see, e.g., Ref. 1 1  ) 

where 

j dn @ (n) = 35 d q j  dB sin3 0. 
8no 0 

The integral term in ( 2 2 )  takes into account the arrival in 
the level b under the spontaneous emission of a photon, n is a 
unit vector in the direction given by the angles 19 and p [the 
integration in ( 2 2 )  means averaging over the randon recoil 
momentum n k ] ;  for the off-diagonal elements in ( 2 2 )  we 
have made the substitution pa, +pub e - 

For the determination of the dynamics of the atom in 
the field ( 1 ) the main interest is to find the Wigner function 

with the help of which we can find the probability density to 
find the atom at the point r 

and the momentum probability density 

Here we restrict ourselves to taking into account the 
role of the radiative relaxation for smallg when Eq. ( 2 2 )  can 
be solved using perturbation theory methods. When y-' 
the solution of Eqs. ( 2 2 )  using perturbation theory is, of 
course, the same as the solution given in section 3. In the 
intermediate case T-y- '  the solution is extremely compli- 
cated. Of physical interest is the case T >  y  ' which we con- 
sider below. This case was studied experimentally in Ref. 13. 

When spontaneous relaxation is taken into account, the 
characteristic parameter of the problem is the ratio R / y  
where R = k ' / 2 M  is the recoil energy. For allowed dipole 
transitions R / y  < 1 .  For instance, for the yellow sodium line 
(A = 0 . 6 p m )  R / y z  

We consider an arbitrary wavepacket. For the times of 
interest to us t $  y-' the width of the packet always satisfies 
the condition 

where u  = k /M.  Indeed, if this condition is satisfied at t = 0  
thanks to the free spreading of the wavepacket it will be the 
better valid fort)  y- I. If, on the other hand, the width of the 
wavepacket Az 5 uy- ' ,  by virtue of the uncertainty relation 
the wavepacket has characteristic velocities Au k7Ey which 
guarantee for times t )  y-' the spreading of the packet to a 
size A z 2 7 2 ) ~ y - ~ .  

Taking Eq. ( 2 3 )  into account we can transform Eqs. 
( 2 2 )  for times t %  y-' into a Fokker-Planck equation for the 
classical coordinate and momentum distribution function. 
To do this we take the sum of the first and the third Eqs. ( 2 2 )  
and expands the elements of the density matrix up to second 
order in k: 

a 
a 5' (- + v - iv=2kg sin - (pab+pba) +kzy a., -pa.. 

at a r  8 P , -, , . opt- , .- 

Here w = p,, + p,, has the meaning of a classical distribu- 
tion function, p = p , ,  a,, = 2/5,  ayy = 2/10, a,, = 2/5. 
We further restrict ourselves to obtain the Fokker-Planck 
equation to second order in g. To do this we evaluate the 
elementp,, from ( 2 2 )  to first ordering and the elementp,, 
to second order in g. As the element pa, occurs in ( 2 4 )  in 
first order in k and the element p,, in second order in k we 
write them down, respectively, to first and zeroth order in k .  
Using Eq. ( 2 3 )  we have 

g2 sin 24 +-- [kvy (L-+L+) -r (Q-L--o+L+) ] ZL?, ( 2 5 )  y z  yZ+kZu2 

where 

Substituting ( 2 5 )  into ( 2 4 )  we finally get the Fokker- 
Planck equation to second order in g: 

aw aw a a2 
-+v-=  -- ( F )  - ( D ) .  ( 2 6 )  

8 t a r  dp 
7 = 2 . U , l  8piZ 

In dimensional units the coefficients of Eq. ( 2 6 )  have the 
form 

G 
f a i i  7 [ y  (Q+L+-Q-L-) +kvy (L-+L+) ]sin 21# 

y2+kzv2 
+26,,G(L-+L+) sin2 $SGZiGy-' (Q-L--Q+L+) sin 241. ( 2 7 )  

243 Sov. Phys. JETP 65 (2), February 1987 E. V. Baklanov and V. G. Minogin 243 



where we have introduced the saturation parameter 
G = 2g2/y2. 

The interaction between the atom and the field of the 
standing wave thus leads f o r t s  y- ' to the appearance of the 
force F. Moreover, the momentum distribution of the atom 
broadens diffusively in accordance with the value of the dif- 
fusion tensor D,, . 

When u = 0 and Ifll) y the force F is the same as the 
force written down in Ref. 14 and in Eq. ( 3 )  of Ref. 15: 

F=4fik ( g 2 / Q )  sin 2$. 

Under the same conditions the diffusion tensor is 

We note that the perturbation theory method in princi- 
ple enables us to find the coefficients in the Fokker-Planck 
equation to any order in g and thus to obtain F and D,, for 
any value ofg. One can show that the results of calculating F 
and Dl, on the basis of pertrubation theory are the same as 
the quantities F and Dl, determined in Refs. 10 and 11. 

9. CONCLUSION 

There exist thus in the problem of the scattering of an 
atom by the field of a standing wave two qualitatively differ- 
ent regions of evolution of the wavepacket of the atom; 
rgy-' and r s y - ' .  

In the case y r <  1 the character of the scattering of the 
atom depends on the ratio of the width Az of the wavepacket 
of the atom and the wavelength 72 of the field. When Azs72 

the incident packet is split, in general, into a large number of 
scattered packets. When Az 472 two scattered packets may 
be formed. 

In the opposite case yr )  1 the scattering reduces to a 
stochastic motion described by a Fokker-Planck equation. 
In that case the dynamics of the atom is determined by the 
force F and the value of the diffusion tensor D,, . 
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